JPH03159989A - Vacuum deposition apparatus - Google Patents

Vacuum deposition apparatus

Info

Publication number
JPH03159989A
JPH03159989A JP29560489A JP29560489A JPH03159989A JP H03159989 A JPH03159989 A JP H03159989A JP 29560489 A JP29560489 A JP 29560489A JP 29560489 A JP29560489 A JP 29560489A JP H03159989 A JPH03159989 A JP H03159989A
Authority
JP
Japan
Prior art keywords
crucible
evaporation source
furnace
substrate
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29560489A
Other languages
Japanese (ja)
Inventor
Takeshi Tomioka
健 富岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP29560489A priority Critical patent/JPH03159989A/en
Publication of JPH03159989A publication Critical patent/JPH03159989A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To enable the evaporation of an evaporation source over a long period in high efficiency by heating a crucible at a temperature higher than the heating temperature of the evaporation source with a heater attached to the upper part at a side of the crucible for evaporating the evaporation source. CONSTITUTION:The objective vacuum deposition apparatus is provided with a crucible 2 for evaporating an evaporation source 1, a furnace 3 to heat the crucible 2, a liquid nitrogen shroud 4 for cooling the circumference of the furnace 3, a substrate holder 6 for holding a substrate 5 to be subjected to vacuum deposition with the evaporation source 1, a chamber 7 for holding the furnace 3, the liquid nitrogen shroud 4 and the substrate holder 6, an evacuation system 8 to evacuate the chamber 7 to high vacuum, a shutter 11 for controlling the intensity of molecular beam evaporated from the evaporation source 1 and a means for depositing the material evaporated from the evaporation source 1 to the surface of the substrate 5. In the above construction, a heater 9 for heating the crucible at a temperature higher than the heating temperature of the evaporation source is attached to the upper part at a side of the crucible 2.

Description

【発明の詳細な説明】 〔概要〕 本発明は,真空蒸着装置のるつぼの構造に関し,蒸着ソ
ースがるつぼ上部に這い上がるのを抑制し蒸発ソースが
効率良く長時間蒸発できることを目的とし, 蒸着ソースを蒸発させるるつぼと,前記るつぼを加熱す
るファーネスと,前記ファーネスの周曲を冷却する液体
窒素シュラウドと.前記蒸着ソースを蒸着する基板を保
持する基板ホルダーと,前記ファーネス,液体窒素シュ
ラウド,並びに基板ホルダーを収容するチャンバーと.
前記チャンバーを高真空に引く排気系と,前記蒸発ソー
スから蒸発する分子線の量を制御するシャッターと,前
記基板の表面に蒸着ソースを蒸着する手段を備えた真空
蒸着装置において,前記るつぼの側面の上部に,少なく
とも前記蒸着ソースの加熱温度より高く加熱するヒータ
ーを設けるように構戒する。
[Detailed Description of the Invention] [Summary] The present invention relates to the structure of a crucible in a vacuum evaporation apparatus, and aims to prevent the evaporation source from climbing up to the top of the crucible and to efficiently evaporate the evaporation source for a long time. a crucible for evaporating the crucible, a furnace for heating the crucible, and a liquid nitrogen shroud for cooling the circumference of the furnace. a substrate holder for holding a substrate on which the deposition source is to be deposited, and a chamber for housing the furnace, liquid nitrogen shroud, and substrate holder.
A vacuum evaporation apparatus comprising: an evacuation system that draws the chamber to a high vacuum; a shutter that controls the amount of molecular beams evaporated from the evaporation source; and a means for depositing the evaporation source onto the surface of the substrate; A heater that heats at least a temperature higher than the heating temperature of the vapor deposition source is provided above the vapor deposition source.

〔産業上の利用分野〕[Industrial application field]

本発明は,真空蒸着装置のるつぼの形状に関する。 The present invention relates to the shape of a crucible for a vacuum evaporation apparatus.

近年.真空蒸着装置.特に,MBE或長装置において,
  AI2等の蒸着ソースを長時間,安定に蒸発させる
技術が要求されている。
recent years. Vacuum deposition equipment. Especially in MBE length equipment,
There is a need for a technology to stably evaporate a deposition source such as AI2 for a long time.

