JPH0226889A - Molecular beam crystal growing device - Google Patents

Molecular beam crystal growing device

Info

Publication number
JPH0226889A
JPH0226889A JP17465188A JP17465188A JPH0226889A JP H0226889 A JPH0226889 A JP H0226889A JP 17465188 A JP17465188 A JP 17465188A JP 17465188 A JP17465188 A JP 17465188A JP H0226889 A JPH0226889 A JP H0226889A
Authority
JP
Japan
Prior art keywords
substrate
rheed
electron beam
vibration
growth rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17465188A
Other languages
Japanese (ja)
Inventor
Takeshi Maeda
毅 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP17465188A priority Critical patent/JPH0226889A/en
Publication of JPH0226889A publication Critical patent/JPH0226889A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To improve the uniformity of film thickness and composition by suppressing damping of the vibration of the reflected high energy electron beam diffraction by such a method as to scan the electron beam made incident to the substrate while synchronizing with rotation of the substrate to enable accurate measurement of the growing rate. CONSTITUTION:The electron beams for measurement 2 which makes incident to the substrate 1 synchronizes with rotation of the substrate and scans it. The sensor 13 follows the scanning and detects the reflected electron beam. Then the growing rate of the crystal is monitered by the observation of the reflected high energy electron beam diffraction(RHEED) vibration.

Description

【発明の詳細な説明】 〔概要〕 反射高エネルギ電子線回折(R)IEED)振動の観察
により、結晶成長速度をモニタする分子線結晶成長(M
BE)装置に関し RHEED振動の減衰を抑制して、成長速度の正確な測
定を可能とし、成長層中に膜厚や組成の不均一な層を含
まないようにようにすることを目的とし。
[Detailed Description of the Invention] [Summary] Molecular beam crystal growth (M
BE) The purpose is to suppress the attenuation of RHEED oscillations in the apparatus, enable accurate measurement of the growth rate, and prevent the growth layer from including a layer with non-uniform film thickness or composition.

RIIEED振動の観察により結晶成長速度をモニタす
る装置を有し、被成長基板に入射させる該装置の測定用
電子線を該基板の回転に同期して走査し。
It has a device that monitors the crystal growth rate by observing RIIEED vibrations, and scans a measurement electron beam of the device that is incident on the growth substrate in synchronization with the rotation of the substrate.

反射電子線を該走査に追随して検出するように。The reflected electron beam is detected following the scanning.

且つ分子線源は該基板の回転に非同期状態に構成される
。又は、 RHEED振動の観察により結晶成長速度を
モニタする装置を有し、該装置と被成長基板は固定し2
分子線源は該基板に垂直な軸の周りに回転できるように
構成する。
Moreover, the molecular beam source is configured to be asynchronous to the rotation of the substrate. Or, it has a device that monitors the crystal growth rate by observing RHEED vibration, and the device and the growth substrate are fixed.
The molecular beam source is configured to be rotatable about an axis perpendicular to the substrate.

〔産業上の利用分野] 本発明はRHEED振動の観察により、結晶成長速度を
モニタするMBE装置に関する。
[Industrial Application Field] The present invention relates to an MBE apparatus that monitors crystal growth rate by observing RHEED vibrations.

MBE装置は、超格子を利用する半導体素子のように原
子層単位で厚さが制御される素子の形成に広く利用され
ている。分子線を発生させる分子線源は、成長させよう
とする物質に応じ単数または複数の元素を用意し、必要
分子線源を選択使用して所望の物質層を成長させる。
MBE apparatuses are widely used to form devices whose thickness is controlled on an atomic layer basis, such as semiconductor devices that utilize a superlattice. For the molecular beam source that generates molecular beams, one or more elements are prepared depending on the substance to be grown, and the desired molecular beam source is selectively used to grow a desired substance layer.

このようなMBHにおいては、結晶の成長速度は非常に
重要な因子である。従来、この成長速度の測定は、モニ
タ用のエビを成長し、その膜厚と成長時間から算出する
方法をとっていたが、モニタ用の基板が必要であること
及びモニタ成長と膜厚の評価に時間がかかることのため
、近年、超格子構造の形成等で所定数の原子層を正確に
成長させるために、 RHEED振動による成長速度測
定が行われるようになってきた。
In such MBH, the crystal growth rate is a very important factor. Conventionally, this growth rate was measured by growing shrimp for monitoring and calculating from the film thickness and growth time, but this required a substrate for monitoring and evaluation of monitoring growth and film thickness. In recent years, growth rate measurement using RHEED vibration has been used to accurately grow a predetermined number of atomic layers in the formation of a superlattice structure.

