JPS63282189A - Molecular beam epitaxial growth device - Google Patents

Molecular beam epitaxial growth device

Info

Publication number
JPS63282189A
JPS63282189A JP11355487A JP11355487A JPS63282189A JP S63282189 A JPS63282189 A JP S63282189A JP 11355487 A JP11355487 A JP 11355487A JP 11355487 A JP11355487 A JP 11355487A JP S63282189 A JPS63282189 A JP S63282189A
Authority
JP
Japan
Prior art keywords
molecular beam
guide tube
heater
main crucible
open part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11355487A
Other languages
Japanese (ja)
Other versions
JPH0352435B2 (en
Inventor
Toshihiro Nakamura
中村 智弘
Junji Saito
淳二 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP11355487A priority Critical patent/JPS63282189A/en
Publication of JPS63282189A publication Critical patent/JPS63282189A/en
Publication of JPH0352435B2 publication Critical patent/JPH0352435B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To stably grow the crystal layer of high quality having few defects in the surface of growth layer by using a molecular beam source cell consisting of a cylindrical main crucible provided with a reverse cone-shaped guide tube with a built-in heater so as to confront the open part of main crucible with the base plate to be used for growing. CONSTITUTION:The molecular source cell 3 for the molecular beam epitaxial growth device consists of the reverse cone-shaped guide tube 21 made of PBN and the cylindrical main crucible 20 with the guide tube 21 fitted to the open part. The guide tube 21 is constructed in a sandwich structure with the built-in heater 21H consisting of carbon in the center part so as to heat the whole body of the guide tube. Plural molecular beam source cells 3 with the main crucible charged with a source material S are disposed with shroud 4 between in a high vacuum treatment vessel 1 so as to confront each open part of main crucible with the base plate 2 to be used for growing, and the source material S is heated and melted by a heater 22 provided with a thermostat T1, while the guide tube 21 is heated by the heater 21H and controlled through a thermostant T2 to keep the projecting quantity of molecular beam to be in a constant rate preventing the open part from cooling, and the crystal layer stably grows on the rotating base plate 2.

Description

【発明の詳細な説明】 [概要コ 分子線エピタキシャル成長装置に配置する分子線源セル
を、筒状の主るつぼ(坩堝)の開口部に、ヒータを内蔵
した逆円錐状のガイド筒を付設した構造にする。
[Detailed description of the invention] [Summary] A molecular beam source cell placed in a molecular beam epitaxial growth apparatus has a structure in which an inverted conical guide tube with a built-in heater is attached to the opening of a cylindrical main crucible. Make it.

そうすれば、成長層の表面欠陥が減少して、且つ、安定
に結晶層が成長できる。
By doing so, surface defects in the growth layer are reduced and the crystal layer can be grown stably.

[産業上の利用分野] 本発明は分子線エピタキシャル成長装置に係り、特に分
子線源を蓄えたセル(容器)の構造に関する。
[Industrial Field of Application] The present invention relates to a molecular beam epitaxial growth apparatus, and particularly to the structure of a cell (container) storing a molecular beam source.

周知のように、半導体装置を製造する際、結晶基板に沿
って半導体膜をエピタキシャル成長するエピタキシー法
が知られており、これは半導体製造の最も基礎的な技術
である。
As is well known, when manufacturing a semiconductor device, an epitaxy method is known in which a semiconductor film is epitaxially grown along a crystal substrate, and this is the most basic technology for semiconductor manufacturing.

このようなエピタキシー法において、最近、分子線エピ
タキシー(M B E : Mo1ecular Be
am Epitaxy)法が開発されており、この分子
線エピタキシーは高真空下(10Torr以下)で成長
する方法で、清浄な結晶基板面が維持できるために、低
温度でのエピタキシャル成長が可能で、且つ、膜厚を数
10人程度の単原子レベルで精密な制御ができるという
特徴のある方法である。
In such epitaxy methods, molecular beam epitaxy (MBE) has recently been used.
am Epitaxy) method has been developed, and this molecular beam epitaxy is a method of growing under high vacuum (10 Torr or less), and since a clean crystal substrate surface can be maintained, epitaxial growth can be performed at low temperatures, and, This method is unique in that it allows precise control of film thickness at the level of several dozen single atoms.

更に、MBE法は、各種元素あるいは化合物元素のへテ
ロ接合が容易に得られるという利点があり、GaAsな
どの化合物半導体デバイスの急峻な接合構造の形成に最
適な方法とされている。
Furthermore, the MBE method has the advantage that heterojunctions of various elements or compound elements can be easily obtained, and is considered to be an optimal method for forming steep junction structures in compound semiconductor devices such as GaAs.