このため,るつぼの種々の改良が必要になっている。For this reason, various improvements to crucibles are required.

〔従来の技術〕[Conventional technology]

第4図は従来例の説明図である。 FIG. 4 is an explanatory diagram of a conventional example.

従来,分子線エビタキシャル(Molecular B
eamEpitaxy: M B E )等の高真空蒸
着装置に使用されている耐熱窒化硼素(pyrolyt
tic Boron Nitride:PBN)るつぼ
12は.第4図に示すように,円錐形のラッパのように
開いた形をしており,ファーネス13の内側に取り付け
られているヒーター15により加熱される。
Conventionally, molecular beam epitaxial (Molecular B
eamEpitaxy: Heat-resistant boron nitride (pyrolyt) used in high vacuum evaporation equipment such as MBE
tic Boron Nitride: PBN) Crucible 12 is. As shown in FIG. 4, it has an open conical trumpet shape and is heated by a heater 15 installed inside the furnace 13.

化合物半導体結晶戒長を行なう場合,基板への蒸着ソー
ス1lとしては.結晶源として,ガリウム(Ga) ,
砒素(As) ,インジウム(In)I アルミニウム
(AI!.),  ドーパント源として,硼素(B),
シリコン(St)等種々の物質が使用されている。
When performing compound semiconductor crystal deposition, the evaporation source 1l on the substrate should be . As a crystal source, gallium (Ga),
Arsenic (As), Indium (In)I Aluminum (AI!.), Boron (B) as a dopant source,
Various materials such as silicon (St) are used.

蒸着ソース11としてのアルミニウムは真空中で溶融し
,更に,蒸着温度付近では新鮮な溶融面を作るが,その
液面は極めて活性であり,pBNのるつぼ12の表面と
の濡れが良くなる。
Aluminum as the evaporation source 11 melts in a vacuum, and also forms a fresh molten surface near the evaporation temperature, but this liquid surface is extremely active and improves wetting with the surface of the pBN crucible 12.

そのため.るつぼ12の壁面を毛細管現象で這い上がっ
て行き,最悪の場合にはるつぼ12の外へ溢れ出してし
まう。
Therefore. It creeps up the wall of the crucible 12 due to capillary action, and in the worst case, it overflows outside the crucible 12.

るつぼ12の上部は冷却用の液体窒素シュラウド14で
覆われているために.るつぼ12の上部でAfiが固ま
り,るつぼl2の上面の開口部が狭くなり,Alの分子
線蒸着が妨げられることとなる。
The upper part of the crucible 12 is covered with a liquid nitrogen shroud 14 for cooling. Afi solidifies in the upper part of the crucible 12, and the opening on the upper surface of the crucible 12 becomes narrower, thereby hindering the molecular beam evaporation of Al.

この現象は,真空装置,とりわけファーネスl3の部分
に損傷を与え.最悪の場合シャッターの開閉が不可能と
なり,  Affiを長時間.安定に蒸着させることを
困難にしている。
This phenomenon damages the vacuum equipment, especially the furnace l3 part. In the worst case scenario, the shutter cannot be opened or closed, leaving Affi unattended for a long time. This makes stable vapor deposition difficult.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従って,Alが有効に蒸着できなくなる問題が生じてい
た。
Therefore, a problem has arisen in which Al cannot be effectively deposited.

本発明は,  AI!.等の蒸着ソースがるつぼの上部
に這い上がるのを抑制し,蒸着ソースが効率良く,長時
間にわたって蒸着出来ることを目的として提供されるも
のである。
The present invention is based on AI! .. This is provided for the purpose of suppressing vapor deposition sources such as those from creeping up to the top of the crucible and allowing efficient vapor deposition over a long period of time.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の原理説明回である。 FIG. 1 is an explanation of the principle of the present invention.

第2図は分子線エビタキシャル装置(MBE)の構威図
である。
FIG. 2 is a diagram of the structure of a molecular beam epitaxial apparatus (MBE).

図において,■は蒸着ソース,2はるつぼ,3はファー
ネス.4は液体窒素シュラウド.5は基板,6は基板ホ
ルダー,7はチャンバー.8は排気系.9はヒーター.
10はヒーター,l・1はシャッターである。
In the figure, ■ is a deposition source, 2 is a crucible, and 3 is a furnace. 4 is liquid nitrogen shroud. 5 is a substrate, 6 is a substrate holder, and 7 is a chamber. 8 is the exhaust system. 9 is a heater.
10 is a heater, and 1.1 is a shutter.

