JPH02243331A - Alumina dispersion reinforced copper-oxygen-free copper multi-layer sheet material of superior brazing properties - Google Patents

Alumina dispersion reinforced copper-oxygen-free copper multi-layer sheet material of superior brazing properties

Info

Publication number
JPH02243331A
JPH02243331A JP6348089A JP6348089A JPH02243331A JP H02243331 A JPH02243331 A JP H02243331A JP 6348089 A JP6348089 A JP 6348089A JP 6348089 A JP6348089 A JP 6348089A JP H02243331 A JPH02243331 A JP H02243331A
Authority
JP
Japan
Prior art keywords
oxygen
copper
free copper
alumina dispersion
dispersion reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6348089A
Other languages
Japanese (ja)
Inventor
Masaki Kumagai
正樹 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP6348089A priority Critical patent/JPH02243331A/en
Publication of JPH02243331A publication Critical patent/JPH02243331A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lead Frames For Integrated Circuits (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To satisfy heat resistance, conductivity, heat dissipation and brazing properties at a time by containing fine Al2O3 formed by inter-oxidation in the specified range and forming a remaining part with a layer constituted of alumina dispersion reinforced copper mainly composed of Cu and an oxygen-free copper layer having specified section area rate. CONSTITUTION:When oxygen-free copper is provided inside alumina dispersion reinforced copper, the alumina dispersion reinforced copper is exposed on the surface as the same is cut by a shearing machine or the like for use. It is necessary for the alumina dispersion reinforced copper exposed on the surface to laminate oxygen-free copper in the form of layers. For the oxygen-free copper layer, 32-90% should be oxygen-free copper by the section area rate of a platen, and preferably the same should be three layers or more from the viewpoint of brazing properties and the like. 0.05-1.0% of the alumina content inside the alumina dispersion reinforced copper is necessary to provide heat-resistant strength. When the same is less than 0.05%, heat-resistant strength is lowered even in case oxygen-free copper is 32% and the strength of brazed section is lowered. When beyond 1.0%, conductivity is lowered, and 90% or more of %IACS is difficult to be provided even if 90% of oxygen-free copper by area rate is contained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ICリードフレームあるいは電気接点・端子
等に要求される耐熱性、導電性、熱放散性およびろう付
け性に優れたアルミナ分散強化銅−無酸素銅複層薄板材
料に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to an alumina dispersion-reinforced material that has excellent heat resistance, conductivity, heat dissipation properties, and brazing properties required for IC lead frames, electrical contacts, terminals, etc. This invention relates to a copper-oxygen-free copper multilayer thin plate material.

〔従来の技術〕[Conventional technology]