〔従来の技術〕[Conventional technology]

第6図は従来のMBE装置の模式断面図である。 FIG. 6 is a schematic cross-sectional view of a conventional MBE apparatus.

図において、lは被成長基板、2はRHEED用入射電
子線、4は成長速度を決定する分子線(成長速度に関与
しない分子線は測定しなくてよい)。
In the figure, 1 is a substrate to be grown, 2 is an incident electron beam for RHEED, and 4 is a molecular beam that determines the growth rate (molecular beams that are not involved in the growth rate do not need to be measured).

5は分子線源(加熱手段を持ったるつぼ)、6は分子線
を遮断するシャッタ、7はRHEED用電子銃。
5 is a molecular beam source (a crucible with heating means), 6 is a shutter that blocks the molecular beam, and 7 is an electron gun for RHEED.

8は螢光スクリーン、9は超高真空チャンバ、10は基
板ホルダ、11はヒータである。
8 is a fluorescent screen, 9 is an ultra-high vacuum chamber, 10 is a substrate holder, and 11 is a heater.

この装置を用いて基板1上にエビ成長を行う場合、所望
の半導体を成長するためのソースを蓄えたるつぼ5を加
熱し分子線を放射させる。例えばソースとしてGaとA
sを用いればGaAs結晶を、Siを用いればSi結晶
を成長できる。
When performing growth on the substrate 1 using this apparatus, the crucible 5 containing a source for growing a desired semiconductor is heated to emit molecular beams. For example, Ga and A as sources
If s is used, a GaAs crystal can be grown, and if Si is used, a Si crystal can be grown.

RHEED振動観測法は、電子銃7より出た電子線を基
板面に対し1〜2°の浅い角度で基板1に入射させ、そ
の反射電子線による回折パターンを螢光スクリーン8上
に写し出す方法により、この成長中にRHEEDパター
ンの回折点の強度を測定すると、成長速度に対応した振
動が見られ、これを利用して成長速度をモニタすること
ができる。
The RHEED vibration observation method is a method in which an electron beam emitted from an electron gun 7 is incident on the substrate 1 at a shallow angle of 1 to 2 degrees with respect to the substrate surface, and a diffraction pattern due to the reflected electron beam is projected onto a fluorescent screen 8. When the intensity of the diffraction spots of the RHEED pattern is measured during this growth, oscillations corresponding to the growth rate are observed, and this can be used to monitor the growth rate.

1?HEED振動は、結晶が層状成長をしているときに
生ずるもので2表面で平坦に原子が堆積しているときは
RHEEDの強度は極大となり、さらにその上に原子が
堆積し始めると乱反射により強度が落ちる。1層の成長
が終わり平坦な面が再び現れたとき2強度は再び極大と
なる。このようにして1原子層の成長に対応した周期で
強度の振動が得られる。
1? HEED oscillations occur when a crystal grows in layers.2 When atoms are deposited flat on the surface, the RHEED intensity is at its maximum, and when atoms begin to deposit further on top of it, the intensity increases due to diffuse reflection. falls. When the growth of the first layer is finished and a flat surface appears again, the intensity of the second layer becomes maximum again. In this way, strong vibrations can be obtained with a period corresponding to the growth of one atomic layer.

第7図(11〜(3)は従来例によるRHEED振動を
説明する図である。
FIG. 7 (11 to (3)) are diagrams illustrating RHEED vibration according to the conventional example.

第7図(1)のように、成長速度を決定するGa分子v
A4が入射電子線2と、任意の角1例えば15°の角を
なして基板に入射する。このとき、第7図(2)に示さ
れるように、 GaAsの成長速度は基板上で入射電子
線2の方向に1mmにつき1%の傾き、即ち照射領域3
 (第1図参照)の全長(約10mm)でl。
As shown in Figure 7 (1), the Ga molecule v that determines the growth rate
A4 enters the substrate at an arbitrary angle 1, for example 15°, with the incident electron beam 2. At this time, as shown in FIG. 7(2), the growth rate of GaAs is at an inclination of 1% per 1 mm in the direction of the incident electron beam 2 on the substrate, that is, the irradiation area 3
(See Figure 1) The total length (about 10 mm) is l.