このように利点の多いMBE法ではあるが、成長速度の
不安定性や表面欠陥が生じ易い問題があり、その対策が
強く望まれている。
Although the MBE method has many advantages as described above, there are problems in that the growth rate is unstable and surface defects are likely to occur, and countermeasures against these problems are strongly desired.

[従来の技術と発明が解決しようとする問題点コ第2図
は分子線エピタキシャル成長(MBE)装置全体の要部
概要図を示しており、1は高真空処理容器、2は被成長
基板(ウェハー)、3は分子線源セル、4は冷却隔壁(
液体窒素シュラウド)、5はシャッター、6は真空排気
口である。
[Problems to be solved by the prior art and the invention] Figure 2 shows a schematic diagram of the main parts of the entire molecular beam epitaxial growth (MBE) apparatus, in which 1 is a high vacuum processing chamber, 2 is a substrate to be grown (wafer), and 1 is a high vacuum processing chamber; ), 3 is a molecular beam source cell, 4 is a cooling partition (
(liquid nitrogen shroud), 5 is a shutter, and 6 is a vacuum exhaust port.

このようなMBE装置を用いて、被成長基板2に分子線
エピタキシャル成長を行なう場合、所望の分子線源を蓄
えた分子線源セル3の上のシャッター5を開けて、加熱
ヒータで溶融させた分子線源から分子線を放射させ、被
成長基板上にエピタキシャル成長させる。図のように、
一つの被成長基板2に対して多数のセルが設けられてい
るが、それは例えば、GaAs基板に対して種々の組成
の結晶層を成長し、更に、複数の結晶層を接合して次々
に成長するためで、それにはシャッターの開閉によって
切り換えがおこなわれる。
When performing molecular beam epitaxial growth on the growth target substrate 2 using such an MBE apparatus, the shutter 5 above the molecular beam source cell 3 storing the desired molecular beam source is opened, and the molecules melted by the heater are opened. Molecular beams are emitted from a radiation source to cause epitaxial growth on a growth substrate. As shown,
A large number of cells are provided for one growth substrate 2, and for example, crystal layers of various compositions are grown on a GaAs substrate, and multiple crystal layers are bonded and grown one after another. This is done by opening and closing the shutter.

このようなMBE装置のうちの、分子線源セルの断面図
を第3図に示しており、通常、分子線源セルは焼結窒化
硼素(PBN)材からなるホーン状(角状)のるつぼ(
クルージプル; crucible)11と、るつぼの
周囲に配置したカンタル巻線のヒータ12とで構成され
、るつぼ内の分子線源(ソース材料)を加熱溶融し気化
させて分子線を発生している。なお、Sはソース材料の
任意の表面位置を示し、Tは温度測定用の熱電対である
A cross-sectional view of a molecular beam source cell in such an MBE apparatus is shown in FIG. (
It consists of a crucible (crucible) 11 and a Kanthal-wound heater 12 placed around the crucible, and generates molecular beams by heating and melting the molecular beam source (source material) in the crucible and vaporizing it. Note that S indicates an arbitrary surface position of the source material, and T is a thermocouple for temperature measurement.

また、第4図はMBE装置における分子線源セルと被成
長基板との相対位置を図示している。図のように、分子
線源セルの中心は被成長基板の中心に向っており、この
位置関係によって被成長基板面に成長する膜厚の均一な
領域の直径りが決定される。すなわち、直径りは D=k (A+2L tanθo ) / cosθな
る関係式で表わされ(特開昭59−211225号参照
)、ここに に;比例定数、L;セルと基板との距離。
Further, FIG. 4 illustrates the relative positions of the molecular beam source cell and the growth target substrate in the MBE apparatus. As shown in the figure, the center of the molecular beam source cell is directed toward the center of the growth substrate, and this positional relationship determines the diameter of the region of uniform thickness that will grow on the growth substrate surface. That is, the diameter is expressed by the relational expression D=k (A+2L tanθo)/cosθ (see Japanese Patent Laid-Open No. 59-211225), where: proportionality constant; L: distance between the cell and the substrate.

68分子線中心と基板との角度。68 Angle between molecular beam center and substrate.

A;セルの開口径、θ0 ;セルの開口角であるが、従
来よりこの式を参照して、MBE装置の設計がおこなわ
れている。
A: aperture diameter of the cell, θ0: aperture angle of the cell. Conventionally, MBE apparatuses have been designed with reference to this formula.