半導体機器におけるICリードフレームあるいは電気接
点・端子等は、耐熱性、導電性、熱放散性およびろう付
け性が要求されるので、従来からIFe  −42’l
Ni   ?e  −294Ni1740o  などの
N1 系Ire基合金、あるいは鉄人シ銅、りん青銅等
のOu基合金が用いられれいる。Ou基合金はIFe 
基合金に比べて熱伝導性、電気伝導性が優れ、安価であ
るが、機械的強度、はんだ付け性、またはろう付け性に
欠けるため、これを改善したものがいろいろと提案され
ている。例えば、Cu −Ni −Ti 合金にMn 
jbるいはMg を含有させ、高強度、高電気伝導性お
よび良好なるはんだ耐候性とを兼備させた合金(特公昭
65−50575号公報参照)、または、Ou −Ni
 −Ti −Zn合金にム1%MnあるいはMg を含
有させ、高強度、高電気伝導性、良好なるはんだ耐候性
(はんだ付した場合、母材が溶融あるいは腐食等で損傷
すること)およびVジンとの密着性とを兼備させた合金
(特公昭65−50979号公報参照)の提案がある。
IC lead frames or electrical contacts/terminals in semiconductor devices are required to have heat resistance, conductivity, heat dissipation properties, and brazing properties, so IFe-42'l has traditionally been used.
Ni? N1-based Ire-based alloys such as e-294Ni1740o, or Ou-based alloys such as iron copper and phosphor bronze are used. Ou-based alloy is IFe
Although it has superior thermal conductivity and electrical conductivity and is inexpensive compared to base alloys, it lacks mechanical strength, solderability, and brazeability, so various improvements have been proposed. For example, Mn in Cu-Ni-Ti alloy
An alloy containing Mg and having high strength, high electrical conductivity, and good solder weather resistance (see Japanese Patent Publication No. 65-50575), or Ou-Ni
-Ti-Zn alloy contains 1% Mn or Mg, and has high strength, high electrical conductivity, good solder weather resistance (when soldering, the base material will be damaged by melting or corrosion) and V-Gin. There has been a proposal for an alloy (see Japanese Patent Publication No. 65-50979) that has both adhesion and adhesion.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかるに、工aha子部品の高集積化が進むにつれ、部
品接合部の信頼性向上のため従来の低温でのはんだ付け
に代り、高温でのろう付けが行われるようになってきた
。ところが、従来の高電気伝導性に優れた銅合金は、ろ
う付け温度以下で軟化してしまうため、その後の強度不
足から種々の関門が生じている。また、ろう付けの行わ
れる高信頼性工Cの集積度は今後ますます高くなシ、ユ
ニットの多リード化につれリードの薄小化が進むことが
予想され、ろう付け後も十分な強度を維持できる耐熱性
を有する材料が要求されている。更にろう付けの際に材
料が必要以上に加熱されることのないよう熱放散性に優
れた材料が要求されている。ろう付け後も軟化せず、導
電率・熱放散性を有する材料として、アルミナ分散強化
鋼があるが、耐熱性には問題がないものの、アルミナ含
有量が増加すると導電性が低下すること、および銀系ろ
う材が拡散し、ろう接強度が低下するという問題がある
ため、リードフレーム等には実用化されていなかった。
However, as electronic components become more highly integrated, high-temperature brazing has begun to replace conventional low-temperature soldering in order to improve the reliability of component joints. However, since conventional copper alloys with excellent electrical conductivity soften below the brazing temperature, various barriers arise due to insufficient strength thereafter. In addition, the degree of integration of high-reliability work C where brazing is performed is expected to increase in the future, and as units have more leads, the leads are expected to become thinner and smaller, so that sufficient strength can be maintained even after brazing. There is a need for materials with high heat resistance. Furthermore, materials with excellent heat dissipation properties are required so that the materials are not heated more than necessary during brazing. Alumina dispersion strengthened steel is a material that does not soften even after brazing and has electrical conductivity and heat dissipation properties, but although there is no problem with heat resistance, the electrical conductivity decreases as the alumina content increases. This method has not been put to practical use in lead frames and the like because of the problem that the silver-based brazing material diffuses and reduces the soldering strength.

本発明者は、先に、このアルミナ分散強化銅のろう付け
性を改善した複合リード線を提案した(特開昭63−2
45810号公報、特開昭63−245811号公報参
照)。
The present inventor previously proposed a composite lead wire with improved brazing properties of this alumina dispersion-strengthened copper (Japanese Unexamined Patent Publication No. 63-2
45810, JP-A-63-245811).

本発明は、前記先行発明の技術思想を応用することによ
り、耐熱性、導電性、熱放散性およびろう付け性を同時
に満足するICリードフレーム等に適した材料の提供を
目的としている。
The present invention aims to provide a material suitable for IC lead frames and the like that simultaneously satisfies heat resistance, conductivity, heat dissipation properties, and brazing properties by applying the technical idea of the prior invention.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明者は、強度および耐熱
性に優れたアルミナ分散強化鋼と、ろう付け性、導電性
および熱放散性に優れた無酸素銅とを、第1図に示すよ
うに層状に積層複合することにより、リードフレームと
して要求される耐熱性、導電性、熱放散性およびろう付
け性を同時に満足することができるとの知見によυ、本
発明を完成した。
In order to achieve the above object, the present inventor has developed alumina dispersion-strengthened steel with excellent strength and heat resistance, and oxygen-free copper with excellent brazeability, electrical conductivity, and heat dissipation properties, as shown in Figure 1. The present invention was completed based on the knowledge that the heat resistance, conductivity, heat dissipation properties, and brazing properties required for a lead frame can be simultaneously satisfied by laminating the lead frame in layers.