%の傾きを持っていた。It had a slope of %.

測定中、成長速度0.6μm/時間で成長したところ、
第7図(3)のようにRHE E D振動は10回程度
しか続かなかった。
During the measurement, when the growth rate was 0.6 μm/hour,
As shown in Figure 7 (3), the RHEED vibration lasted only about 10 times.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来例のようなRHEED振動による成長速度のモニタ
を行う際、 I?HEED振動が減衰して正確な測定が
できないという欠点があった。
When monitoring the growth rate using RHEED oscillation as in the conventional example, I? There was a drawback that HEED vibration was attenuated and accurate measurement could not be performed.

R)IEED振動の減衰の原因はいくつがあるが、大き
な原因の1つとして次のことがある。
R) There are many causes for the damping of IEED vibrations, but one of the major causes is as follows.

一般に電子線は入射角(この場合は入射線の基板に対す
る角をいう)が1〜2°と浅いため、基板上で入射方向
に数mmあるいはそれ以上の範囲にわたって照射される
ことになる。この範囲において成長速度に傾きがある場
合振動は急激に減衰してしまうことになる。
Generally, an electron beam has a shallow incident angle (in this case, the angle of the incident beam with respect to the substrate) of 1 to 2 degrees, so that the substrate is irradiated over a range of several mm or more in the direction of incidence. If there is a slope in the growth rate in this range, the vibration will be rapidly attenuated.

例えば、電子線が照射されている範囲の両端において成
長速度が5%異なっていたとする(通常のMBEでは基
板を回転させるので基板全面で±1%程度の膜厚の均一
性が得られるが、 RHEED観察は基板を停止して行
うため1 この程度の成長速度の傾きは起こり得る)と
、一端でちょうど5原子層成長したとき(RHEED強
度極大)、他端では4.5原子層成長している(RHE
ED強度極小)ことになり、 RHEED強度は打ち消
し合ってしまう。実際には電子線照射領域での積分にな
り、振動はうねりを生じて急激に減衰する。このため正
確な成長速度の測定は困難であった。
For example, suppose that the growth rate differs by 5% at both ends of the range irradiated with the electron beam (in normal MBE, the substrate is rotated, so a film thickness uniformity of about ±1% can be obtained over the entire surface of the substrate, but Because RHEED observation is performed with the substrate stopped, 1) a slope of growth rate of this degree can occur), and when exactly 5 atomic layers have grown at one end (RHEED intensity maximum), 4.5 atomic layers have grown at the other end. There is (RHE
ED strength is minimum), and the RHEED strength cancels each other out. In reality, it is an integral over the electron beam irradiation region, and the vibrations create undulations and are rapidly attenuated. For this reason, it has been difficult to accurately measure the growth rate.

又、 R1(EED振動の観察は基板を静止させて行っ
ていたため、膜厚や組成(化合物半導体の場合)の不均
一な層を含むことになり問題であった(第1図(2)参
照)。
In addition, since the observation of R1 (EED vibration) was carried out with the substrate stationary, it included a layer with non-uniform film thickness and composition (in the case of compound semiconductors), which was a problem (see Figure 1 (2)). ).

本発明はRHEED振動の減衰を抑制して、成長速度を
正確に測定でき、 RHEED振動の観察に伴う膜厚や
組成の不均一な層を成長層中に含まないようにすること
を目的とする。
The purpose of the present invention is to suppress the attenuation of RHEED oscillations so that the growth rate can be measured accurately, and to prevent the growth layer from containing a layer with non-uniform film thickness or composition that is associated with observation of RHEED oscillations. .