蒸着ソース1であるiのるつぼ2内壁上部への這い上が
りは,温度の高い方から低い方へ進む性質を持っている
ので,るつぼ2内壁の温度分布を少なくするか,るつぼ
2上部の温度を蒸着ソース1より高くすることで,蒸着
ソース1の這い上がりを抑制できる。
Since the creeping up of the vapor deposition source 1 to the upper part of the inner wall of the crucible 2 has the property of proceeding from the higher temperature side to the lower temperature side, it is necessary to reduce the temperature distribution on the inner wall of the crucible 2 or to lower the temperature at the upper part of the crucible 2. By setting the height higher than the deposition source 1, the creeping up of the deposition source 1 can be suppressed.

即ち.上記問題点は,本発明の蒸着ソース1を蒸発させ
るるつぼ2と,前記るつぼ2を加熱するファーネス3と
,前記ファーネス3の周囲を冷却する液体窒素シュラウ
ド4と.前記蒸着ソ1−ス1を蒸着する基板5を保持す
る基板ホルダー6と.前記ファーネス3,液体窒素シュ
ラウド4,並びに,基板ホルダー6を収容するチャンバ
ー7と,前記チセンバー7を高真空に引く排気系8と,
前記蒸発ソース1から蒸発する分子線の量を制御するシ
ャンク−11と,前゛記基板5の表面に蒸発ソース1を
蒸着する手段を備えた真空蒸着装置において.前記るづ
ぼ2の側面の上部に,少なくとも前記蒸着ソーズ1の加
熱温度より高く加熱するヒーター9を設けることにより
解決される。
That is. The above problems are caused by the crucible 2 for evaporating the deposition source 1 of the present invention, the furnace 3 for heating the crucible 2, and the liquid nitrogen shroud 4 for cooling the surroundings of the furnace 3. a substrate holder 6 for holding a substrate 5 on which the vapor deposition source 1 is to be vapor deposited; a chamber 7 that accommodates the furnace 3, the liquid nitrogen shroud 4, and the substrate holder 6; and an exhaust system 8 that draws the chamber 7 to a high vacuum;
In a vacuum evaporation apparatus comprising: a shank 11 for controlling the amount of molecular beam evaporated from the evaporation source 1; and means for depositing the evaporation source 1 onto the surface of the substrate 5. This problem can be solved by providing a heater 9 above the side surface of the crucible 2, which heats the crucible to a temperature higher than at least the heating temperature of the vapor deposition saw 1.

〔作用〕 本発明では,第1図に示すように.るつぼの上部をヒー
ターにより加熱することで,  lが上部に這い上がっ
て行くのを防ぎ,従って,るつぼの有効口径を狭くする
ことなく,効率良く,長時間の蒸着が可能となる。
[Operation] In the present invention, as shown in FIG. By heating the upper part of the crucible with a heater, it is possible to prevent l from creeping up to the upper part, and therefore, efficient and long-term vapor deposition is possible without narrowing the effective diameter of the crucible.

〔実施例〕〔Example〕

第3図は本発明の実施例の説明図である。 FIG. 3 is an explanatory diagram of an embodiment of the present invention.

図において,2はるつぼ, 9A, 9B, 9Cは各
々のるつぼのヒーターである。
In the figure, 2 is a crucible, and 9A, 9B, and 9C are heaters for each crucible.

第2図に示したMBE装置を用いて,基板5上にAnG
aInの化合物半導体結晶を戒長した場合を説明する。
Using the MBE apparatus shown in FIG. 2, AnG was deposited on the substrate 5.
A case will be described in which a compound semiconductor crystal of aIn is crystallized.

装置には8個の分子線エビタキシャルの蒸着ソース11
が取り付けられるようになっている。実施例では,  
AI2, Ga, Inの3種の蒸発ソースを用いる。
The device has 8 molecular beam epitaxial deposition sources 11
can be installed. In the example,
Three types of evaporation sources are used: AI2, Ga, and In.