すなわち、本発明は、内部酸化により生成した微細なA
t103をCLO5〜1.0%含有し残部主としてOu
からなるアルミナ分散強化鋼と、無酸素銅との層から構
成される薄板であって、鎖板の表面は無酸素銅の層であ
り、薄板の断面の面積率で52〜90%が無酸素銅であ
ることを特徴とする、ろう付け性に優れたアルミナ分散
強化銅−無酸素銅複層薄板材料を要旨とするものである
That is, the present invention provides fine A produced by internal oxidation.
Contains 5-1.0% CLO of t103, and the remainder is mainly Ou.
A thin plate composed of a layer of alumina dispersion strengthened steel and oxygen-free copper, the surface of the chain plate is a layer of oxygen-free copper, and 52 to 90% of the cross-sectional area of the thin plate is oxygen-free. The gist of this invention is an alumina dispersion strengthened copper-oxygen-free copper multilayer thin plate material that is made of copper and has excellent brazing properties.

なお、前述の内部酸化とは、母材より酸化しやすい溶質
金属を含む場合、母材内に酸素が拡散して溶質元素と反
応し、酸化物を生成する現象である。
Note that the above-mentioned internal oxidation is a phenomenon in which when a solute metal that is more easily oxidized than the base material is included, oxygen diffuses into the base material and reacts with the solute element to generate an oxide.

〔作用〕[Effect]

本発明においてアルミナ分散強化鋼と無酸素銅とを層状
に配列したーこと、アルミナ分散強化銅内のアルミナ含
有量および無酸素銅の面積率の割合を画定した理由を以
下に説明する。
In the present invention, the reason why the alumina dispersion strengthened steel and the oxygen-free copper are arranged in layers and the alumina content in the alumina dispersion strengthened copper and the area ratio of the oxygen-free copper are determined will be explained below.

層状に配列したこと アルミナ分散強化鋼は、銀系ろう材を内部に拡散させ、
ろう付け性を低下させるので、表面部の外表皮として無
酸素銅を配し、ろう付け性の低下を防止する必要がある
。なお、ろう付け性を確保するためには、外表皮の厚さ
は101日以上あることが好ましい。また、アルミナ分
散強化鋼の内部に無酸素銅を配設することは、これらの
薄板材料は周囲を剪断機等で切断して使用するため、ア
ルミナ分散強化銅が表面に曝されることとなる。表面に
曝されたアルミナ分散強化鋼は、前述のようにろう付け
性を低下させるので、第1図断面のように無酸素銅を層
状に積層する必要がある。無酸素銅の層は少なくとも一
層は必要であるが、好ましくは3M以上の方がろう付け
性その他において優れている。
Arranged in layers, alumina dispersion-strengthened steel has a silver-based brazing filler metal diffused inside,
Since this lowers the brazing performance, it is necessary to arrange oxygen-free copper as an outer skin on the surface to prevent the brazing performance from decreasing. In order to ensure brazing properties, the thickness of the outer skin is preferably 101 days or more. In addition, when oxygen-free copper is placed inside alumina dispersion strengthened steel, the alumina dispersion strengthened copper is exposed to the surface because these thin plate materials are cut around with a shearing machine, etc. . Since alumina dispersion strengthened steel exposed to the surface deteriorates brazing properties as described above, it is necessary to laminate oxygen-free copper in layers as shown in the cross section of FIG. At least one layer of oxygen-free copper is required, but preferably 3M or more is better in brazing properties and other aspects.