〔課題を解決するための手段〕[Means to solve the problem]

上記課題の解決は、 RHEED振動の観察により結晶
成長速度をモニタする装置を有し、被成長基板に入射さ
せる該装置の測定用電子線を該基板の回転に同期して走
査し1反射電子線を該走査に追随して検出するように構
成され、且つ分子線源は該基板の回転に非同期状態に構
成されている分子線結晶成長装置、又は、 R1(EE
D振動の観察により結晶成長速度をモニタする装置を有
し、該装置と被成長基板は固定し1分子線源は該基板に
垂直な軸の周りに回転できるように構成されている分子
線結晶成長装置により達成される。
The solution to the above problem is to have a device that monitors the crystal growth rate by observing RHEED oscillations, scan the measuring electron beam of the device that is incident on the growth substrate in synchronization with the rotation of the substrate, and generate one reflected electron beam. R1 (EE
A molecular beam crystal that has a device for monitoring the crystal growth rate by observing D-vibration, and is configured such that the device and the growth substrate are fixed and the single molecule beam source can be rotated around an axis perpendicular to the substrate. Achieved by growth equipment.

〔作用〕[Effect]

第1図(1)〜(3)は本発明の詳細な説明する平面図
と断面図である。
FIGS. 1(1) to 1(3) are a plan view and a sectional view illustrating the present invention in detail.

第1図(1)において、基板1に前記の浅い入射角で電
子線2が入射される。この場合基板上の照射領域3は入
射方向に細長い領域となる。
In FIG. 1(1), an electron beam 2 is incident on a substrate 1 at the above-mentioned shallow incident angle. In this case, the irradiation area 3 on the substrate becomes an elongated area in the direction of incidence.

本発明は、 RHEED振動の観察中、測定用電子線を
基板と一緒に回転させるか、又はこれと同等の状態にす
ることにより、基板全面で、従って照射領域3内でも成
長速度を均一にし、 RHEED振動の減衰を抑制する
ものである。
The present invention makes the growth rate uniform over the entire surface of the substrate and therefore within the irradiation area 3 by rotating the measurement electron beam together with the substrate or in an equivalent state during observation of RHEED oscillations, This suppresses the attenuation of RHEED vibration.

第1図(21,(31は基板の断面図で、1^、 IC
は回転して成長した層、 IBはRHEED振動の観察
を行った層で、第1図(2)は基板を止めた場合(従来
例)。
Figure 1 (21, (31 is a cross-sectional view of the board, 1^, IC
IB is the layer grown by rotation, IB is the layer where RHEED vibration was observed, and Figure 1 (2) shows the case when the substrate is stopped (conventional example).

第1図(3)は基板を回転させながら観察した場合(本
発明)を示す。
FIG. 1(3) shows the case where the substrate is observed while being rotated (the present invention).

第1図(3)の場合は、 RHEED振動の観察中も回
転させながら成長を行っているため、膜厚1組成は全層
で均一となる。
In the case of FIG. 1 (3), the growth is performed while rotating even during the observation of RHEED vibration, so the composition per film thickness is uniform throughout the entire layer.

そのためには、装置を次のように構成する。To this end, the device is configured as follows.

(1>  l?HEED用の電子銃及び検出器をMBE
チャンバ内に配置し、基板と一諸に回転させる。
(1> l? MBE the electron gun and detector for HEED
It is placed in a chamber and rotated together with the substrate.

(21RHE E D用の電子銃及び検出器を従来通り
固定し2分子線源を装着したターンテーブルを回転させ
る。
(The electron gun and detector for 21RHE E D are fixed as before, and the turntable equipped with the bimolecular beam source is rotated.

(3)基板の回転に同期してRIIEEDの入射電子線
を基板上に走査させ5検出系もこれに追随させる。
(3) The incident electron beam of the RIIEED is scanned over the substrate in synchronization with the rotation of the substrate, and the detection system 5 is made to follow this.

RHEED系は複数個設けてもよい。A plurality of RHEED systems may be provided.

〔実施例〕〔Example〕

以下の実施例においては、基板上の電子線の照射領域3
は約0.1 mm xio mmである。
In the following examples, the electron beam irradiation area 3 on the substrate is
is approximately 0.1 mm xio mm.

実施例の測定は次の点に留意して行った。Measurements in Examples were carried out with the following points in mind.

■ 正確な測定をするため、 RHEED振動の最低2
0周期を測定する。
■ For accurate measurements, a minimum of 2 RHEED vibrations is required.
Measure 0 cycles.

