JPH0541356A - Crystal growth apparatus - Google Patents

Crystal growth apparatus

Info

Publication number
JPH0541356A
JPH0541356A JP19456391A JP19456391A JPH0541356A JP H0541356 A JPH0541356 A JP H0541356A JP 19456391 A JP19456391 A JP 19456391A JP 19456391 A JP19456391 A JP 19456391A JP H0541356 A JPH0541356 A JP H0541356A
Authority
JP
Japan
Prior art keywords
wafer
growth
substrate plate
crystal growth
wafers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19456391A
Other languages
Japanese (ja)
Inventor
Moichi Izumi
茂一 和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP19456391A priority Critical patent/JPH0541356A/en
Publication of JPH0541356A publication Critical patent/JPH0541356A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To obtain a crystal growth apparatus wherein a more stoichiometric crystal growth operation is executed. CONSTITUTION:The title apparatus is featured in the following manner: wafers 3 for monitoring use are arranged in the outer circumferential part of wafers 2, to be grown, which have been arranged on a substrate plate 1 for crystal growth use; a heating means in which the growth temperature of the wafers 3 for monitoring use becomes higher than that of the wafers 2 to be grown is provided; a group III-rich growth operation is executed to the wafers 3 for monitoring use; a group V-rich crystal growth operation is executed to the wafers 2 to be grown; the wafers 2 to be grown can be grown in a more stoichiometric state; and a crystalline stoichiometry can be monitored.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ストイキオメトリな結
晶成長を行うための結晶成長装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crystal growth apparatus for performing stoichiometric crystal growth.

【0002】[0002]

【従来の技術】分子線エピタキシャル成長(MBE)
は、加熱したGaAs,InP等の基板(ウエハ)に分
子線を照射することにより、結晶成長させるもので、そ
の概念図を図3に示す。図3において、1は結晶成長用
の基板プレート、2はこの基板プレート1上に配設され
た被成長用ウエハ(例えばGaAsウエハ)、4はこの
被成長用ウエハ2が載置された基板プレート1を載置す
るサセプタ、5はこのサセプタ4に内蔵された基板プレ
ート1を加熱する加熱用ヒータ、6は前記サセプタ4と
ともに基板プレート1を内部に保持する結晶成長用チャ
ンバ、7は液体窒素シュラウド、8は前記被成長用ウエ
ハ2に照射される分子線、9はるつぼ、10はタングス
テン線0.5〜1mmをらせん状に巻いたK−セルヒー
タ線、11は前記るつぼ9内に収容されたV族分子線
源、12は同じくIII族分子線源、13は前記結晶成長
用チャンバ6内に保持された基板プレート1を回転せし
める基板プレート回転機構である。
2. Description of the Related Art Molecular beam epitaxial growth (MBE)
Is for growing crystals by irradiating a heated substrate (wafer) such as GaAs or InP with a molecular beam, and its conceptual diagram is shown in FIG. In FIG. 3, reference numeral 1 is a crystal growth substrate plate, 2 is a growth wafer (for example, a GaAs wafer) arranged on the substrate plate 1, and 4 is a substrate plate on which the growth wafer 2 is placed. 1 is a susceptor on which 5 is placed, 5 is a heater for heating the substrate plate 1 built in the susceptor 4, 6 is a crystal growth chamber for holding the substrate plate 1 together with the susceptor 4, and 7 is a liquid nitrogen shroud , 8 is a molecular beam with which the wafer for growth 2 is irradiated, 9 is a crucible, 10 is a K-cell heater wire formed by spirally winding a tungsten wire of 0.5 to 1 mm, and 11 is housed in the crucible 9. A group V molecular beam source, 12 is also a group III molecular beam source, and 13 is a substrate plate rotating mechanism for rotating the substrate plate 1 held in the crystal growth chamber 6.

【0003】通常のMBE装置では、図2(a)に示す
ような被成長用ウエハ2のみが配設された結晶成長用の
基板プレート1を使用し、基板加熱の温度勾配は同図に
示すように基板プレート1の外周部の方が基板プレート
1の中央部より低くなっていることが通例である。
A normal MBE apparatus uses a substrate plate 1 for crystal growth on which only a wafer for growth 2 is arranged as shown in FIG. 2A, and the temperature gradient of substrate heating is shown in FIG. As described above, the outer peripheral portion of the substrate plate 1 is usually lower than the central portion of the substrate plate 1.

【0004】なお、図2では、3φウエハを3個同時に
成長できる基板プレート1をその一例として取り上げて
いる。
In FIG. 2, a substrate plate 1 capable of simultaneously growing three 3φ wafers is taken as an example.