アルミナ分散強化銅の内部のアルミナ含有量アルミナ分
散強化銅内部のアルミナ含有量は、耐熱強度を得るため
に(LO5〜1.0%必要である。これが105憾未満
では、無酸素銅を32憾とした場合でも耐熱強度が低下
し、ろう付け部分の強度が低下する。また、1.0%を
越えると導電率が低下し、無酸素銅を面積率で90憾含
有させたとしても、憾工A(8が90憾以上を得るのが
困難である。
Alumina content inside alumina dispersion-strengthened copper Alumina content inside alumina dispersion-strengthened copper is required to obtain heat resistance strength (LO5~1.0%. If this is less than 105%, oxygen-free copper must be 32% Even if it is, the heat resistance strength will decrease and the strength of the brazed part will decrease.In addition, if it exceeds 1.0%, the conductivity will decrease, and even if the area ratio of oxygen-free copper is 90%, the Engineering A (8 is difficult to get 90 or more.

無酸素銅の含有量 無酸素銅は、導電性、熱放散性およびろう付け性に優れ
た材料であるが、ろう付け温度に曝されると高温強度が
低下する。したがって面積率90%を越えるとろう付け
によって軟化し、リードフレームに要求される高温強度
が得られなくなる。また、面積率324未満ではアルミ
ナを105幅含有するアルミナ分散強化鋼であってもリ
ードフレームに要求される憾工A(1890憾以上が得
られなくなる。
Oxygen-free copper content Oxygen-free copper is a material with excellent conductivity, heat dissipation, and brazing properties, but its high-temperature strength decreases when exposed to brazing temperatures. Therefore, if the area ratio exceeds 90%, the lead frame will become soft due to brazing, and the high temperature strength required for the lead frame will not be obtained. Further, if the area ratio is less than 324, even if the alumina dispersion strengthened steel contains 105 alumina, it will not be possible to obtain the A (1890 or more) required for the lead frame.

〔実施例〕〔Example〕

Ou −k1合金アトマイズ粉末と、これを50G。 Ou -k1 alloy atomized powder and 50G of this.

℃にて表面酸化した粉末とを第1表に示す割合で混合し
、800℃で3時間内部酸化処理し、700℃で30分
間水素雰囲気中で還元し、第2図に示すような断面の無
酸素銅製の缶に封入て押出ビレットを形成した。このビ
レットを800℃で1時間保持後、−辺50鱈の角材に
押出し、冷間圧延により第1図に示すよりな(L25−
厚の板材とした。得られた板材を両端切断し、薄板材と
した。いずれも表面に無酸素銅の外皮を有し、アルミナ
分散強化銅と無酸素銅とが層状に存在するものである。
The powder that had been surface oxidized at An extruded billet was formed by enclosing it in an oxygen-free copper can. After holding this billet at 800°C for 1 hour, it was extruded into a square piece of 50-side cod, and cold-rolled into a square piece (L25-
Made of thick plate material. The obtained plate material was cut at both ends to obtain a thin plate material. Both have an outer skin of oxygen-free copper on the surface, and alumina dispersion-strengthened copper and oxygen-free copper exist in a layered manner.

性能の評価は、ろう付け後の性能を評価することとし、
すべて700℃で焼鈍後裔種試験を行なった。ステイフ
ネスは、米国材料試験協会規格(A8TM ’7113
 )に準じ、第3図に概略を示すごとく、薄板材を瞬間
的に曲げ、その角度を測定した。曲げ角度の小さいもの
ほどステイフネスが大きいこととなる。本発明では、5
0゜以下を合格とした。導電率はダブルブリッジ法によ
り測定した。ろう付け性は、リードフv −ふと基板(
M、、)をOu−AE −Pろう材でろう付けし、ろう
付け部分を90°まで3回繰返し曲げ、剥離しなかった
ものを○、剥離したものを×とした。得られた結果を第
1表に示す。
The performance evaluation will be based on the performance after brazing.
The progeny test was conducted after annealing in all cases at 700°C. Stiffness is determined by American Society for Testing and Materials standards (A8TM '7113).
), the thin plate material was momentarily bent as schematically shown in Figure 3, and the angle was measured. The smaller the bending angle, the greater the stiffness. In the present invention, 5
A value of 0° or less was considered a pass. Electrical conductivity was measured by the double bridge method. The brazing property is determined by the lead-off v-foot board (
M,, ) were brazed with Ou-AE-P brazing material, and the brazed portion was repeatedly bent to 90° three times, and those that did not peel off were rated ◯, and those that did peel off were rated ×. The results obtained are shown in Table 1.