■ シャッタを開けてから、成長速度が安定するのに1
〜2分かかるので、上記20周期の測定は成長開始後最
低2分経過後行う。
■ After opening the shutter, the growth rate stabilizes.
Since it takes ~2 minutes, the measurements of the above 20 cycles are performed after at least 2 minutes have elapsed after the start of growth.

実施例1: 第3図のように、電子銃7及び電子線強度の検出器13
をMBEチャンバ9内に配置する。まず、電子線の入射
方向と検出器の位置を決めたら、基板1と電子銃7と検
出器13を同じ回転速度で回転する。
Example 1: As shown in FIG. 3, an electron gun 7 and an electron beam intensity detector 13
is placed in the MBE chamber 9. First, after determining the incident direction of the electron beam and the position of the detector, the substrate 1, electron gun 7, and detector 13 are rotated at the same rotational speed.

回転速度は、1回転に要する時間が1原子層成長する時
間と同程度か、またはそれより速ければよい。
The rotation speed may be as long as the time required for one rotation is about the same as the time required to grow one atomic layer or faster.

この実施例では、 RHEED振動の周期を回転周期と
一致させて観測した。
In this example, the period of RHEED oscillation was made to match the rotation period for observation.

基板を回転させた結果、成長速度は基板上で均一となり
、そのばらつきは基板全面で1%以下となり、 RHE
ED振動は第2図のように100回以上も続いた。
As a result of rotating the substrate, the growth rate becomes uniform on the substrate, and the variation is less than 1% over the entire surface of the substrate.
The ED vibration continued for more than 100 times as shown in Figure 2.

又、 RHEED振動の観察中も基板を回転しているの
で、成長層中に膜厚9組成の不均一な層を含むことはな
い。
Furthermore, since the substrate is rotated even during the observation of RHEED vibration, the grown layer does not include a layer with a non-uniform thickness and composition.

実施例2: 第4図のように、電子銃7と螢光スクリーン8は従来と
同様にMBEチャンバ9に固定して取り付け、複数の分
子線a5を取り付けたターンテーブル14が回転するこ
とにより、第3図の実施例1と同等の効果が得られる。
Embodiment 2: As shown in FIG. 4, the electron gun 7 and the fluorescent screen 8 are fixedly attached to the MBE chamber 9 in the same way as in the conventional case, and the turntable 14 to which a plurality of molecular beams a5 are attached is rotated. The same effect as the first embodiment shown in FIG. 3 can be obtained.

実施例3: 第5図(1)に示されるように、 RHEED用の電子
銃7と螢光スクリーン8を1組設け、電子銃7に付属の
偏向コイル12−1とチャンバ9内に設けられた偏向コ
イル12−2を用いて、電子線2を回転する基板に一定
の方向(例えば常に基板のファセットに平行な方向)か
ら入射させるようにする。
Embodiment 3: As shown in FIG. 5 (1), one set of an electron gun 7 and a fluorescent screen 8 for RHEED was provided, and a deflection coil 12-1 attached to the electron gun 7 and a set of a fluorescent screen 8 were installed in the chamber 9. Using the deflection coil 12-2, the electron beam 2 is made to enter the rotating substrate from a constant direction (for example, always parallel to the facets of the substrate).

この場合入射電子線2は上記2個の偏向コイルを用いて
図の実線の位置から点線の位置まで基板中心に対して約
306の区間を矢印のように基板の回転に同期して走査
するようにする。
In this case, the incident electron beam 2 is scanned in synchronization with the rotation of the substrate as shown by the arrow over a section of approximately 306 from the center of the substrate from the solid line position to the dotted line position in the figure using the two deflection coils. Make it.

基板が1回転する間に、この30°の区間を2回見るこ
とができ、 RHBED系を増やすことにより。
By increasing the number of RHBED systems, this 30° section can be seen twice during one rotation of the board.

この回数も増やすことができる。This number can also be increased.

検出系として、検出器13を螢光スクリーン8上を移動
させた。
As a detection system, a detector 13 was moved over a fluorescent screen 8.

実施例では、基板の回転周期とRIIEED振動の2周
期を一敗させ、毎回同位相の部分の振動をとった。
In the example, two periods, the rotation period of the substrate and the RIIEED vibration, were made to lose once, and the vibration of the same phase portion was taken every time.

