JPH02241250A - Demodulation device - Google Patents

Demodulation device

Info

Publication number
JPH02241250A
JPH02241250A JP1062492A JP6249289A JPH02241250A JP H02241250 A JPH02241250 A JP H02241250A JP 1062492 A JP1062492 A JP 1062492A JP 6249289 A JP6249289 A JP 6249289A JP H02241250 A JPH02241250 A JP H02241250A
Authority
JP
Japan
Prior art keywords
carrier wave
vector
phase
difference
feedback coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1062492A
Other languages
Japanese (ja)
Inventor
Kazutoshi Funahashi
和年 舟橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1062492A priority Critical patent/JPH02241250A/en
Publication of JPH02241250A publication Critical patent/JPH02241250A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize the stable demodulation device of high performance by measuring difference between the expected value vector of an ideal state or a reference signal vector end an actual received vector, and deciding a receiving state according to the magnitude of this difference, and adjusting a feedback coefficient to a carrier wave reproducing device. CONSTITUTION:A received signal is multiplied by a receiving side carrier wave by a multiplier 31, and a high frequency noise is removed by a low pass filter 32. This signal is corrected in the difference between a carrier wave and the receiving side carrier wave by the carrier wave reproducing device 34. Corrected data is inputted to a phase determining device 33, and the phase of the received signal is determined. Besides, at that time, a differential vector between the ideal reference signal and the received signal is calculated, and is inputted to a feedback coefficient adjusting device 35. Here, the feedback coefficient is adjusted from the differential vector, and the corrected differential vector is inputted to the carrier wave reproducing device 34.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電話回線を利用したデータ伝送の広義の位相
変調(直交振幅位相変調方式を含む)方式の復調装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a demodulation device for a broad phase modulation (including quadrature amplitude phase modulation) method for data transmission using a telephone line.

従来の技術 従来のシステム構成を、第5図、第6図に示す。11.
21は乗算器、12.22は低域通過フィルター 13
.23は位相決定装置、14゜24は搬送波再現装置で
ある。この装置を、使用して受信側復調信号より、搬送
波周波数を再現するには、次のアルゴリズムが知られて
いる。
Prior Art A conventional system configuration is shown in FIGS. 5 and 6. 11.
21 is a multiplier, 12.22 is a low pass filter 13
.. 23 is a phase determining device, and 14.degree. 24 is a carrier wave reproducing device. The following algorithm is known for reproducing the carrier frequency from the receiving side demodulated signal using this device.

(a)  乗算器11.21により、受信信号に受信側
搬送波周波数、及びそれを丁ソフトした周波数を乗算す
る。
(a) Multiplier 11.21 multiplies the received signal by the receiving side carrier frequency and the frequency obtained by softening it.

(b)  上記(a)で得られた出力を、各々低域通過
フィルター12.22を通す。
(b) The outputs obtained in (a) above are passed through low-pass filters 12 and 22, respectively.

(C)  上記(b)で得られた直交する2出力の位相
と、理想状態の期待値との位相差を位相決定装置13゜
23により検出する。
(C) The phase difference between the phases of the two orthogonal outputs obtained in the above (b) and the expected value in the ideal state is detected by the phase determining device 13°23.

なお、位相差検出にあたっては、次の数式の概念が導入
されている。
In addition, in phase difference detection, the concept of the following mathematical formula is introduced.

理想状態の期待値ベクトルないしは基準信号ベトルをi
−(il、i2) 、実際の受信ベクトルをr−(r+
+ r2)とすると、 位相差θは θ二s i nθ−(i+−r2 i2・r+)/1i
llr・・・・・・(1) である。実際には、この近似式をさらに、θ二sinθ
α1/1it2・(iビr2−i2・rt)・・・・・
・(2) と近似する事も多い。これは、これらの処理が一般にデ
ジタル・シグナル・プロセッサと呼ばれる装置を使用す
るためである。
The expected value vector or reference signal vector of the ideal state is i
−(il, i2), the actual received vector is r−(r+
+ r2), then the phase difference θ is θ2s inθ−(i+−r2 i2・r+)/1i
llr... (1). In reality, this approximation can be further changed to θ2sinθ
α1/1it2・(i bir2−i2・rt)・・・・・・
・It is often approximated by (2). This is because these processes commonly use devices called digital signal processors.

