JPH03228898A - Crystal growing method - Google Patents

Crystal growing method

Info

Publication number
JPH03228898A
JPH03228898A JP2165590A JP2165590A JPH03228898A JP H03228898 A JPH03228898 A JP H03228898A JP 2165590 A JP2165590 A JP 2165590A JP 2165590 A JP2165590 A JP 2165590A JP H03228898 A JPH03228898 A JP H03228898A
Authority
JP
Japan
Prior art keywords
temp
crucible
material source
temperature
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2165590A
Other languages
Japanese (ja)
Inventor
Michihiro Ito
伊藤 道弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2165590A priority Critical patent/JPH03228898A/en
Publication of JPH03228898A publication Critical patent/JPH03228898A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve crystallinity by setting the temp. in the aperture at the front end of a crucible higher than the temp. in the other part and setting the temp. in the other parts constant. CONSTITUTION:A crucible 2 contg. a material source Ga 3 is installed in a heat radiation preventive cylinder 1. This crucible is heated by a heater 4 for heating and is controlled to a prescribed temp. by a thermocouple 5. The temp. of the other material source As is similarly controlled another cell. A substrate to be grown is then set at a prescribed temp. and after the other conditions are attained, the shutters 6 of respective cells are opened to start crystal growth. The heater 4 near the aperture at the front end of the crucible 2 is wound more densely than in the other parts and is wound coarsely in the part lower than the part where the material source Ga 3 exists and, therefore, the temp. at this part is kept lower by 50 to 100 deg.C than in the front end part. Since the temp. from this material source Ga 3 to the lower part is kept constant, the surface of the evaporating liquid has the specified temp. in spite of a change in the volume of the raw material Ga 3 and the good-quality crystal is stably obtd. with good reproducibility even if the crystal is grown under specified conditions.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明に分子線エピタキシー法による結晶成長方法に
関し、特に半導体結晶成長に用いられる分子線エピタキ
シー用セルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a crystal growth method using molecular beam epitaxy, and particularly to a cell for molecular beam epitaxy used for semiconductor crystal growth.

〔従来の技術〕[Conventional technology]

従来1分子線エピタキシー法による結晶成長においては
原料の供給はPBN(PyrotitiC!。
Conventionally, in crystal growth using the single molecular beam epitaxy method, the raw material is supplied with PBN (PyrotitiC!).

BOrO″)t N1tr1de)などで作られたるつ
ぼの中に、例えばGaAsの場合においてはGaやA8
あl。
For example, in the case of GaAs, Ga or A8
Al.

2゜ るいはドーピング材となる81 などをそれぞれのるつ
ぼに入れ、それぞれのるつぼを適当な温度に加熱し蒸発
させ、基板上に所定の結晶をエピタキシャル成長させる
事が一般に行なわれている。
Generally, a predetermined crystal is epitaxially grown on a substrate by placing a doping material such as 2.2° or 81 as a doping material into each crucible and heating each crucible to an appropriate temperature to evaporate it.

次に、従来の結晶成長方法による分子線エピタキシー法
におけるGaAsの結晶成長に用いられるGaセルを例
に説明する。
Next, a Ga cell used for crystal growth of GaAs in molecular beam epitaxy, which is a conventional crystal growth method, will be described as an example.

第8図は従来のGa用セルの概略構造の断面図を示す。FIG. 8 shows a cross-sectional view of the schematic structure of a conventional Ga cell.

図において、90はGa用セルで、このGa用セル10
は放熱防止用筒1の中にFBIなどで作られたるつぼ2
を設置し、このるつぼ3の中に材料源であるGa8(z
入れて置く。るつぼ2は加熱用ヒーター4で加熱され、
熱電対5により温度を検出し、所定の温度に調節される
。他の例えばA8  など必要な材料源も同様に所定の
条件に設定し1.成長すべき基板の温度、その他の条件
を設定した後、 Ga用セル10  のシャッター6を
開けると%Ga 8は蒸発する。同時にABなど池の必
要を材料源も同時にシャッター6を開ける。かくして基
板上にGaAsの結晶が成長する。
In the figure, 90 is a Ga cell, and this Ga cell 10
A crucible 2 made by FBI etc. is placed inside a heat radiation prevention tube 1.
The material source Ga8(z
Put it in. The crucible 2 is heated by a heating heater 4,
The temperature is detected by a thermocouple 5 and adjusted to a predetermined temperature. Similarly, other necessary material sources such as A8 are set to predetermined conditions.1. After setting the temperature of the substrate to be grown and other conditions, the shutter 6 of the Ga cell 10 is opened, and the %Ga 8 evaporates. At the same time, the shutter 6 is also opened for the material sources needed for the pond, such as AB. In this way, GaAs crystals grow on the substrate.