第5図(2)は得られた振動波形で9図中2点線の部分
は実施例1.2のように連続してRIIEED振動を観
測した場合に得られるであろう波形であり。
FIG. 5(2) shows the obtained vibration waveform, and the two-dot line portion in FIG. 9 is the waveform that would be obtained if the RIIEED vibration was observed continuously as in Example 1.2.

実線部分は実際に得られた波形である。The solid line portion is the actually obtained waveform.

この場合も、 RHEED振動の観測中も基板は回転し
ているので前記諸実施例と同様の効果が得られる。
In this case as well, since the substrate is rotating even during observation of RHEED vibrations, the same effects as in the previous embodiments can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、 RHEED振動
の減衰を抑制して、成長速度の正確な測定が可能となり
、又、 RHEED振動観測に伴う膜厚や組成の不均一
な層を成長層内に含むことがなくなり。
As explained above, according to the present invention, it is possible to suppress the attenuation of RHEED oscillations, to accurately measure the growth rate, and to eliminate layers with non-uniform film thickness and composition within the growth layer due to RHEED oscillation observation. It is no longer included.

MBE成長の精度向上に寄与することができる。This can contribute to improving the precision of MBE growth.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(1)〜(3)は本発明の詳細な説明する平面図
と断面図。 第2図は実施例1のR)IEED振動を示す間第3図は
実施例1を説明する装置の断面図。 第4図は実施例2を説明する装置の平面図。 第5図(1)、 (2+は実施例3を説明する装置の平
面図とRII IE E D振動を示す同第6図は従来
のMBE装置の模式断面図。 第7図(1)〜(3)は従来例によるR 11 E E
 D振動を説明する図である。 図において。 1は被成長基板。 2はRHEεD用入射電子線。 3は電子線照射領域。 4は分子線 5は分子線源。 6はシャッタ。 7はR1(旺り用電子銃。 8は螢光スクリーン。 9は超高真空チャンバ。 10は基板ホルダ 11はヒータ。 12−1.12−2は偏向コイル。 13は電子線強度の検出器 14はターンテーブル 2ト、稽シB門め h?、工里E] 第 1(l12] (Z) ’!?(W“J36す”f’DIDhgHEEE)丁辰
十17第52 実&(FIJ j (7) R[T] Q第3図 イ乏末の分子縁紹晶麻長梗工の標式「■困第ら図
FIGS. 1 (1) to (3) are a plan view and a sectional view illustrating the present invention in detail. FIG. 2 shows the R)IEED vibration of Example 1, and FIG. 3 is a cross-sectional view of the device for explaining Example 1. FIG. 4 is a plan view of the apparatus for explaining the second embodiment. 5(1), (2+ is a plan view of the device for explaining Example 3, and FIG. 6 is a schematic sectional view of the conventional MBE device showing RII IE E D vibration. 3) is R 11 E E according to the conventional example.
It is a figure explaining D vibration. In fig. 1 is a growth substrate. 2 is the incident electron beam for RHEεD. 3 is the electron beam irradiation area. 4 is a molecular beam 5 is a molecular beam source. 6 is the shutter. 7 is R1 (electron gun for scanning. 8 is a fluorescent screen. 9 is an ultra-high vacuum chamber. 10 is a substrate holder 11 is a heater. 12-1, 12-2 is a deflection coil. 13 is a detector for electron beam intensity. 14 is turntable 2, practice B gate h?, Kuri E] 1st (l12] (Z) '!? (W "J36"f'DIDhgHEEE) Dingshinju 17th 52nd Minoru & (FIJ j (7) R [T] Q Fig. 3 A symbol of the molecular edge Shao crystal hemp length of the poor end

Claims (2)

