JPS60225421A - Evaporation source crucible for molecular beam epitaxy - Google Patents

Evaporation source crucible for molecular beam epitaxy

Info

Publication number
JPS60225421A
JPS60225421A JP8020384A JP8020384A JPS60225421A JP S60225421 A JPS60225421 A JP S60225421A JP 8020384 A JP8020384 A JP 8020384A JP 8020384 A JP8020384 A JP 8020384A JP S60225421 A JPS60225421 A JP S60225421A
Authority
JP
Japan
Prior art keywords
lid
crucible
evaporation source
film thickness
evaporated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8020384A
Other languages
Japanese (ja)
Inventor
Masao Mashita
真下 正夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8020384A priority Critical patent/JPS60225421A/en
Publication of JPS60225421A publication Critical patent/JPS60225421A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To enable forming of a thin film which has extremely good reproducibility of distribution of film thickness due to a constant divergent angle of vapor by providing a lid with plural through holes covering an evaporated material inside an evaporation source crucible. CONSTITUTION:A lid 5 which has slits 6 is placed on a supporter 7 inside a crucible 1 and below the lid 5, a material 4 to be evaporated is placed. Vapor from the crucible passes through the lid 5 and the divergent angle theta3 does not depend upon the surface of the evaporated material 4 liquid so distribution of film thickness is only related to the lid, the shape of the crucible and the position of a substrate whereby the distribution of film thickness which has extremely good reproducibility can be obtained.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は蒸発源材料のチャージ量にIv1g々く広い面
積で再現性の良い膜厚分布が得られる分子線エピタキシ
ー用蒸発源ルツボに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field to which the Invention Pertains] The present invention relates to an evaporation source crucible for molecular beam epitaxy that can provide a film thickness distribution with good reproducibility over a wide area with a charge amount of evaporation source material Iv1g.

〔従来技術とその問題点〕[Prior art and its problems]

第1図に示すような従来の蒸発源ルツボを用いてエピタ
キシャル膜を形成する場合、ルツボ(1)にチャージし
た被蒸発材料(4)の量、すなわち、液面の高さによっ
て蒸気の空間分布が変ってしまう。
When forming an epitaxial film using a conventional evaporation source crucible as shown in FIG. will change.

具体的には第1図(a)における蒸気の発散角はおよそ
θ1で、被蒸発材料が消耗して液面がAから第1図(b
)゛の液面A1になった場合には蒸気の発散角はおよそ
θ鵞で明らかにθ、〉θ鵞である。これにより得られる
エピタキシー膜の膜厚分布は両者で著しく異なる。すな
わち、被蒸発材料の使用とともに膜厚分布は変化し、再
現性を欠くことになる。
Specifically, the divergence angle of the vapor in Figure 1 (a) is approximately θ1, and the material to be evaporated is consumed and the liquid level changes from A to Figure 1 (b).
) When the liquid level A1 is reached, the divergence angle of the vapor is approximately θ, which is clearly θ, and >θ. The film thickness distribution of the epitaxy film obtained by this method is significantly different between the two. That is, the film thickness distribution changes as the material to be evaporated is used, resulting in a lack of reproducibility.

〔発明の目的〕[Purpose of the invention]

本発明は、上述した従来のルツボによる欠点を改良した
もので、被蒸発材料のチャージ量によらず、また、その
消費量によらず蒸気の発散角は一定の蒸発源ルツボを提
供することを目的とし、膜厚分布の再現性のきわめて良
好々薄膜形成が可能である。
The present invention improves the drawbacks of the conventional crucibles described above, and provides an evaporation source crucible in which the divergence angle of vapor is constant regardless of the charge amount of the material to be evaporated or the amount consumed. As a result, it is possible to form thin films with extremely good reproducibility of film thickness distribution.

〔発明の概要〕[Summary of the invention]

本発明は蒸発源ルツボの内側に被蒸発材料を覆うように
蓋を置いた構造で、蓋には複数個の貫通孔が設けである
ことを特徴とする特 〔発明の実施例〕 以下本発明を実施例の図面に基づいて説明する。
The present invention has a structure in which a lid is placed inside the evaporation source crucible to cover the material to be evaporated, and the lid is provided with a plurality of through holes [Embodiments of the Invention] Hereinafter, the present invention will be explained based on the drawings of the embodiment.