且つ、この式から、分子線源セルの形状によって成長膜
厚の均一な領域が変化することが明らかである。また、
この式を解析すると、直径りを大きくするためにはθ。
Moreover, from this equation, it is clear that the area where the grown film thickness is uniform changes depending on the shape of the molecular beam source cell. Also,
Analyzing this equation, we find that in order to increase the diameter, θ is required.

を大きくする必要があり、そのθ0を大きくすれば、る
つぼ内のソース材料の消費によってソース材料の表面積
の変動が大きくなり、従って、分子線の量、すなわち、
成長速度が大きく変化すると云う欠点があることが判る
It is necessary to increase θ0, and the consumption of the source material in the crucible increases the variation in the surface area of the source material, thus reducing the amount of molecular beam, i.e.
It can be seen that there is a drawback that the growth rate varies greatly.

一方、MBE装置によって成長した結晶層にはMBE特
有の表面欠陥が生じ、それは分子線源セルからソースの
スピッテング(spitting ;吐(こと)とソー
ス材料の酸化とが原因とされている。
On the other hand, surface defects peculiar to MBE occur in a crystal layer grown by an MBE apparatus, and these defects are thought to be caused by source spitting from a molecular beam source cell and oxidation of the source material.

そのうち、ソース材料の酸化はソースの脱ガスを十分に
行なえば回避できるが、スビフテングの方は従来の分子
線源セルの形状では回避することが難しい。このソース
のスピッテングの原因は分子線源セル開口部の温度が低
下するため、ソースが開口部に付着して、それが塊状に
なって被成長基板に到達するからであ名。このようにし
て生じた基板の欠陥をオーバルディフェクト(oval
 defect ;卵形の欠陥)と云って、半導体装置
の性能劣化に深い関わりがある。
Of these, oxidation of the source material can be avoided by sufficiently degassing the source, but bifting is difficult to avoid with the conventional molecular beam source cell shape. The reason for this source spitting is that as the temperature at the opening of the molecular beam source cell decreases, the source adheres to the opening, forms a lump, and reaches the growth substrate. The defects on the substrate caused in this way are called oval defects.
A defect (egg-shaped defect) is closely related to performance deterioration of semiconductor devices.

本発明はこのような表面欠陥や成長速度の変動を減少さ
せるための分子線源セルを備えたM B −E装置を提
案するものである。
The present invention proposes an MBE apparatus equipped with a molecular beam source cell for reducing such surface defects and fluctuations in growth rate.

[問題点を解決するための手段] その目的は、筒状の主るつぼの開口部に、ヒータを内蔵
した逆円錐状のガイド筒を設け、該開口部が被成長基板
に対向している分子線源セルを備えたMBE装置によっ
て達成される。
[Means for solving the problem] The purpose is to provide an inverted conical guide tube with a built-in heater in the opening of a cylindrical main crucible, and to This is accomplished by an MBE device equipped with a source cell.

[作用] 即ち、本発明にかかるMBE装置には、筒状の主るつぼ
(メインるつぼ)と、その開口部に、ヒータを内蔵した
逆円錐状(漏斗状)のガイド筒を付設した分子線源セル
を設ける。
[Function] That is, the MBE apparatus according to the present invention includes a molecular beam source that includes a cylindrical main crucible and an inverted conical (funnel-shaped) guide tube with a built-in heater attached to the opening of the main crucible. Set up a cell.

そうすれば、成長層の表面欠陥が減少し、且つ、安定に
成長速度も安定する。
By doing so, surface defects in the grown layer are reduced and the growth rate is also stably stabilized.

[実施例] 以下1図面を参照して実施例によって詳細に説明する。[Example] An embodiment will be described in detail below with reference to one drawing.

第1図は本発明にかかるMBE装置の分子線源セルの断
面図を示しており、20はソース材料を収容する主るつ
ぼ、21はヒータを内蔵した逆円錐状のガイド筒、22
はタンタル巻線からなるヒータ。
FIG. 1 shows a cross-sectional view of a molecular beam source cell of an MBE apparatus according to the present invention, in which 20 is a main crucible containing a source material, 21 is an inverted conical guide tube with a built-in heater, and 22
is a heater made of tantalum winding.

’r、、T2は温度測定用の熱電対である。同図におい
て、主るつぼ20は従来のホーン状るつぼ11に相当し
、本例では形状を円筒形にしているが、このような形状
にすると、主るつぼ20内部のソース材料が消耗してソ
ース材料の表面Sの位置が下っても、その表面積が変化
しない。そうすると、分子線の放射量が変化せず、成長
速度が一定になる利点がある。なお、この主るつぼ20
は円筒形に限るものではなく、上記のようにソース材料
の消費に応じて表面積が変化しない筒状にすれば、他の
断面形状でもよい。
'r, , T2 is a thermocouple for temperature measurement. In the same figure, the main crucible 20 corresponds to the conventional horn-shaped crucible 11, and in this example, the shape is cylindrical. However, if this shape is adopted, the source material inside the main crucible 20 is consumed and the source material Even if the position of the surface S of is lowered, its surface area does not change. This has the advantage that the amount of molecular beam radiation does not change and the growth rate remains constant. Furthermore, this main crucible 20
is not limited to a cylindrical shape, but may have any other cross-sectional shape as long as it is a cylindrical shape whose surface area does not change depending on the consumption of the source material as described above.