ω)上記(1)、(2)の各近似式を利用し、搬送波と
受信側(復調側)搬送波との位相差を算出し、周波数の
差に変換し、搬送波再現装置14.24で、搬送波を再
現する。
ω) Using each of the approximate expressions (1) and (2) above, calculate the phase difference between the carrier wave and the receiving side (demodulation side) carrier wave, convert it to a frequency difference, and use the carrier wave reproduction device 14.24 to Reproduce the carrier wave.

発明が解決しようとする課題 前述した技術を用いると、次の3点の問題点が存在する
Problems to be Solved by the Invention When the above-mentioned technology is used, there are the following three problems.

第1、に受信状態が悪い信頼性の低いデータも結果とし
て、搬送波再現装置へフィード・バックしてしまう。
First, unreliable data due to poor reception conditions also ends up being fed back to the carrier wave reproduction device.

第2に、前述した、(L) 、 (2)の各近似式は、
θが大きくなる程、誤差が拡大する。
Second, each approximate expression (L) and (2) mentioned above is
The larger θ becomes, the larger the error becomes.

第3に、前述した、c2)の近似式は、受信信号の受信
ベクトルの振幅と、理想状態の期待値ベクトル(ないし
は基準信号ベクトル)の振幅との差が大きい程、誤差が
拡大する。
Thirdly, in the aforementioned approximation formula c2, the error increases as the difference between the amplitude of the reception vector of the reception signal and the amplitude of the expected value vector (or reference signal vector) in the ideal state increases.

これらの問題点により、復調装置の受信性能が劣化し、
不安定動作の一因となっている。
Due to these problems, the receiving performance of the demodulator deteriorates,
This is a cause of unstable operation.

本発明は、これらの問題点を解決すべく、近似式(1)
 、 (2)で得られた結果を、搬送波再現装置へフィ
ード・バックする際、そのフィード・バック係数を受信
状態によって調整するものである。
In order to solve these problems, the present invention uses the approximate formula (1)
, When the results obtained in (2) are fed back to the carrier wave reproduction device, the feedback coefficient is adjusted depending on the receiving condition.

課題を解決するための手段 本発明は、前記問題点を解決するため、■、理想状態の
期待値ベクトルないしは、基準信号ベクトルと、実際の
受信ベクトルとの差を測定し、この差の大小により受信
状態を判別し、搬送波再現装置へのフィード・バック係
数を調整する。
Means for Solving the Problems In order to solve the above problems, the present invention measures the difference between the expected value vector or reference signal vector in the ideal state and the actual received vector, and determines the difference depending on the magnitude of this difference. Determines the reception condition and adjusts the feedback coefficient to the carrier wave reproduction device.

■、近似式(1)、(2)の計算結果θの大小により、
搬送波再現装置へのフィード・バック係数を調整する。
■Depending on the magnitude of calculation result θ of approximate formulas (1) and (2),
Adjust the feedback coefficient to the carrier reproduction device.

■、理想状態の期待値ベクトルないしは基準ベクトルの
振幅と、実際の受信ベクトルの振幅との差を測定し、そ
の大小により、搬送波再現装置へのフィード・バック係
数を調整する。
(2) Measure the difference between the amplitude of the expected value vector or reference vector in the ideal state and the amplitude of the actual received vector, and adjust the feedback coefficient to the carrier wave reproduction device depending on the magnitude.

以上のT〜■の各々の機能を備えた装置により、問題点
解決を目指す。
We aim to solve the problems by using a device equipped with each of the above functions T to (2).

