JPH02239656A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02239656A
JPH02239656A JP1059709A JP5970989A JPH02239656A JP H02239656 A JPH02239656 A JP H02239656A JP 1059709 A JP1059709 A JP 1059709A JP 5970989 A JP5970989 A JP 5970989A JP H02239656 A JPH02239656 A JP H02239656A
Authority
JP
Japan
Prior art keywords
conductivity type
gate electrode
electrode
polycrystalline silicon
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1059709A
Other languages
Japanese (ja)
Inventor
Shunji Yokogawa
横川 俊次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1059709A priority Critical patent/JPH02239656A/en
Publication of JPH02239656A publication Critical patent/JPH02239656A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent impurities of both electrodes from diffusing in mixture by a method wherein an N<+> type polysilicon electrode an a P<+> type polysilicon electrode are connected through a metal film layer and covered with silicide while the metal layer is kept from becoming silicided on an oxide layer. CONSTITUTION:An electrode 1 made of N<+> type polysilicon and an electrode 2 made of P<+> type polysilicon are connected through a metal layer 9 which has been converted to silicide except its portion between the two electrodes, thereby electrically connecting both the electrodes without diffusion of impurities. That is, since the metal has properties in which impurities are scarcely diffused, a region which is not silicified is interposed between both the electrodes of the metal silicide for connecting the electrode 1 to the electrode 2. Thus, it can prevent impurities from diffusing in mixture.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、N  −PolySlの電極とP+−Pol
ySiの電極を相互の不純物が拡散して混じり合うこと
なく接続することができる半導体装置に関する。
[Detailed description of the invention] [Object of the invention] (Industrial application field) The present invention provides an electrode of N-PolySl and a P+-Pol
The present invention relates to a semiconductor device in which ySi electrodes can be connected without mutual diffusion and mixing of impurities.

(従来の技術) 従来NMOSPETのゲート電極材料にN  −Po1
ySiを用いPMOSFETのゲート電極材料にP+一
Po 1 yS iを用いて、NMOSFET . P
MOSPETともに表面チャネル型としたCMOS回路
を形成する場合、第2図に示す如く、1つの連続した多
結晶シリコンにN型不純物とP型不純物を打ち分けて領
域1.2を形成していた。この領域1,2はそれぞれソ
ース及びドレイン3,4に接続されている。
(Prior art) N-Po1 is used as the gate electrode material of conventional NMOSPET.
NMOSFET. P
When forming a CMOS circuit in which both the MOSPET and the MOSPET are surface channel type, as shown in FIG. 2, regions 1.2 are formed by separately implanting N-type impurities and P-type impurities into one continuous polycrystalline silicon. The regions 1, 2 are connected to the source and drain 3, 4, respectively.

しかし従来の方法では、両不純物が拡散して混じり合っ
てしまうため、ゲート電極の仕事関数が変わってしまい
、しきい値電圧が変動する問題点があった。また、第3
図のようにN  −PolySiの領域1とP  −P
olySiの領域2の間部分5の距離dを大きくすれば
、不純物が混じり合うことを防ぐことができるが、LS
I回路の高密度化を妨げ、また、両電極間には不純物が
含まれないため抵抗が高いなどの問題がある。
However, in the conventional method, both impurities diffuse and mix, which changes the work function of the gate electrode and causes the threshold voltage to fluctuate. Also, the third
As shown in the figure, region 1 of N-PolySi and P-P
If the distance d between the olySi regions 2 and 5 is increased, it is possible to prevent impurities from mixing, but LS
This impedes the high density of the I circuit, and also has problems such as high resistance since no impurities are contained between the two electrodes.

(発明が解決しようとする課題) 以上述べたように、従来の技術ではN型不純物とPW不
純物が相互に拡散して混じり合ってしまい、これを防ぐ
ためには,それぞれの不純物を含んだ領域間の距離dを
大きくしなければならない問題点があった。
(Problems to be Solved by the Invention) As described above, in the conventional technology, N-type impurities and PW impurities diffuse and mix with each other, and in order to prevent this, it is necessary to There was a problem in that the distance d had to be increased.