また、ガイド筒21は逆円錐筒の形状を有し、主るつぼ
20の開口部に嵌め込むように構成して、その開口が被
成長基板に対向した位置(第4図参考)にする。且つ、
このガイド筒21は主るつぼ20と同様にPBNで作製
し、中央にカーボンからなるヒータ21Hを挟んだサン
ドインチ構造にして、全体をヒータで加熱する。
Further, the guide tube 21 has the shape of an inverted conical tube and is configured to be fitted into the opening of the main crucible 20 so that the opening faces the growth substrate (see FIG. 4). and,
This guide cylinder 21 is made of PBN like the main crucible 20, and has a sandwich structure with a heater 21H made of carbon sandwiched in the center, and the whole is heated by the heater.

かくして、主るつぼ20の中のソース材料をヒータ22
で加熱溶融し、熱電対Txで温度を監視しながら制御し
、これによって、放射する分子線の量がコントロールさ
れる。一方、ガイド筒21はヒータ21Hで加熱して、
その温度を熱電対T2で監視して制御し、これによって
開口部の冷却を防止する。
Thus, the source material in the main crucible 20 is transferred to the heater 22.
The temperature is monitored and controlled using a thermocouple Tx, thereby controlling the amount of molecular beams emitted. On the other hand, the guide cylinder 21 is heated by the heater 21H,
Its temperature is monitored and controlled by thermocouple T2, thereby preventing cooling of the opening.

このような分子線源セルの構造にして、これをMBE装
置に設置すれば、主るつぼ内のソース材料が消費しても
、その表面積の変化がなくなり、分子線の放射量が変化
せずに一定し、且つ、開口部のガイド筒21が加熱され
るため、ソースが開口部に付着して、それが塊状となっ
て被成長基板に到達するスピフテングの問題も解消する
。従って、結晶層の成長速度が安定し、被成長基板の表
面欠陥が低減する大きな効果がある。
If such a molecular beam source cell structure is used and it is installed in an MBE device, even if the source material in the main crucible is consumed, its surface area will not change, and the amount of molecular beam radiation will remain unchanged. Since the guide cylinder 21 at the opening is heated at a constant temperature, the problem of spifting, where the source adheres to the opening and reaches the growth substrate in the form of a lump, is also solved. Therefore, there is a significant effect that the growth rate of the crystal layer is stabilized and surface defects on the growth substrate are reduced.

なお、実験結果によれば、GaAs層を成長するために
、ソース材料のGaを収容した分子線源セルにおいて、
熱電対T1で測定した主るつぼの温度を1000℃とし
、熱電対T2で測った副るつぼの温度を1100℃にし
てGaAs層を成長したところ、その表面欠陥は10分
の1に減少し、また、分子線の安定性も極めて向上した
According to experimental results, in order to grow a GaAs layer, in a molecular beam source cell containing Ga as a source material,
When a GaAs layer was grown with the main crucible temperature measured by thermocouple T1 at 1000°C and the sub-crucible temperature measured by thermocouple T2 at 1100°C, the surface defects were reduced to one-tenth. , the stability of molecular beams was also significantly improved.

また、このような分子線源セルにすれば、主るつぼの形
状の自由度が大きくなり、一層大きな容量のるつぼを用
いてソース材料を増やし、長時間使用できるようにする
こともできる。
Moreover, if such a molecular beam source cell is used, the degree of freedom in the shape of the main crucible is increased, and a larger capacity crucible can be used to increase the amount of source material, making it possible to use the cell for a long time.

従って、本発明にかかるMBE装置を用れば、高品質な
結晶層が成長できるものである。
Therefore, by using the MBE apparatus according to the present invention, a high quality crystal layer can be grown.