作用 本発明の復調装置により、フィード・バック調整装置に
より、受信信号の状態が考慮された、位相差情報が、搬
送波再現装置へフィード・バックされる。これにより、
受信状態が悪い時の信頼性の低いデータ、及び、近似誤
差が大きい時のデータを補正した後、位相差情報として
フィード・バックするので、安定した高性能な復調装置
が得られる。
Operation: In the demodulator of the present invention, the feedback adjustment device feeds back phase difference information, which takes into account the state of the received signal, to the carrier wave reproduction device. This results in
After correcting unreliable data when reception conditions are poor and data when approximation errors are large, the data is fed back as phase difference information, so a stable and high-performance demodulation device can be obtained.

実施例 第1図、第2図に本発明を具現化するための、システム
構成を示す。31.32は乗算器、32゜42は低域通
過フィルター、33.43は位相決定装置、34.44
は搬送波再現装置、35.45は受信状態に応じて、フ
ィード・バック係数を調整するフィード・バック係数調
整装置である。第1図の信号の流れを説明する受信信号
を、乗算器31で、受信側搬送波と乗算し、低域通過フ
ィルター32により高調波雑音を除去する。その信号を
搬送波再現装置34で、搬送波と受信側搬送波の差分の
補正を行なう。補正を行なったデータを、位相決定装置
33に入力し、受信信号の位相を決定する。また、この
時理想の基準信号と受信信号との差分ベクトルを算出し
、フィード・バック係数調整装置35に入力する。ここ
で、差分ベクトルからフィード・バック係数の調整を行
ない、補正した差分ベクトルを搬送波再現装置34へ入
力する。第2図も同様である。相異点は第1図では、搬
送波再現装置と、受信側搬送波発生部が別となっており
、第2図では搬送波再現装置が、発生部を含んでいる点
である。
Embodiment FIGS. 1 and 2 show a system configuration for embodying the present invention. 31.32 is a multiplier, 32°42 is a low-pass filter, 33.43 is a phase determining device, 34.44
35.45 is a carrier wave reproduction device, and 35.45 is a feedback coefficient adjustment device that adjusts the feedback coefficient according to the receiving condition. A received signal, which explains the signal flow in FIG. 1, is multiplied by a receiving side carrier wave by a multiplier 31, and harmonic noise is removed by a low-pass filter 32. The carrier wave reproducing device 34 corrects the difference between the carrier wave and the receiving side carrier wave. The corrected data is input to a phase determining device 33 to determine the phase of the received signal. Also, at this time, a difference vector between the ideal reference signal and the received signal is calculated and input to the feedback coefficient adjustment device 35. Here, the feedback coefficient is adjusted from the difference vector, and the corrected difference vector is input to the carrier wave reproduction device 34. The same applies to FIG. The difference is that in FIG. 1, the carrier wave reproduction device and the receiving side carrier generation section are separate, whereas in FIG. 2, the carrier wave reproduction device includes the generation section.

第3図に、本発明を実現する復調装置の内、位相差情報
のフィード・バック係数を調整するための、調整方法の
一実施例の概念図を示す。図中、領域51は受信状態も
良く、位相差も少ない領域で、正しい位相情報が得られ
る領域であり、領域52は位相差が大きく近似誤差が大
きい領域であり、領域53は何らかの信号伝送路の影響
で、受信ベクトルの振幅に異常を起こした領域で、受信
状態が悪い領域である。この各々の領域に、1 : 0
.9 : 0.3のフィード・バック係数を設定する。
FIG. 3 shows a conceptual diagram of an example of an adjustment method for adjusting a feedback coefficient of phase difference information in a demodulator that implements the present invention. In the figure, area 51 is an area where the reception condition is good and the phase difference is small, and correct phase information can be obtained, area 52 is an area where the phase difference is large and approximation error is large, and area 53 is an area where some signal transmission path This is an area where the amplitude of the received vector has become abnormal due to the influence of , and the reception condition is poor. In each of these areas, 1:0
.. 9: Set a feedback coefficient of 0.3.