この時、るつぼ2を加熱するヒータ一番は蒸発したGa
  8がるつぼ2の先端出口付近に付着、再蒸発による
結晶性の悪くなる事を防ぐ為に第4図に示す様にるつぽ
2の出口付近の温度を他の部分より高くする。すなわち
、トップヒートと呼ばれる構造にした加熱方法が用いら
れていた。
At this time, the heater number one that heats crucible 2 is heated by the evaporated Ga.
8 adheres to the vicinity of the outlet of the crucible 2, and in order to prevent deterioration of crystallinity due to re-evaporation, the temperature of the vicinity of the outlet of the crucible 2 is made higher than other parts as shown in FIG. That is, a heating method with a structure called top heat was used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の結晶成長方法は以上のように構成されていたので
、るつぼの加熱は先端部分に集中する為に原料GaI/
′i上部と下部に温度差が生じ、るつぼの温度制御はる
つぼの底部に設けた熱電対により行なっている為、同一
般定温度で成長を行なっていても、原料源Gaの蒸発量
はGa液面の最上部で決定されているので、材料源Ga
を消費するにつれて実質温度は低くなり蒸発量が減少し
、同一般定温度でも成長速度が遅くなる。
Since the conventional crystal growth method was configured as described above, the heating of the crucible was concentrated at the tip, so the raw material GaI/
'iThere is a temperature difference between the upper and lower parts of the crucible, and the temperature of the crucible is controlled by a thermocouple installed at the bottom of the crucible, so even if growth is performed at the same general constant temperature, the amount of evaporation of the raw material Ga will be Since it is determined at the top of the liquid level, the material source Ga
As it is consumed, the actual temperature becomes lower and the amount of evaporation decreases, and the growth rate slows down even at the same general constant temperature.

又、この発明においては図示けしていないけれどもるつ
ぼの温度を一定にする為にるつぼ全体を一定間隔のヒー
ターで加熱した場合においては、るつぼの先端開口部附
近の温度が低くなり、蒸発したGaが付着、再蒸発する
ことによる欠陥が発生しやすく良質の結晶成長方法る事
が難かしいという問題点があった。
Although not shown in the present invention, if the entire crucible is heated with a heater at regular intervals in order to keep the crucible temperature constant, the temperature near the opening at the tip of the crucible will be lower, and the evaporated Ga will be lowered. There has been a problem in that defects are likely to occur due to adhesion and re-evaporation, making it difficult to develop a high-quality crystal growth method.

この発明は上記の様な問題点を解消するためになされた
もので、るつぼの先端開口部附近のみ高温に材料源のあ
る中央部より底部にかけて一定温度になる様にヒーター
の巻き方を改善する事により1丁ぐれた結晶成長層を安
定して得る事が出来る結晶成長方法を得る事を目的とす
る。
This invention was made to solve the above-mentioned problems, and improves the way the heater is wound so that the temperature is constant from the center where the material source is at high temperature only to the bottom of the crucible near the tip opening. The object of the present invention is to obtain a crystal growth method that can stably obtain a crystal growth layer with a deviation of one inch.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る結晶成長方法は、るつぼの先端開口部附
近の温度を高くシ、材料源の有る中央部より底部にかけ
て他の部分の温度を低くかつ一定になるようヒーターの
巻き方を変えたものである。
The crystal growth method according to this invention increases the temperature near the opening at the tip of the crucible, and changes the way the heater is wound so that the temperature in other parts from the center where the material source is located to the bottom remains low and constant. It is.

〔作用〕[Effect]

この発明における結晶成長方法は、るつぼ先端開口部附
近はヒーターの巻きを密にし、中央附近より底部の材料
源のある領域を粗にして、かつ一定温度になる様構成す
る事により、材料源の量が変化しても一定蒸発量となる
様にしたので、一定の条件で安定した結晶成長を行なう
事が可能となる。
In the crystal growth method of this invention, the heater is wound tightly near the opening at the tip of the crucible, and the area where the material source is located at the bottom is made coarser than near the center, and the material source is kept at a constant temperature. Since the amount of evaporation is kept constant even if the amount changes, it is possible to perform stable crystal growth under constant conditions.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の結晶成長に用いられる分子線エピタ
キシー用セルの一実施FRt−示す概略構造の断面図、
第2図はセルの中に設置されたるつぼの温度分布を示す
曲線図である。
FIG. 1 is a cross-sectional view of a schematic structure of an implementation FRt of a cell for molecular beam epitaxy used for crystal growth of the present invention;
FIG. 2 is a curve diagram showing the temperature distribution of the crucible installed in the cell.