本発明は、N  −PolySiから成る電極と、P 
 −PolySiから成る電極を電気的に接続できかつ
両不純物が相互に拡散して混じり合うことを防ぐことが
できる半導体装置を提供することを目的とする。
The present invention provides an electrode made of N-PolySi and a P
- It is an object of the present invention to provide a semiconductor device that can electrically connect electrodes made of PolySi and prevent both impurities from diffusing and mixing with each other.

[発明の構成] (課題を解決するための手段) 本発明においては、N” −Po 1 yS iから成
る電極とP  −PolySiがら成る電極を両電極上
は金属シリサイドであるが、両電極間は、シリサイド化
していない金属膜層で接続することによって、不純物の
相互拡散なしに両電極を電気的に接続することができる
[Structure of the Invention] (Means for Solving the Problems) In the present invention, an electrode made of N''-Po 1 yS i and an electrode made of P-PolySi are made of metal silicide on both electrodes. By connecting with a non-silicided metal film layer, both electrodes can be electrically connected without interdiffusion of impurities.

(作  用) シリサイド化していない金属は不純物が拡散しにくい性
質をもっているので%N”−PolyStから成る電極
とP  −PolySiから成る電極を接続する金属シ
リサイドの両電極間に、シリサイド化していない領域を
はさむことによって不純物が拡散して混じりあうことを
防ぐことができる。
(Function) Since unsilicided metal has the property that impurities are difficult to diffuse, an unsilicided region is placed between the metal silicide electrodes connecting the electrode made of %N''-PolySt and the electrode made of P-PolySi. By sandwiching them, it is possible to prevent impurities from diffusing and mixing.

(実施例) 以下、本発明の実施例を図面を用いて説明する。第1図
(a)〜第1図(e)は、本発明の一実施例の製造工程
における断面図である。まず第1図(a)に示すごとく
、半導゛体基板6上にNMOSFETを形成するP−ウ
ェル(P−Veil) 7とPMOSFETを形成する
N−ウェル(N−Well)8を形成した後、素子領域
4と素子分離領域3を形成する。ここで、NMOSPE
Tを形成する領域がP型、PMOSPET領域がN型に
なっていれば片方のウェル(Veil)だけで構成して
も問題は無い。次に多結晶シリコンを全面に堆積し、隣
とホウ素を選択的に高ドーズ量でイオン注入した後、前
記隣とホウ素のイオン注入した領域の少くとも境界を含
む所定領域に第1図(b)のごとく開孔12を写真触刻
法および反応性イオンエッチング法により設ける。次い
で前記開孔部を含む半導体主面全体にCVD膜9を堆積
する(第1図(C))。次いで反応性イオンエッチング
により該CVDM13をエッチングし第1図で示した多
結晶シリコン膜1,2が露出した時点で該工程を終了す
る。かかる工程により前記開孔部にはCVD膜9が残存
する様な埋込工程が完了する(第1図(d))。この後
NMOSPETのゲート電極であ:6N  −Poly
Si層1′とPMOSFET (7)ゲート電極である
P  −Polysi層2′が前記開孔部の絶縁物埋込
み部9を介して隣接するごとく選択的にエッチングしパ
ターン形成する。
(Example) Hereinafter, an example of the present invention will be described using the drawings. FIG. 1(a) to FIG. 1(e) are cross-sectional views in the manufacturing process of an embodiment of the present invention. First, as shown in FIG. 1(a), after forming a P-well 7 for forming an NMOSFET and an N-well 8 for forming a PMOSFET on a semiconductor substrate 6, , an element region 4 and an element isolation region 3 are formed. Here, NMOSPE
As long as the region forming the T is of P type and the PMOSPET region is of N type, there is no problem even if it is configured with only one well (veil). Next, polycrystalline silicon is deposited on the entire surface, and boron is selectively implanted at a high dose into a predetermined region including at least the boundary between the adjacent and boron ion-implanted regions, as shown in Fig. 1 (b). ) The openings 12 are formed by photolithography and reactive ion etching. Next, a CVD film 9 is deposited over the entire main surface of the semiconductor including the opening (FIG. 1(C)). Next, the CVDM 13 is etched by reactive ion etching, and the process is completed when the polycrystalline silicon films 1 and 2 shown in FIG. 1 are exposed. Through this step, the filling step is completed such that the CVD film 9 remains in the opening (FIG. 1(d)). After this, at the gate electrode of NMOSPET: 6N-Poly
The Si layer 1' and the P-Polysi layer 2', which is the gate electrode of the PMOSFET (7), are selectively etched and patterned so that they are adjacent to each other through the insulator buried portion 9 of the opening.