排気系8のイオンポンプによりチャンバー7を10−”
 〜10−”Torrの高真空に引いた後,るつぼ2内
に装填したの蒸着ソースlをファーネス3内例のヒータ
ー10により加熱して,るつぼ2の前面に設けたシャッ
ター11の開閉により分子線を制御して,分子線蒸着を
行なう。
The chamber 7 is heated to 10-" by the ion pump of the exhaust system 8.
After drawing a high vacuum of ~10-'' Torr, the evaporation source l loaded in the crucible 2 is heated by the heater 10 in the furnace 3, and the molecular beam is released by opening and closing the shutter 11 provided in the front of the crucible 2. Molecular beam evaporation is performed by controlling the

その際,チャンバー7内の各部分が加熱されてガスが発
生し,真空度が落ちるのを防ぐために,ファーネス3の
周囲も含めて,チャンバー7内の各部を液体窒素シュラ
ウド4により冷却する。
At this time, in order to prevent each part of the chamber 7 from being heated and generating gas and reducing the degree of vacuum, each part of the chamber 7, including the area around the furnace 3, is cooled by the liquid nitrogen shroud 4.

蒸着ソースIのA1は900−1+000゜C,Gaは
700〜900゜C,Inは500〜700゜Cに同時
に加熱して,  A ll! GaInの化合物半導体
を威長ずるが,蒸着ソースlの加熱温度は三元金属化合
物の組戒比により前記加熱温度範囲内で決定される。
A1 of vapor deposition source I was heated to 900-1+000°C, Ga to 700 to 900°C, and In to 500 to 700°C. All! Although a GaIn compound semiconductor is used, the heating temperature of the vapor deposition source 1 is determined within the heating temperature range according to the composition ratio of the ternary metal compound.

AI!.の蒸着ソース1を収容するるつぼ2は第3図(
a)に示すように.るつぼ2の外壁上部のみに帯状のシ
ートヒーター9Aを巻いたものを使用したが,第3図(
b)に示すようにるつぼ2の外壁上部に線状のヒーター
9Bを螺旋状に巻いたものや,第3図(c)に示すよう
に,るつぼ2の外壁全面にヒーター9Cを装着して,フ
ァーネス3を用いずるつぼ2全体を直接加熱する構造の
ものも有効に使用できる。
AI! .. The crucible 2 containing the vapor deposition source 1 is shown in FIG.
As shown in a). A belt-shaped sheet heater 9A wrapped only around the upper part of the outer wall of crucible 2 was used, but as shown in Fig. 3 (
As shown in b), a linear heater 9B is spirally wound around the upper part of the outer wall of the crucible 2, or as shown in FIG. 3(c), a heater 9C is attached to the entire outer wall of the crucible 2. A structure in which the entire crucible 2 is directly heated using the furnace 3 can also be effectively used.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に.本発明によれば.蒸着ソースの蒸発
有効口径を損なうことなく,蒸着ソースが内壁を這い上
がることを抑制でき,真空装置に損傷を与えないで.長
時間,安定した蒸着を続けることができる。
As explained above. According to the invention. The evaporation source can be prevented from climbing up the inner wall without damaging the effective evaporation aperture of the evaporation source, without damaging the vacuum equipment. Stable deposition can be continued for a long time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理説明図 第2図はMBE装置の構戒図, 第3図は本発明の実施例の説明図. 第4図は従来例の説明図である。 図において, 1は蒸着ソース 3はファーネス 5は基板5 7はチャンバー 9はヒーター 2はるつぼ. 4は液体窒素シュラウド 6は基板ホルダー 8は排気系, 10はヒーター 9 Figure 1 is a diagram explaining the principle of the present invention. Figure 2 is a configuration diagram of the MBE device. FIG. 3 is an explanatory diagram of an embodiment of the present invention. FIG. 4 is an explanatory diagram of a conventional example. In the figure, 1 is vapor deposition source 3 is the furnace 5 is the board 5 7 is the chamber 9 is a heater 2. Crucible. 4 is liquid nitrogen shroud 6 is the board holder 8 is the exhaust system, 10 is a heater 9

Claims (1)