今、ここに第4図にこれらを信号ベクトル62.63.
64で示す。各々の受信ベクトルが入力されたとすると
、この時の搬送波信号と受信側(復調)位相差は、 (α十0.9β+0.37)/3と表現できる。これは
、ベクトル61の様な、信頼性の高い位相波情報と、ベ
クトル62.63の様な信頼性の低い位相波情報を、同
等に取り扱う場合の (α+β+γ)/3より安定性が高く、誤差も少ない。
Now, here in Fig. 4, these are signal vectors 62, 63.
64. Assuming that each reception vector is input, the phase difference between the carrier signal and the reception side (demodulation) at this time can be expressed as (α + 0.9β + 0.37)/3. This is more stable than (α+β+γ)/3 when treating highly reliable phase wave information like vector 61 and less reliable phase wave information like vector 62.63 equally. There are few errors.

この様にして、搬送波信号再現装置へのフィード・バッ
ク係数を調整し、安定した高性能な復調装置を得る。フ
ィード・バックの係数の決定方法を、第6図を例に説明
する。受信信号ベクトル62の場合、理想の基準信号ベ
クトルと約π/4の位相差があり、近似式(1)より得
られるβの値は、実際の位相差より約10%大きい値と
なる。よって、近似式(1)で得られた値に、0.9の
フィード・バック係数を、乗算する事により、実際の位
相差に近い値になる。又、受信信号ベクトル63の場合
、理想の基準信号ベクトルの約1/2の振幅しかない。
In this way, the feedback coefficient to the carrier signal reproduction device is adjusted, and a stable and high-performance demodulation device is obtained. The method of determining the feedback coefficient will be explained using FIG. 6 as an example. In the case of the received signal vector 62, there is a phase difference of about π/4 from the ideal reference signal vector, and the value of β obtained from the approximate equation (1) is about 10% larger than the actual phase difference. Therefore, by multiplying the value obtained by the approximation formula (1) by a feedback coefficient of 0.9, a value close to the actual phase difference is obtained. Further, in the case of the received signal vector 63, the amplitude is only about 1/2 that of the ideal reference signal vector.

これを近似式(2)により、γを計算すると、実際の位
相差の約2倍の値として計算される。この事と、受信信
号の信頼性を考慮に入れ、0.5〜0.3程度のフィー
ド・バック係数を、近似式(2)で得られた結果に、乗
算すると、実際の位相差に近い値になる。
When γ is calculated using approximation formula (2), it is calculated as a value approximately twice the actual phase difference. Taking this into account and the reliability of the received signal, multiplying the result obtained by approximation formula (2) by a feedback coefficient of about 0.5 to 0.3 gives a result close to the actual phase difference. Becomes a value.

発明の効果 以上、述べた様に本発明によると、補正した位相差情報
を搬送波再現装置に、フィード・バックし、安定した高
性能な復調装置を得ることができる。
Effects of the Invention As described above, according to the present invention, corrected phase difference information can be fed back to the carrier reproduction device, and a stable and high-performance demodulation device can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の復調装置の概略図、第3図は
フィード・バック係数の決定領域の実施例概念図、第4
図は実際の受信信号の例を示すベクトル図、第5図、第
6図は一般的な、復調装置の概略図である。 11.21.31.41・・・・・・乗算器、12.2
2゜32.42・・・・・・低域通過フィルター、13
.23゜33.43・・・・・・位相決定装置、14,
24,34゜44・・・・・・搬送波再現装置、35.
45・・・・・・フィード・バック係数調整装置。 代理人の氏名 弁理士 粟野重孝 ほか1名第1図 第 2 図 綜 憾
1 and 2 are schematic diagrams of the demodulator of the present invention, FIG. 3 is a conceptual diagram of an embodiment of the determination region of the feedback coefficient, and FIG.
The figure is a vector diagram showing an example of an actual received signal, and FIGS. 5 and 6 are schematic diagrams of a general demodulator. 11.21.31.41... Multiplier, 12.2
2゜32.42・・・Low pass filter, 13
.. 23゜33.43... phase determining device, 14,
24, 34°44... Carrier wave reproduction device, 35.
45... Feedback coefficient adjustment device. Name of agent: Patent attorney Shigetaka Awano and one other person Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 受信信号の位相を決定する位相決定装置を備え、前記受
信信号の位相と、基準信号の位相との位相差を算出し、
前記位相差を前記受信信号の状態、特性に応じた重み係
数により前記位相決定装置より搬送波再現装置へのフィ
ードバック量を調整するフィードバック係数調整装置を
備えたことを特徴とする復調装置。
comprising a phase determining device that determines the phase of a received signal, and calculates a phase difference between the phase of the received signal and the phase of a reference signal;
A demodulation device comprising a feedback coefficient adjustment device that adjusts the amount of feedback of the phase difference from the phase determination device to the carrier wave reproduction device using a weighting coefficient depending on the state and characteristics of the received signal.
JP1062492A 1989-03-15 1989-03-15 Demodulation device Pending JPH02241250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1062492A JPH02241250A (en) 1989-03-15 1989-03-15 Demodulation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1062492A JPH02241250A (en) 1989-03-15 1989-03-15 Demodulation device