表中NIh1は、アトマイズにより粉末としたAtを0
.15’l含有するOu合金粉末を用意し、これの全重
量の10憾を300℃で表面酸化して残部のOu合金粉
末と混合し、800℃で3時間内部酸化処理した後、7
00℃で30分間水素雰囲気中で還元したものを粉砕し
た。その後直径254■、肉厚22■の無酸素銅の底付
き缶に、直径60■の石材および6wm厚の仕切り板を
同じ無酸素銅で製作し、仕切り板と仕切υ板との間隔を
14mとして、その空間に前記粉砕したアルミナ分散強
化銅粉末を充填し、押出しビレットとした。これを80
0℃に加熱後−辺50−の角材に押出し、その後冷間圧
延で厚さQ、25■の薄板材とした。
In the table, NIh1 indicates 0
.. Prepare an Ou alloy powder containing 15'l, surface oxidize 10 parts of the total weight at 300°C, mix it with the remaining Ou alloy powder, and internally oxidize it at 800°C for 3 hours.
The product was reduced at 00° C. for 30 minutes in a hydrogen atmosphere and then ground. Then, in a can with a bottom made of oxygen-free copper with a diameter of 254cm and a wall thickness of 22cm, a stone with a diameter of 60cm and a partition plate with a thickness of 6wm were made of the same oxygen-free copper, and the distance between the partition plates was set at 14m. The space was then filled with the pulverized alumina dispersion-strengthened copper powder to form an extruded billet. This is 80
After heating to 0 DEG C., it was extruded into a square material with sides of 50 mm, and then cold-rolled into a thin plate material with a thickness of Q and 25 cm.

また、隘2はアトマイズCu合金粉末の全量を500℃
で表面酸化した他は、Na1と同じ工程により薄板材と
した。
In addition, in No. 2, the total amount of atomized Cu alloy powder was heated to 500°C.
A thin plate material was made by the same process as Na1 except that the surface was oxidized.

そして、第1表−3以下に示す比較材を、−1と同様に
して製作した。
Comparative materials shown in Table 1-3 and below were manufactured in the same manner as in Table 1-1.

第1表に示した各側の結果は、次のとおシである。The results for each side shown in Table 1 are as follows.

−1および翫2は、本発明の実施例であシ、ステイ7ネ
ス、導電率およびろう付け性のいずれも良好である。
-1 and 2 are examples of the present invention, and have good stay 7ness, electrical conductivity, and brazing properties.

翫5は、石材と仕切υ板を挿入せずに、N1h1と同じ
方法で製作されたものであシ、薄板の表面のみに無酸素
銅が存在するものである。これはろう付け時ろう材が拡
散して、ろう付け性に劣るものであった。
Pole 5 was manufactured in the same manner as N1h1 without inserting stones and partition plates, and oxygen-free copper was present only on the surface of the thin plate. This was because the brazing material diffused during brazing, resulting in poor brazing performance.

−4は、表面層の無酸素銅の厚さが1005鱈と薄いた
め、やはシろう付け性に劣るものであった。
Since the thickness of the oxygen-free copper in the surface layer of No. 4 was as thin as 1005 mm, the solderability was poor.