【特許請求の範囲】[Claims] (1)反射高エネルギ電子線回折(RHEED)振動の
観察により結晶成長速度をモニタする装置を有し、被成
長基板に入射させる該装置の測定用電子線を該基板の回
転に同期して走査し、反射電子線を該走査に追随して検
出するように構成され、且つ分子線源は該基板の回転に
非同期状態に構成されていることを特徴とする分子線結
晶成長装置。
(1) Reflected high-energy electron diffraction (RHEED) It has a device that monitors the crystal growth rate by observing oscillations, and scans the measurement electron beam of the device that is incident on the growth substrate in synchronization with the rotation of the substrate. A molecular beam crystal growth apparatus characterized in that the apparatus is configured to detect a reflected electron beam following the scanning, and the molecular beam source is configured to be asynchronous with the rotation of the substrate.
(2)反射高エネルギ電子線回折(RHEED)振動の
観察により結晶成長速度をモニタする装置を有し、該装
置と被成長基板は固定し、分子線源は該基板に垂直な軸
の周りに回転できるように構成されていることを特徴と
する分子線結晶成長装置。
(2) It has a device that monitors the crystal growth rate by observing reflected high-energy electron diffraction (RHEED) oscillations, the device and the growth substrate are fixed, and the molecular beam source is rotated around an axis perpendicular to the substrate. A molecular beam crystal growth apparatus characterized in that it is configured to be rotatable.
JP17465188A 1988-07-12 1988-07-12 Molecular beam crystal growing device Pending JPH0226889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17465188A JPH0226889A (en) 1988-07-12 1988-07-12 Molecular beam crystal growing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17465188A JPH0226889A (en) 1988-07-12 1988-07-12 Molecular beam crystal growing device

Publications (1)

Publication Number Publication Date
JPH0226889A true JPH0226889A (en) 1990-01-29

Family

ID=15982320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17465188A Pending JPH0226889A (en) 1988-07-12 1988-07-12 Molecular beam crystal growing device

Country Status (1)

Country Link
JP (1) JPH0226889A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677639U (en) * 1993-04-09 1994-11-01 株式会社大阪西川 Bedding
US9323560B2 (en) 2004-05-27 2016-04-26 International Business Machines Corporation Interpreting I/O operation requests from pageable guests without host intervention

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677639U (en) * 1993-04-09 1994-11-01 株式会社大阪西川 Bedding
US9323560B2 (en) 2004-05-27 2016-04-26 International Business Machines Corporation Interpreting I/O operation requests from pageable guests without host intervention

Similar Documents

Publication Publication Date Title
US5588995A (en) System for monitoring the growth of crystalline films on stationary substrates
KR100334706B1 (en) System for measuring warping, slip displacement, and distribution of wafers in semiconductor processes
CN103060752B (en) Pre-plating layer auxiliary preparation method of X-ray flash conversion screen with micro-column structure CsI (Tl) and application thereof
EP0233610A2 (en) Method and apparatus for vapor deposition
JPS63502542A (en) Controlling the uniformity of growing alloy thin films
JPH0226889A (en) Molecular beam crystal growing device
JP2001066398A (en) Apparatus for measuring x-ray
JP2016133485A (en) Scintillator panel, radiation detector, and manufacturing method therefor
Aristov et al. Dynamical contrast of the topographic image of a crystal with continuous X-ray radiation. I. An experimental observation of polychromatic interference fringes and their application for the investigation of the anomalous scattering of X-rays by perfect crystals
Bertness et al. Noise reduction in optical in situ measurements for molecular beam epitaxy by substrate wobble normalization
JPH0226890A (en) Molecular beam crystal growing device
Gaines et al. Beating in RHEED oscillations observed during MEE growth of ZnSe
Resh et al. Multiple reflection high‐energy electron diffraction beam intensity measurement system
JPH01294594A (en) Molecular beam epitaxial growing unit
JPH01278496A (en) Thin film production method
JPH02218946A (en) Reflecting high speed electron beam diffraction apparatus
JPH05296946A (en) X-ray diffraction device
JPS63215591A (en) Crystal surface evaluating device by electron beam diffraction in molecular beam epitaxial device
Hickernell et al. Noise reduction in optical in situ measurements for molecular beam
JPS61186284A (en) Apparatus for molecular beam epitaxy
Matsui Study of strain variation in LEC-grown GaAs bulk crystals by synchrotron radiation X-ray topography
JPH03229437A (en) Evaluation of semiconductor crystal
Nittono et al. Direct determination of stress levels in sputtered films by means of X-ray diffraction topographic method
Dietz et al. Real-Time Optical Monitoring of GaxIn1− xP/GaP Heterostructures on Silicon
JP2001235435A (en) Imaging system