【0005】[0005]

【発明が解決しようとする課題】従来の結晶成長用の基
板プレート1では、よりストイキオメトリな結晶成長を
行うモニタ機能がなく、V族分子線過剰な状態で成長を
実施するのが通例であって、このような条件で成長した
結晶はストイキオメトリからずれた分だけ結晶性が劣化
する。
The conventional substrate plate 1 for crystal growth does not have a monitor function for performing more stoichiometric crystal growth, and it is customary to carry out the growth in a state where the group V molecular beam is excessive. Therefore, the crystallinity of the crystal grown under such conditions deteriorates by the amount deviated from stoichiometry.

【0006】本発明は、上記のような問題点を解決する
ためになされたもので、よりストイキオメトリな結晶成
長を行うためのモニタ機能を備えた結晶成長装置を得る
ことを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to obtain a crystal growth apparatus having a monitor function for performing more stoichiometric crystal growth.

【0007】[0007]

【課題を解決するための手段】本発明に係る結晶成長装
置は、基板プレートの温度勾配が基板プレートの中央部
より基板プレートの周辺部側が高くなるように基板プレ
ートを加熱する加熱手段を備えるとともに、前記基板プ
レートの外周部にモニタ用ウエハを配置してこのモニタ
用ウエハで結晶性のストイキオメトリ性をモニタする構
成としたものである。
A crystal growth apparatus according to the present invention comprises heating means for heating a substrate plate such that the temperature gradient of the substrate plate is higher on the peripheral side of the substrate plate than on the central part of the substrate plate. A monitor wafer is arranged on the outer peripheral portion of the substrate plate, and the monitor wafer monitors the stoichiometry of crystallinity.

【0008】[0008]

【作用】本発明においては、基板プレートの外周部のモ
ニタ用ウエハが基板プレートの中央部の被成長用ウエハ
より高温となるように加熱するので、同じV族分子線圧
で成長した場合、モニタ用ウエハが基板プレートの中央
部に比べIII族リッチ(Rich)になりやすく(ウエ
ハ表面は白濁する)、モニタ用ウエハが白濁して、被成
長用ウエハが白濁しない状態での成長は、被成長用ウエ
ハがよりストイキオメトリに近い成長となる。
In the present invention, the monitor wafer on the outer peripheral portion of the substrate plate is heated so as to have a temperature higher than that of the wafer to be grown on the central portion of the substrate plate. The growth wafer is liable to be Group III rich (Rich) compared to the central portion of the substrate plate (the surface of the wafer becomes cloudy), and the growth of the monitor wafer becomes cloudy while the growth wafer does not become cloudy. Wafers will grow closer to stoichiometry.

【0009】[0009]

【実施例】以下、本発明について説明する。図1
(a),(b)は、本発明に用いる結晶成長用の基板プ
レートと、その基板プレート内での温度勾配を示す図で
ある。ここでは、3φウエハ3枚を同時に結晶成長でき
る基板プレート1の一例を示している。基板プレート1
の中央部寄りに実際に結晶成長される被成長用ウエハ2
を配置してあり、その外側に位置するところにモニタ用
ウエハ3を1〜3枚配置するようにする。基板プレート
1の温度勾配は、基板プレート1の外周部で若干(中央
部に比較して5〜10℃程度)高くなっているので、基
板プレート1の面内に均一にV族分子線が照射されてい
る状態では、V族分子の付着面からの脱離がより高温の
方が多くなるので、モニタ用ウエハ3の配置された基板
プレート1の中央部の被成長用ウエハ2よりモニタ用ウ
エハ3の方がIII 族Richになりやすい。上記の温度
分布を得るには、例えば加熱ヒータ5にカーボンヒータ
を用い、その厚みの制御により面内温度分布を所望の分
布にすることができる。
The present invention will be described below. Figure 1
(A), (b) is a figure which shows the substrate plate for crystal growth used for this invention, and the temperature gradient in the substrate plate. Here, an example of the substrate plate 1 capable of simultaneously performing crystal growth on three 3φ wafers is shown. Board plate 1
To be grown 2 in which crystals are actually grown near the center of the wafer
Are arranged, and one to three monitor wafers 3 are arranged on the outside thereof. Since the temperature gradient of the substrate plate 1 is slightly higher in the outer peripheral portion of the substrate plate 1 (about 5 to 10 ° C. than in the central portion), the group V molecular beam is uniformly irradiated in the plane of the substrate plate 1. In this state, the desorption of the group V molecules from the attachment surface is higher at a higher temperature, so that the wafer for monitoring is more than the wafer for growth 2 in the central portion of the substrate plate 1 on which the wafer for monitoring 3 is arranged. 3 is more likely to be a group III Rich. In order to obtain the above temperature distribution, for example, a carbon heater may be used as the heater 5 and the in-plane temperature distribution can be set to a desired distribution by controlling the thickness thereof.