へ5は、アルミナ分散強化銅中のアルミナ量が少な(、
ステイフネスが60°以上(試験機の指示が60°で最
大となっている。)となり、従来用いられていた純銅と
同等である。
5 has a small amount of alumina in the alumina dispersion strengthened copper (,
The stiffness is 60° or more (the maximum indicated by the testing machine is 60°), which is equivalent to conventionally used pure copper.

P4IL6は、アルミナ分散強化鋼中のアルミナ量を1
.021と高くしたもので、冷間圧延の段階で割れが発
生したため試験を中断した。
P4IL6 is the alumina content in alumina dispersion strengthened steel.
.. 021, and cracks occurred during cold rolling, so the test was discontinued.

11に7は、無酸素銅のみのものであって、スチフネス
が劣り、Na8は、アルミナ分散強化鋼中のアルミナ量
を高くシ、かつ、アルミナ分散強化銅の割合を914と
高めたもので、導電率とろう付け性が劣り、実用的でな
かった。
11 and 7 are made only of oxygen-free copper and have poor stiffness, and Na8 is a steel with a high alumina content in alumina dispersion strengthened steel and a high proportion of alumina dispersion strengthened copper of 914. It had poor conductivity and brazing properties, making it impractical.

〔発明の効果〕〔Effect of the invention〕

以上のように構成された本発明のアルミナ分散強化銅−
無酸素銅複層薄板材料は、ICリードフレーム、電気接
点または端子等の材料として要求される耐熱性、導電性
、熱放散性およびろう付け性のいずれにも優れていると
いう効果が奏される。
Alumina dispersion strengthened copper of the present invention configured as described above.
Oxygen-free copper multilayer thin plate material has excellent heat resistance, conductivity, heat dissipation properties, and brazing properties required as materials for IC lead frames, electrical contacts, terminals, etc. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構造を示す断面図、第2図は本発明の
薄板材料製造のための押出用ビレットの横断面図、第3
図はステイフネスを測定する試験機の概要図である。 第3回 第2回
FIG. 1 is a cross-sectional view showing the structure of the present invention, FIG. 2 is a cross-sectional view of an extrusion billet for manufacturing the thin plate material of the present invention, and FIG.
The figure is a schematic diagram of a testing machine for measuring stiffness. 3rd 2nd

Claims (1)

【特許請求の範囲】[Claims] (1)内部酸化により生成した微細なAl_2O_3を
0.05〜1.0%含有し残部主としてCuからなるア
ルミナ分散強化銅と、無酸素銅との層から構成される薄
板であつて、該板の表面は無酸素銅の層であり、薄板の
断面の面積率で32〜90%が無酸素銅であることを特
徴とする、ろう付け性に優れたアルミナ分散強化銅−無
酸素銅複層薄板材料。
(1) A thin plate consisting of a layer of alumina dispersion-strengthened copper containing 0.05 to 1.0% of fine Al_2O_3 produced by internal oxidation and the remainder mainly consisting of Cu, and an oxygen-free copper layer; The surface of the is a layer of oxygen-free copper, and the area ratio of the cross section of the thin plate is 32 to 90% oxygen-free copper.This is an alumina dispersion-strengthened copper-oxygen-free copper multilayer with excellent brazing properties. Thin plate material.
JP6348089A 1989-03-17 1989-03-17 Alumina dispersion reinforced copper-oxygen-free copper multi-layer sheet material of superior brazing properties Pending JPH02243331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6348089A JPH02243331A (en) 1989-03-17 1989-03-17 Alumina dispersion reinforced copper-oxygen-free copper multi-layer sheet material of superior brazing properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6348089A JPH02243331A (en) 1989-03-17 1989-03-17 Alumina dispersion reinforced copper-oxygen-free copper multi-layer sheet material of superior brazing properties

Publications (1)

Publication Number Publication Date
JPH02243331A true JPH02243331A (en) 1990-09-27