第2図はルツボ口)の内側に隙間(6)を有する蓋(5
)をその支持台(7)の上に置き、その下方に被蒸発材
料(4)が置かれる。蒸発源として使用する際は、被蒸
発材料(4)から発生した蒸気(8)は先ず蓋(5)に
達し、再蒸発をくヤ返して外部に飛び出す場合(8yと
蓋表面の沿面拡散によって移動し、その後外部に飛び出
す場合(8y1とがある。いずれKしても被蒸発物(4
)から発生した蒸気は、直接外部に出ない構造となって
いる。このように本発明によるルツボからの蒸気は実質
的に蓋(5)から発生するととKなるので蒸気の発散角
θ3は被蒸発材料(4)の液面には全く依存しない。す
なわち、膜厚分布は蓋とルツボ形状と基板位置にのみ関
係するのできわめて再現性の良い膜厚分布を得ることが
できる。
Figure 2 shows a lid (5) with a gap (6) inside the crucible opening.
) is placed on its support (7), and the material to be evaporated (4) is placed below it. When used as an evaporation source, the vapor (8) generated from the material to be evaporated (4) first reaches the lid (5), repeats re-evaporation, and then jumps out to the outside (by 8y and creeping diffusion on the lid surface). If it moves and then jumps out to the outside (8y1).
) The structure is such that the steam generated from the system does not directly escape to the outside. As described above, since the vapor from the crucible according to the present invention is substantially generated from the lid (5), the vapor divergence angle θ3 does not depend on the liquid level of the material to be evaporated (4). That is, since the film thickness distribution is related only to the lid, crucible shape, and substrate position, it is possible to obtain a film thickness distribution with extremely good reproducibility.

また、蓋(5)は上述の通り、蒸気が直接貫通できない
構造になっているので被蒸発材K(4)の突沸により発
生した粒子も菱に捕えられ、薄膜の表面欠陥の原因とな
るこのような粒子の飛来を防ぐことができる。これKよ
り表面欠陥の少ないエピタキシャル膜を得る効果もある
。具体的には、開口径20m、深さ70mの第2図に示
すルツボに上から20箇の位置に蓋を置き、Gaを10
fチヤージした・。蓋の隙間は2雪毎に設けた。ルツボ
材および蓋材はパイロリティックBNを使用した。もう
一方にへ源を用意して直径75mのGaA、 (001
)基板面に700℃でエピタキシャルGaA3を成長さ
せたところ、成長速度1〜3μm/時間に対してきわめ
て均一な膜厚分布と表面欠陥のない鏡面が得られた。こ
の時の蒸発源温度はGaIC対して1100〜1250
℃、AsK対しては355〜370℃であった。
In addition, as mentioned above, since the lid (5) has a structure that does not allow steam to pass through directly, particles generated by bumping of the material to be evaporated (4) are also captured by the rhombus, which causes surface defects in the thin film. It is possible to prevent such particles from flying into the air. This also has the effect of obtaining an epitaxial film with fewer surface defects than K. Specifically, a lid was placed at 20 positions from the top of a crucible with an opening diameter of 20 m and a depth of 70 m, as shown in Fig. 2, and 10 m of Ga was added.
I charged f. A gap between the lids was set every two snowflakes. Pyrolytic BN was used as the crucible material and lid material. GaA with a diameter of 75 m, (001
) When epitaxial GaA3 was grown on the substrate surface at 700°C, an extremely uniform film thickness distribution and a mirror surface without surface defects were obtained at a growth rate of 1 to 3 μm/hour. The evaporation source temperature at this time is 1100-1250 for GaIC.
℃, 355-370℃ for AsK.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例を説明するための断面図、第2図は本案
の一実施例を説明するための断面図である。 1・・・ルツボ、2・・・ヒーター、3・・・熱電対、
4・・・被蒸発物、5・・・蓋、6・・・隙間、7・・
・蓋の支持台、8・・・蒸気分子。
FIG. 1 is a sectional view for explaining a conventional example, and FIG. 2 is a sectional view for explaining an embodiment of the present invention. 1... Crucible, 2... Heater, 3... Thermocouple,
4... Evaporation object, 5... Lid, 6... Gap, 7...
- Lid support, 8...steam molecules.