[発明の効果] 以上の説明から明らかなように、本発明にかかる分子線
源セルを具備した分子線エピタキシャル成長装置によれ
ば、成長結晶層の品質が顕著に改善されて、半導体装置
を高性能化することができる。
[Effects of the Invention] As is clear from the above description, according to the molecular beam epitaxial growth apparatus equipped with the molecular beam source cell according to the present invention, the quality of the grown crystal layer is significantly improved, and the semiconductor device can be manufactured with high performance. can be converted into

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかるMBE装置の分子線源セルの断
面図、 第2図はMBE装置の全体概要図、 第3図は従来の分子線源セルの断面図、第4図は被成長
基板と分子線源セルとの相対位置を示す図である。 図において、 1は高真空処理容器、 2は被成長基板(ウェハー)、 3は分子線源セル、 11はるつぼ、 12、22はヒータ、 20は主るつぼ、 21はガイド筒、 2LHはガイド筒のヒータ、 T・TI・T2は熱電対 を示している。 特許出願人 工業技術院長 飯 塚 幸 三本発明(;
で・Ji分事峠理とル引錠面m第1図 MBE藍!/lR拳図 第2図
Fig. 1 is a cross-sectional view of a molecular beam source cell of an MBE apparatus according to the present invention, Fig. 2 is an overall schematic diagram of the MBE apparatus, Fig. 3 is a cross-sectional view of a conventional molecular beam source cell, and Fig. 4 is a cross-sectional view of a molecular beam source cell of the MBE apparatus according to the present invention. It is a figure showing the relative position of a substrate and a molecular beam source cell. In the figure, 1 is a high vacuum processing container, 2 is a growth substrate (wafer), 3 is a molecular beam source cell, 11 is a crucible, 12 and 22 are heaters, 20 is a main crucible, 21 is a guide tube, and 2LH is a guide tube The heater T, TI, and T2 indicate thermocouples. Patent applicant: Director of the Agency of Industrial Science and Technology Yuki Iizuka Sanbon Invention (;
So Ji Bunji Tougeri and Le Hikimen m Figure 1 MBE Ai! /lR fist figure 2

Claims (1)

【特許請求の範囲】[Claims] 筒状の主るつぼの開口部に、ヒータを内蔵した逆円錐状
のガイド筒を設け、該開口部が被成長基板に対向してい
る分子線源セルを備えていることを特徴とする分子線エ
ピタキシャル成長装置。
A molecular beam characterized in that an inverted conical guide tube with a built-in heater is provided at the opening of a cylindrical main crucible, and a molecular beam source cell is provided with the opening facing a growth substrate. Epitaxial growth equipment.
JP11355487A 1987-05-12 1987-05-12 Molecular beam epitaxial growth device Granted JPS63282189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11355487A JPS63282189A (en) 1987-05-12 1987-05-12 Molecular beam epitaxial growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11355487A JPS63282189A (en) 1987-05-12 1987-05-12 Molecular beam epitaxial growth device

Publications (2)

Publication Number Publication Date
JPS63282189A true JPS63282189A (en) 1988-11-18
JPH0352435B2 JPH0352435B2 (en) 1991-08-09

Family

ID=14615235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11355487A Granted JPS63282189A (en) 1987-05-12 1987-05-12 Molecular beam epitaxial growth device

Country Status (1)

Country Link
JP (1) JPS63282189A (en)

Also Published As

Publication number Publication date
JPH0352435B2 (en) 1991-08-09

Similar Documents

Publication Publication Date Title
US4365588A (en) Fixture for VPE reactor
JPS6255688B2 (en)
JPS63282189A (en) Molecular beam epitaxial growth device
EP0692556A1 (en) K cell type vapor source and shutter
JPS61220414A (en) Apparatus for generating molecular beam
JP2688365B2 (en) Board holder
JPH04274316A (en) Cell for molecular beam epitaxy
JPS6369219A (en) Molecular beam source cell
JPH04348022A (en) Cell for molecular beam epitaxy
JPS60112690A (en) Evaporation source cell for molecular beam crystal growth device
JPH0774433B2 (en) Vapor deposition equipment for thin film growth
JPS63282190A (en) Molecular beam crystal growth device
JPS6153197A (en) Crystal growth device
JPS6272113A (en) Molecular beam crystal growth device
JPH05887A (en) Molecular beam crystal growing device
JPS62190719A (en) Molecular beam epitaxial growth apparatus
JPS61187225A (en) Molecular beam source cell
JPS61261294A (en) Method of molecular beam epitaxial growth and molecular beam source
JPH01305889A (en) Molecular beam cell
JPS5945994A (en) Crucible for epitaxial growth of molecular beam
JPS6358918A (en) Furnace shutter for molecular beam source
JPH03228898A (en) Crystal growing method
JPH02151023A (en) Device for manufacturing semiconductor crystal
JPS6057611A (en) Shutter of molecular beam source
JPH0541356A (en) Crystal growth apparatus

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term