なお、本実施例では例えばm−マ族化合物半導体である
GaA11l結晶を作る場合のGa用セルの場合につい
て説明する。
In this example, a case of a Ga cell in which a GaA11l crystal, which is an m-ma group compound semiconductor, is made will be explained.

なお、図中前記従来のものと同一符号は同一構成部分を
示す。
In addition, in the drawings, the same reference numerals as those in the conventional device indicate the same components.

セルの構成は基本的には従来のものと同一であるが、る
つぼ8f:加熱するヒーター4の巻き方を改善する事に
より、良質の結晶が再現性良く得る事が出来る。すなわ
ち、るりほの先端開口部附近は約8a程度の間隔で!!
〜8巻、それより低部、るつぼの下部までは5〜6m+
間隔で粗に巻き第2図の如き温度分布になる様に形成す
る。これにより本実施例の分子線エピタキシー用セル1
0が構成される。
The structure of the cell is basically the same as the conventional one, but by improving the winding of the heater 4 in the crucible 8f, high quality crystals can be obtained with good reproducibility. In other words, the distance near the tip opening of Ruriho is about 8a! !
~ Volume 8, lower part, 5~6m+ to the bottom of the crucible
It is wound roughly at intervals to form a temperature distribution as shown in Figure 2. As a result, the molecular beam epitaxy cell 1 of this example
0 is configured.

この動作を説明すると、PBNなどで作られ念るつぼs
//i放熱防止筒lの中に設置され、るつぼB中に材料
源であるGa8’i入れて置く。るつぼg#′j加熱用
ヒータ一番で加熱され熱電対すでその温度を検出し、所
定の温度に調節される。
To explain this operation, a crucible made of PBN etc.
//i It is installed in the heat radiation prevention cylinder l, and the material source Ga8'i is placed in the crucible B. The crucible g#'j is heated by the heater No. 1, its temperature is detected by the thermocouple, and the temperature is adjusted to a predetermined value.

他の材料源であるA8.その他のセルも同様に調節され
我長ずべき基板(図示せず)を所定の温度に設定し、そ
の他の条件が整った後各セルのシャッター6を開き結晶
成長が開始される。
Other material sources A8. The other cells are adjusted in the same way, and after setting the substrate (not shown) to a predetermined temperature and setting the other conditions, the shutter 6 of each cell is opened to start crystal growth.

この時、ヒータ一番はるつぼの先端開口部附近は他の部
分より密に巻かれ、材料源Ga 8の有る部分より低部
は粗に巻かれているので、先端部より50〜100’C
低く保たれれている。又この材料源Ga8より下部にか
けて一定温度に保たれているので、例え材料源Ga8の
量が変イ1して少なくなっても、蒸発液面は一定温度に
なるので、一定条件で成長を行なっても安定して良質の
結晶が再現性良く得る事が出来る。
At this time, the area near the tip opening of the crucible where the heater is first is wound more densely than other parts, and the lower part where the material source Ga 8 is located is more loosely wound.
kept low. In addition, since the temperature is kept constant below the material source Ga8, even if the amount of the material source Ga8 changes and decreases, the evaporated liquid level will remain at a constant temperature, so growth can be performed under constant conditions. It is possible to obtain stable, high-quality crystals with good reproducibility.

なお、上記実施例ではヒーターの巻き方を変える事によ
り所定の温度分布?得た場合を説明したが、ヒーターの
巻き方を一定にしてるつぼの先端開口部附近の線径を細
くする事によっても同様の温度分布を得る事が可能であ
る。
In addition, in the above example, the prescribed temperature distribution can be achieved by changing the way the heater is wound. A similar temperature distribution can also be obtained by keeping the winding method of the heater constant and reducing the diameter of the wire near the opening at the tip of the crucible.

〔発明の効果〕〔Effect of the invention〕

以上の様にこの発明によれば、るつほの先端開口部附近
に密に、その他の部分は粗に巻き、かつ一定温度になる
様に構成されているので、るつぼの先端部分に蒸発源の
液滴の付着がなくなり、かつ材料源の量が減少しても蒸
発量が変化することがなくなり、したがって 4゜ ■:るつぼの先端部分の再蒸発がなくなる。
As described above, according to the present invention, the tip of the crucible is wrapped tightly around the opening at the tip, and the other parts are wound loosely and kept at a constant temperature. There is no droplet adhesion, and the amount of evaporation does not change even if the amount of the material source decreases. Therefore, 4° ■: There is no re-evaporation at the tip of the crucible.