Family

ID=13230446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6348089A Pending JPH02243331A (en) 1989-03-17 1989-03-17 Alumina dispersion reinforced copper-oxygen-free copper multi-layer sheet material of superior brazing properties

Country Status (1)

Country Link
JP (1) JPH02243331A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1450403A1 (en) * 2003-02-21 2004-08-25 Ngk Insulators, Ltd. Heat spreader module
CN102676867A (en) * 2012-01-10 2012-09-19 河南科技大学 Alumina particle dispersion strengthened copper composite material and preparation method thereof
WO2018066413A1 (en) * 2016-10-03 2018-04-12 株式会社神戸製鋼所 Copper alloy plate for heat dissipation components, heat dissipation component, and method for producing heat dissipation component
CN110421004A (en) * 2019-07-30 2019-11-08 江西理工大学 A kind of preparation method of alumina dispersion-strenghtened copper bulk board carrying material
CN114770042A (en) * 2022-04-24 2022-07-22 长沙升华微电子材料有限公司 Preparation method of high-thermal-conductivity and high-strength heat sink composite material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1450403A1 (en) * 2003-02-21 2004-08-25 Ngk Insulators, Ltd. Heat spreader module
US7161807B2 (en) 2003-02-21 2007-01-09 Ngk Insulators, Ltd. Heat spreader module
CN102676867A (en) * 2012-01-10 2012-09-19 河南科技大学 Alumina particle dispersion strengthened copper composite material and preparation method thereof
WO2018066413A1 (en) * 2016-10-03 2018-04-12 株式会社神戸製鋼所 Copper alloy plate for heat dissipation components, heat dissipation component, and method for producing heat dissipation component
JP2018059132A (en) * 2016-10-03 2018-04-12 株式会社神戸製鋼所 Copper alloy sheet for heat radiation component and heat radiation component
CN110421004A (en) * 2019-07-30 2019-11-08 江西理工大学 A kind of preparation method of alumina dispersion-strenghtened copper bulk board carrying material
CN114770042A (en) * 2022-04-24 2022-07-22 长沙升华微电子材料有限公司 Preparation method of high-thermal-conductivity and high-strength heat sink composite material

Similar Documents

Publication Publication Date Title
JPS5976453A (en) Cu alloy clad material for lead material of semiconductor device
DE60211235T2 (en) Substrate plate for semiconductors and for power modules
JPH05306421A (en) Cu alloy lead material for semiconductor device
JPH02243331A (en) Alumina dispersion reinforced copper-oxygen-free copper multi-layer sheet material of superior brazing properties
JPS6160846A (en) Lead material of copper alloy for semiconductor device
US4668471A (en) Copper alloy lead material for leads of a semiconductor device
JPS59170231A (en) High tension conductive copper alloy
JPS63140052A (en) Oxygen-free copper-base dilute alloy having low-temperature softening characteristic and its use
JPH02163331A (en) High strength and high conductivity copper alloy having excellent adhesion for oxidized film
JP3734961B2 (en) Contact material and manufacturing method thereof
JPS594493B2 (en) Copper alloy for lead material of semiconductor equipment
JPS6046340A (en) Copper alloy for lead frame
JP2797846B2 (en) Cu alloy lead frame material for resin-encapsulated semiconductor devices
KR101649064B1 (en) Electrode material for thermal-fuse movable electrode
JPS61266540A (en) Copper alloy
JPH0717982B2 (en) Conductive rolled material for leadframes, connectors or switches
JPS58147140A (en) Lead wire of semiconductor device
JP2662209B2 (en) Copper alloy for electronic equipment with excellent plating adhesion and solder bondability and its manufacturing method
JPS5959850A (en) Alloy for lead frame
JP6887184B1 (en) Laminated body and manufacturing method of laminated body
JPH06299275A (en) Cu alloy for structural member of electrical and electronic apparatus having high strength
JPS64449B2 (en)
JPH0357175B2 (en)
JPS6393835A (en) Copper alloy for lead material of semiconductor equipment
JPS6213823B2 (en)