Publications (1)

Publication Number Publication Date
JPH02241250A true JPH02241250A (en) 1990-09-25

Family

ID=13201725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1062492A Pending JPH02241250A (en) 1989-03-15 1989-03-15 Demodulation device

Country Status (1)

Country Link
JP (1) JPH02241250A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0522042A (en) * 1991-07-16 1993-01-29 Fujitsu Ten Ltd Digital orthogonal demodulation circuit
JPH0557916U (en) * 1992-01-08 1993-07-30 富士通テン株式会社 Direct conversion receiver level / phase difference correction device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57121355A (en) * 1981-01-20 1982-07-28 Matsushita Graphic Commun Syst Inc Automatic control system for carrier phase
JPS613552A (en) * 1984-06-16 1986-01-09 Ricoh Co Ltd Carrier recovery system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57121355A (en) * 1981-01-20 1982-07-28 Matsushita Graphic Commun Syst Inc Automatic control system for carrier phase
JPS613552A (en) * 1984-06-16 1986-01-09 Ricoh Co Ltd Carrier recovery system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0522042A (en) * 1991-07-16 1993-01-29 Fujitsu Ten Ltd Digital orthogonal demodulation circuit
JPH0557916U (en) * 1992-01-08 1993-07-30 富士通テン株式会社 Direct conversion receiver level / phase difference correction device
JP2548217Y2 (en) * 1992-01-08 1997-09-17 富士通テン株式会社 Level and phase difference correction device for direct conversion receiver

Similar Documents

Publication Publication Date Title
US20100233974A1 (en) Feedback Compensation Detector For A Direct Conversion Transmitter
JPH07202970A (en) Circuit for phase error correction in digital receiver and method thereof
US7813424B2 (en) Method and apparatus for compensating for mismatch occurring in radio frequency quadrature transceiver using direct-conversion scheme
JP3371876B2 (en) Demodulator with automatic quadrature control function
JPH10327209A (en) Distortion compensation system
US20070281647A1 (en) Receiver for use in wireless communications and method of operation of the receiver
JP3518430B2 (en) Digital FM demodulator
JPH02241250A (en) Demodulation device
US5787124A (en) Quadrature detector and amplitude error correction method for quadrature detector
JP3568284B2 (en) Demodulation method and demodulation device
JP3006382B2 (en) Frequency offset correction device
JPH01254040A (en) Phase error detector for polyphase modulation wave
JPH1141033A (en) Orthogonal balance mixer circuit and receiver
JP3211112B2 (en) DC drift compensation circuit
JP3413359B2 (en) QPSK demodulator
JP3311773B2 (en) 4-phase PSK demodulator
JP2837914B2 (en) AFC device
JP2929366B2 (en) Digital AM demodulator and method
JP2608645B2 (en) Demodulator
JPH0421235A (en) Delay detector for demodulating polyphase modulation wave
JP2004064682A (en) Quadrature synchronous detector, rake receiver, interference wave canceller, and impedance measuring device
JPS60226255A (en) Phase compensating circuit
JPS63105550A (en) Carrier recovery circuit
JPS5813036A (en) Nonlinear distortion removing circuit
JPH09186616A (en) Fm receiver