【0010】通常III −V族の化合物結晶成長では、V
族Richでは成長面は鏡面になるのに対して、 III族
Richになると鏡面から白濁していくので、結晶成長
表面から III族Richか、V族Richかを見分ける
ことは十分に可能である。すなわち、基板プレート1面
内に温度分布があって、外周部のモニタ用ウエハ3のみ
白濁するようにAs圧力をかけることにより、内周部の
被成長用ウエハ2のストイキオメトリの確認をすること
ができる。完全鏡面が白濁点ギリギリでできることがス
トイキオメトリに近いと考えて良い。
Usually, in the case of III-V group compound crystal growth, V
The growth surface of the group Rich is a mirror surface, while the growth surface of the group Rich is cloudy from the mirror surface. Therefore, it is possible to distinguish between the group III Rich and the group V Rich from the crystal growth surface. That is, there is a temperature distribution in the surface of the substrate plate 1, and As pressure is applied so that only the monitor wafer 3 in the outer peripheral portion becomes cloudy, so that the stoichiometry of the growth wafer 2 in the inner peripheral portion is confirmed. be able to. It can be considered that it is close to stoichiometry that the perfect mirror surface can be made to the limit of the cloud point.

【0011】ストイキオメトリな結晶成長とは、成長表
面が III族Richによる鏡面の白濁がない最も低いV
族分子線の供給で実施された成長において実現可能であ
る。したがって、基板プレート1の中央部の被成長用ウ
エハ2より若干 III族Richになりやすい基板プレー
ト1の外周部の若干成長温度の高いモニタ用ウエハ3で
白濁面を得た状態で、被成長用ウエハ2の表面が鏡面で
ある場合、被成長用ウエハ2の結晶は、よりストイキオ
メトリに近い状態であるといえる。このような方法を用
いることにより、V族Richな結晶成長であってもス
トイキオメトリに近いか否かの判定が可能となる。な
お、基板プレート1の材料としては、一般的にMoを用
いる。
Stoichiometric crystal growth is the lowest V where the growth surface is free of mirror turbidity due to III group Rich.
It is feasible in the growth carried out with the supply of group molecular beams. Therefore, the growth target wafer 2 in the central portion of the substrate plate 1 is more likely to be III group Rich than the growth target wafer 2 in the peripheral portion thereof. When the surface of the wafer 2 is a mirror surface, it can be said that the crystal of the wafer for growth 2 is in a state closer to stoichiometry. By using such a method, it is possible to determine whether or not it is close to stoichiometry even in the case of group V Rich crystal growth. Note that Mo is generally used as the material of the substrate plate 1.

【0012】また、上記結晶成長装置を用いた実デバイ
スとしては、HEMTの雑音指数の低下や、HBTのβ
(電流増幅率)の向上をはかったものが実現できる。
Further, as an actual device using the above-mentioned crystal growth apparatus, the noise figure of HEMT is lowered and β of HBT is decreased.
It is possible to realize a device having an improved (current amplification factor).

【0013】[0013]

【発明の効果】以上説明したように、本発明は、基板プ
レートの中央部よりに被成長用ウエハを配設し、ストイ
キオメトリをモニタするモニタ用ウエハを前記基板プレ
ートの周辺部に配置し、前記基板プレートの周辺部の温
度が基板プレートの中央部より高くなるような加熱手段
を備えたので、被成長用ウエハに成長される結晶性をよ
りストイキオメトリに形成できる。したがって、このよ
うな結晶を用いたデバイスではキャリアの活性化や移動
度が高くなる効果が得られる。
As described above, according to the present invention, the growth wafer is arranged from the central portion of the substrate plate, and the monitor wafer for monitoring stoichiometry is arranged in the peripheral portion of the substrate plate. Since the heating means is provided so that the temperature of the peripheral portion of the substrate plate becomes higher than that of the central portion of the substrate plate, the crystallinity grown on the wafer for growth can be formed more stoichiometrically. Therefore, a device using such a crystal has an effect of activating carriers and increasing mobility.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基板プレートの構成とその温度勾配を
示す図である。
FIG. 1 is a diagram showing a configuration of a substrate plate of the present invention and a temperature gradient thereof.

【図2】従来の基板プレートの構成とその温度勾配を示
す図である。
FIG. 2 is a diagram showing a configuration of a conventional substrate plate and its temperature gradient.