Claims (2)

【特許請求の範囲】[Claims] (1)分子線エピタキシーに用いられるが発源ルツボの
内側に被蒸発材料を覆うように蓋を置いた構造で、上記
蓋には複数の貫通孔が設けであることを特徴とする分子
線エピタキシー用蒸発源ルツボ。
(1) Molecular beam epitaxy, which is used in molecular beam epitaxy, has a structure in which a lid is placed inside the source crucible to cover the material to be evaporated, and the lid is provided with a plurality of through holes. Evaporation source crucible.
(2)蓋の貫通孔は蒸気が蓋に衝突なく通ずることので
きない構造であることを特徴とする特許請求の範囲第1
項記載の分子線エピタキシー用蒸発源ルツボ。
(2) Claim 1, characterized in that the through-hole of the lid has a structure that prevents steam from passing through the lid without colliding with the lid.
An evaporation source crucible for molecular beam epitaxy as described in .
JP8020384A 1984-04-23 1984-04-23 Evaporation source crucible for molecular beam epitaxy Pending JPS60225421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8020384A JPS60225421A (en) 1984-04-23 1984-04-23 Evaporation source crucible for molecular beam epitaxy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8020384A JPS60225421A (en) 1984-04-23 1984-04-23 Evaporation source crucible for molecular beam epitaxy

Publications (1)

Publication Number Publication Date
JPS60225421A true JPS60225421A (en) 1985-11-09

Family

ID=13711822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8020384A Pending JPS60225421A (en) 1984-04-23 1984-04-23 Evaporation source crucible for molecular beam epitaxy

Country Status (1)

Country Link
JP (1) JPS60225421A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5976263A (en) * 1995-08-03 1999-11-02 Thermo Instrument Systems, Inc. Sources used in molecular beam epitaxy
DE10056686A1 (en) * 2000-11-15 2002-05-29 Paul Drude Inst Fuer Festkoerp Vaporizer cell used in a molecular beam epitaxial process comprises a crucible having a heater and an opening, and a covering unit formed by a plate-like screen

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5976263A (en) * 1995-08-03 1999-11-02 Thermo Instrument Systems, Inc. Sources used in molecular beam epitaxy
DE10056686A1 (en) * 2000-11-15 2002-05-29 Paul Drude Inst Fuer Festkoerp Vaporizer cell used in a molecular beam epitaxial process comprises a crucible having a heater and an opening, and a covering unit formed by a plate-like screen
DE10056686B4 (en) * 2000-11-15 2005-09-29 Forschungsverbund Berlin E.V. Evaporator cell and a method for producing vapor deposition layers

Similar Documents

Publication Publication Date Title
JPH05139882A (en) Molecular beam source
JPS63502542A (en) Controlling the uniformity of growing alloy thin films
JPS60225421A (en) Evaporation source crucible for molecular beam epitaxy
Crewe Direct imaging of single atoms and molecules using the STEM
JPS5619030A (en) Production of liquid crystal display element
JPS60137896A (en) Crucible for molecular beam source
JPS61220414A (en) Apparatus for generating molecular beam
JPS60115218A (en) Vaporization source cell of thin film forming apparatus
JPS6043480A (en) Crucible as evaporating source for vacuum deposition
JPS63937B2 (en)
JPH0237692B2 (en)
JPS62287616A (en) Shutter structure of molecular beam epitaxial apparatus
JPS59223293A (en) Molecular beam epitaxial growth device
JPS63122211A (en) Molecular beam generating device
JPH05117845A (en) Device and method for film forming of compound material
Gotoh et al. Growth mechanism of a Ag crystal particle containing a twin plane grown on a Mo (110) surface
JPH04111730U (en) Molecular beam epitaxy equipment
JPS63282190A (en) Molecular beam crystal growth device
JPS61141697A (en) Molecular beam source for molecular beam crystal growth device
JPH0226889A (en) Molecular beam crystal growing device
JPS62106616A (en) Molecular beam epitaxial deposition device
JPS60112690A (en) Evaporation source cell for molecular beam crystal growth device
JPS63282189A (en) Molecular beam epitaxial growth device
JPH01305889A (en) Molecular beam cell
JPS63252996A (en) Hot-wall epitaxial growth apparatus