本工程により前記N”−Po l yS L層1′とP
  −PolySi層2′は電気的に絶縁状態となる。
Through this process, the N''-PolyS L layer 1' and P
-PolySi layer 2' becomes electrically insulated.

次に通常のイオン注入法により、NMOS−FETおよ
びPMOSFETのソース,ドレインを形成し、チタン
.モリブデン,タングステンなどの金属をスパッタリン
グ法で全面堆積し、少くとも前記N+−PolySi層
1′とP  −Poly−SL層2′が電気的に接続さ
れるごとくバターニングする。次いで約600℃で熱処
理を行い、前記金属のN”−PolySi層1′とP”
−PolySt層2′上の部分の金属膜をシリサイド化
させ、接触部における抵抗を下げる。この時、N”−P
o1ysiとP+−PolySiの間に埋めこんだCV
D膜上の金属膜10はシリサイド化しない為、N”−P
olySiとP”−PolySiの不純物を拡散して、
互いの領域に混在することを防止できる。次いで通常の
配線工程、パッシベーション工程を行い、半導体装置を
完成させる。
Next, the sources and drains of the NMOS-FET and PMOSFET are formed using the usual ion implantation method, and titanium. A metal such as molybdenum or tungsten is deposited on the entire surface by sputtering, and patterned so that at least the N+-PolySi layer 1' and the P-Poly-SL layer 2' are electrically connected. Next, heat treatment is performed at about 600°C to separate the metal N''-PolySi layer 1' and P''
- The metal film above the PolySt layer 2' is silicided to lower the resistance at the contact portion. At this time, N”-P
CV embedded between o1ysi and P+-PolySi
Since the metal film 10 on the D film is not silicided, the N''-P
By diffusing impurities of olySi and P''-PolySi,
It is possible to prevent them from being mixed in each other's areas. Next, normal wiring processes and passivation processes are performed to complete the semiconductor device.