【図3】MBE装置の概要を示す構成断面図である。FIG. 3 is a configuration cross-sectional view showing an outline of an MBE device.

【符号の説明】[Explanation of symbols]

1 基板プレート 2 被成長用ウエハ 3 モニタ用ウエハ 4 サセプタ 5 加熱用ヒータ 6 結晶成長用チャンバ 7 液体窒素シュラウド 8 分子線 9 るつぼ 10 K−セルヒータ線 11 V族分子線源 12 III 族分子線源 13 基板プレート回転機構 1 substrate plate 2 wafer for growth 3 wafer for monitoring 4 susceptor 5 heater for heating 6 chamber for crystal growth 7 liquid nitrogen shroud 8 molecular beam 9 crucible 10 K-cell heater beam 11 V group molecular beam source 12 III group molecular beam source 13 Substrate plate rotation mechanism

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】所要数の被成長用ウエハが配設された結晶
成長用の基板プレートを結晶成長用チャンバ内に保持
し、前記被成長用ウエハを加熱した状態で分子線を照射
して前記被成長用ウエハ上に結晶成長せしめる結晶成長
装置において、前記被成長用ウエハが配設された前記基
板プレート上の前記被成長用ウエハの位置より前記基板
プレートの外周部に配設されたモニタ用ウエハと、この
モニタ用ウエハの成長温度が前記被成長用ウエハの温度
より高くなるように加熱する加熱手段とを備えるととも
に、前記モニタ用ウエハで前記被成長用ウエハの結晶性
のストイキオメトリをモニタする構成としたことを特徴
とする結晶成長装置。
1. A substrate plate for crystal growth on which a required number of wafers for growth is arranged is held in a chamber for crystal growth, and the wafer for growth is heated and irradiated with a molecular beam to produce the substrate. In a crystal growth apparatus for growing crystals on a wafer for growth, for a monitor arranged on the outer peripheral portion of the substrate plate from the position of the wafer for growth on the substrate plate on which the wafer for growth is arranged. A wafer and a heating unit that heats the monitor wafer so that the growth temperature of the monitor wafer is higher than the temperature of the wafer to be grown, and the crystallographic stoichiometry of the wafer to be grown is measured by the monitor wafer. A crystal growth apparatus characterized by being configured to monitor.
JP19456391A 1991-08-03 1991-08-03 Crystal growth apparatus Pending JPH0541356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19456391A JPH0541356A (en) 1991-08-03 1991-08-03 Crystal growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19456391A JPH0541356A (en) 1991-08-03 1991-08-03 Crystal growth apparatus

Publications (1)

Publication Number Publication Date
JPH0541356A true JPH0541356A (en) 1993-02-19

Family

ID=16326615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19456391A Pending JPH0541356A (en) 1991-08-03 1991-08-03 Crystal growth apparatus

Country Status (1)

Country Link
JP (1) JPH0541356A (en)

Similar Documents

Publication Publication Date Title
JP3491402B2 (en) Single crystal manufacturing method and single crystal manufacturing apparatus
JP4174847B2 (en) Single crystal manufacturing method
JPH0834180B2 (en) Method for growing compound semiconductor thin film
JPH06298594A (en) Apparatus for growing single crystal
JPH1045499A (en) Production of silicon carbide single crystal and seed crystal used therefor
JP4253974B2 (en) SiC single crystal and growth method thereof
JPH09263497A (en) Production of silicon carbide single crystal
JP3491429B2 (en) Method for producing silicon carbide single crystal
JP3848446B2 (en) Method for growing low resistance SiC single crystal
JP4304783B2 (en) SiC single crystal and growth method thereof
JPH0541356A (en) Crystal growth apparatus
JPH09263498A (en) Production of silicon carbide single crystal
JPH0557239B2 (en)
JPS63242993A (en) Method for growing crystal by molecular beam
JP2000031064A (en) Method and device for horizontal vapor phase epitaxial growth
JPH02262331A (en) Vapor growth apparatus
JP2944426B2 (en) Molecular beam epitaxy equipment
JPH10297997A (en) Formation of silicon carbide singe crystal
JP2688365B2 (en) Board holder
JP3198971B2 (en) Molecular beam epitaxy equipment
JPS61101488A (en) Molecular beam crystal growth apparatus
JPS598698A (en) Apparatus for vertical liquid-phase epitaxial growth
JPH0831410B2 (en) Method for manufacturing semiconductor device
JPH069025Y2 (en) Compound semiconductor single crystal manufacturing equipment
JPS62122121A (en) Heating method of semiconductor substrate