■:成長速度が一定に保つ事が出来る。■: The growth rate can be kept constant.

ので不純物の混入防止による結晶性の向上、−定条件の
もとて再現性良く良質の結晶が得られれる効果がある。
This has the effect of improving crystallinity by preventing the contamination of impurities, and obtaining high-quality crystals with good reproducibility under constant conditions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施IPIIを示すG&用セルの
概略構造を示す断面図、第S図は第1図のセルのるつぼ
の温度分布を示す曲線図、第8図は従来のGa用セルの
概略構造倉示す断面図、第4図は第8図のセルのるつぼ
の温度分布會示す曲線図である。 図において、1ri放熱防止筒、8はるつぼ。 8けGa、4は加熱用ヒーター 5は熱電対。 6#:tシャッターを示す。 なお、図中、同一符号は同一 又は相当部分を示す。
FIG. 1 is a cross-sectional view showing the schematic structure of a G& cell showing an implementation IPII of the present invention, FIG. S is a curve diagram showing the temperature distribution of the crucible of the cell in FIG. 1, and FIG. 8 is a conventional Ga FIG. 4 is a sectional view showing the general structure of the cell, and FIG. 4 is a curve diagram showing the temperature distribution of the crucible of the cell shown in FIG. 8. In the figure, 1ri is a heat radiation prevention cylinder and 8 is a crucible. 8-Ga, 4 is a heating heater, 5 is a thermocouple. 6#: Indicates t-shutter. In addition, the same symbols in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 分子線エピタキシー法におけるGaAs等の結晶成長に
おいて、るつぼの先端開口部の温度を他の部分よりも高
くすると共に、その他の部分の温度を一定にした事を特
徴とする結晶成長方法。
A method for growing a crystal of GaAs or the like using molecular beam epitaxy, characterized in that the temperature of the opening at the tip of a crucible is made higher than other parts, and the temperature of the other parts is kept constant.
JP2165590A 1990-01-30 1990-01-30 Crystal growing method Pending JPH03228898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2165590A JPH03228898A (en) 1990-01-30 1990-01-30 Crystal growing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2165590A JPH03228898A (en) 1990-01-30 1990-01-30 Crystal growing method

Publications (1)

Publication Number Publication Date
JPH03228898A true JPH03228898A (en) 1991-10-09

Family

ID=12061065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2165590A Pending JPH03228898A (en) 1990-01-30 1990-01-30 Crystal growing method

Country Status (1)

Country Link
JP (1) JPH03228898A (en)

Similar Documents

Publication Publication Date Title
US20060260536A1 (en) Vessel for growing a compound semiconductor single crystal, compound semiconductor single crystal, and process for fabricating the same
JPH03228898A (en) Crystal growing method
EP0609886B1 (en) Method and apparatus for preparing crystalline thin-films for solid-state lasers
US5240685A (en) Apparatus for growing a GaAs single crystal by pulling from GaAs melt
US20140109824A1 (en) Method of growing silicon single crystal
JPH04274316A (en) Cell for molecular beam epitaxy
JPH04348022A (en) Cell for molecular beam epitaxy
US4869776A (en) Method for the growth of a compound semiconductor crystal
Matsubara et al. In situ observation of Bi2Sr2CaCu2Ox superconducting whisker growth
JPH02279587A (en) Cell for molecular beam epitaxy
JPH0271533A (en) Crystal growth method
JPH07165488A (en) Apparatus for producing single crystal and method therefor
CA1228524A (en) Method for growing a gaas single crystal by pulling from gaas melt
JPS5912636B2 (en) How to pull ribbon-shaped single crystals
JPH0375293A (en) Cell for molecular beam epitaxy
JPH07133185A (en) Production of single crystal
JPH05319973A (en) Single crystal production unit
CN114775042A (en) Crucible for crystal growth and crystal growth method
JPS60112690A (en) Evaporation source cell for molecular beam crystal growth device
JP3551607B2 (en) Method for producing GaAs single crystal
JPH069025Y2 (en) Compound semiconductor single crystal manufacturing equipment
JP2008273804A (en) SEMI-INSULATING GaAs WAFER AND METHOD FOR PRODUCING THE SAME
JPH0465392A (en) Molecular beam epitaxial crystal growing device
JPH04362090A (en) Molecular beam epitaxy
JPH0812484A (en) Manufacturing of mixed crystal-monocrystal