【特許請求の範囲】 蒸着ソース(1)を蒸発させるるつぼ(2)と、前記る
つぼを加熱するファーネス(3)と、前記フアーネスの
周囲を冷却する液体窒素シュラウド(4)と、 前記蒸着ソースを蒸着する基板(5)を保持する基板ホ
ルダー(6)と、 前記ファーネス、液体窒素シュラウド、並びに基板ホル
ダーを収容するチャンバー(7)と、前記チャンバーを
高真空に引く排気系(8)と、前記蒸着ソースから蒸発
する分子線の量を制御するシャッター(11)と、 前記基板の表面に蒸着ソースを蒸着する手段を備えた真
空蒸着装置において、 前記るつぼの側面の上部に、少なくとも前記蒸着ソース
の加熱温度より高く加熱するヒーター(9)を設けるこ
とを特徴とする真空蒸着装置。
[Scope of Claims] A crucible (2) for evaporating the vapor deposition source (1), a furnace (3) for heating the crucible, a liquid nitrogen shroud (4) for cooling the surroundings of the furnace, and a crucible for evaporating the vapor deposition source (1). a substrate holder (6) that holds a substrate (5) to be deposited; a chamber (7) that accommodates the furnace, liquid nitrogen shroud, and the substrate holder; an exhaust system (8) that draws the chamber to a high vacuum; A vacuum evaporation apparatus comprising: a shutter (11) for controlling the amount of molecular beam evaporated from the evaporation source; and means for evaporating the evaporation source onto the surface of the substrate; A vacuum evaporation apparatus characterized by being provided with a heater (9) that heats to a temperature higher than the heating temperature.
JP29560489A 1989-11-14 1989-11-14 Vacuum deposition apparatus Pending JPH03159989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29560489A JPH03159989A (en) 1989-11-14 1989-11-14 Vacuum deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29560489A JPH03159989A (en) 1989-11-14 1989-11-14 Vacuum deposition apparatus

Publications (1)

Publication Number Publication Date
JPH03159989A true JPH03159989A (en) 1991-07-09

Family

ID=17822774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29560489A Pending JPH03159989A (en) 1989-11-14 1989-11-14 Vacuum deposition apparatus

Country Status (1)

Country Link
JP (1) JPH03159989A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09100195A (en) * 1992-04-06 1997-04-15 Shin Etsu Chem Co Ltd Molecular-beam source crucible for molecular-beam epitaxy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09100195A (en) * 1992-04-06 1997-04-15 Shin Etsu Chem Co Ltd Molecular-beam source crucible for molecular-beam epitaxy

Similar Documents

Publication Publication Date Title
US4239955A (en) Effusion cells for molecular beam epitaxy apparatus
JP2022506364A (en) Coating equipment, processing chamber, method of coating the substrate, and substrate coated with at least one material layer
JPH03159989A (en) Vacuum deposition apparatus
JP3788835B2 (en) Organic thin film manufacturing method
JPH06502450A (en) In-situ growth method for superconducting films
US3603285A (en) Vapor deposition apparatus
JP2719282B2 (en) Knudsen cell for low temperature
US20130015057A1 (en) CATHODE SPUTTER DEPOSITION OF A Cu(In,Ga)X2 THIN FILM
Kerr et al. Antimony passivation of molecular‐beam epitaxially grown GaAs surfaces
JPH0360114A (en) Molecular beam epitaxy device
JPH06280004A (en) Electron beam evaporation source
JPH072617Y2 (en) Uniform heating mechanism for PBN crucible
JPS63235466A (en) Vapor deposition method
JP2719281B2 (en) Knudsen cell for low temperature
JPS63282190A (en) Molecular beam crystal growth device
JP3778992B2 (en) Heater for vapor phase growth equipment for manufacturing gallium nitride based semiconductor thin films
JPH0841629A (en) Cell shutter and its use method
JP2874436B2 (en) Vacuum evaporation method
JPH0342677Y2 (en)
JPS61261294A (en) Method of molecular beam epitaxial growth and molecular beam source
JPS59172715A (en) Molecular beam generating equipment
JPS5946096B2 (en) Liquid phase epitaxial growth equipment
JPH04263064A (en) Semiconductor producing device
WO2019086570A1 (en) Molecular beam epitaxy system and method for reducing excess flux in a molecular beam epitaxy system
KR20020093687A (en) Apparatus for depositing the organic semiconductor device with a large size of substrate