[発明の効果] 以上述べてきたように、本発明によればN+Po 1 
yS i電極とP  −PolySi電極を接続する金
属M層において、両電極上はシリサイド化しているが、
両電極間の酸化膜の上はシリサイド化していないため、
両電極の不純物が拡散して相互に混じり合うことが防止
できる。また本発明によればCMOS回路においてPM
OSFETのゲート電極にP  −PolySi層2が
使える為、表面チャネル型が実現でき、従来埋め込みチ
ャネル型で問題になっていた表面近傍でのリーク電流を
低減することができる。
[Effect of the invention] As described above, according to the present invention, N+Po 1
In the metal M layer connecting the yS i electrode and the P-PolySi electrode, the tops of both electrodes are silicided,
Since the top of the oxide film between both electrodes is not silicided,
Impurities in both electrodes can be prevented from diffusing and mixing with each other. Further, according to the present invention, in a CMOS circuit, PM
Since the P-PolySi layer 2 can be used for the gate electrode of the OSFET, a surface channel type can be realized, and leakage current near the surface, which has been a problem with conventional buried channel types, can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例の製造工程を示す図、第2図および第3
図は従来例を示す図である。 1−NMOSPETのN” −Po 1 yS i電極
1、2.・・PMOSFETのP”−PolySi電極
2、3・・・Nl40SFETのソース及びドレイン、
4・・・PMOSPETのソース及びドレイン、5・・
・N”−PolySLとP” −Po l yS i間
のPolysLの領域、6・・・半導体基板、7・・・
Pウエル、8・・・Nウエル、9・・・CVD膜、10
金属、11・・・シリサイド、12・・・Poly−S
i膜開孔部。
Figure 1 is a diagram showing the manufacturing process of the example, Figures 2 and 3.
The figure shows a conventional example. 1-N"-Po 1 yS i electrodes 1, 2 of NMOSPET... P"-PolySi electrodes 2, 3 of PMOSFET... source and drain of Nl40SFET,
4... Source and drain of PMOSPET, 5...
・PolysL region between N''-PolySL and P''-PolyS i, 6... semiconductor substrate, 7...
P well, 8... N well, 9... CVD film, 10
Metal, 11...Silicide, 12...Poly-S
i Membrane opening.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上に第1導電型の素子領域と第2導電
型の素子領域と素子分離領域を形成し、該半導体主面の
第1導電型の素子領域と第2導電型の素子領域にMOS
型トランジスタ形成のためのゲート酸化膜を形成する工
程と次いでMOS型トランジスタのゲート電極として多
結晶シリコン膜を堆積する工程と該第1導電型の素子領
域上の前記ポリシリコン膜の所定位置に第1導電型の不
純物を導入する工程と第2導電型の素子領域上の多結晶
シリコン膜の所定位置に第2導電型の不純物を導入する
工程と前記第1および第2導電型多結晶シリコンの少く
とも境界部を含む領域に開孔部を設ける工程と該開孔部
に絶縁物を埋込む工程と該開孔部を含み前記第1および
第2導電型のポリシリコンをゲート電極配線のパターン
に加工する工程と該第1導電型のゲート電極と第2導電
型のゲート電極を金属膜層で接続することを具備してな
る半導体装置の製造方法。
(1) An element region of a first conductivity type, an element region of a second conductivity type, and an element isolation region are formed on a semiconductor substrate, and an element region of the first conductivity type and an element region of a second conductivity type are formed on the main surface of the semiconductor. to MOS
a step of forming a gate oxide film for forming a MOS type transistor, a step of depositing a polycrystalline silicon film as a gate electrode of a MOS type transistor, and a step of depositing a polycrystalline silicon film at a predetermined position of the polysilicon film on the element region of the first conductivity type. a step of introducing an impurity of a first conductivity type; a step of introducing an impurity of a second conductivity type into a predetermined position of a polycrystalline silicon film on an element region of a second conductivity type; a step of providing an opening in a region including at least the boundary, a step of burying an insulator in the opening, and a step of forming the polysilicon of the first and second conductivity types including the opening into a gate electrode wiring pattern. 1. A method of manufacturing a semiconductor device, comprising: processing the gate electrode of the first conductivity type and the gate electrode of the second conductivity type with a metal film layer.
(2)多結晶シリコンからなる第1導電型ゲート電極と
第2導電型ゲート電極は境界部に配置された絶縁物から
なる埋込み層で電気的に分離され該多結晶シリコンから
なる第1導電型ゲート電極と第2導電型ゲート電極は金
属膜で電気的に接続されて工程を具備してなる請求項1
記載の半導体装置の製造方法。
(2) The first conductivity type gate electrode and the second conductivity type gate electrode made of polycrystalline silicon are electrically separated by a buried layer made of an insulator placed at the boundary, and the first conductivity type gate electrode made of polycrystalline silicon is electrically separated. Claim 1, further comprising a step of electrically connecting the gate electrode and the second conductivity type gate electrode with a metal film.
A method of manufacturing the semiconductor device described above.
JP1059709A 1989-03-14 1989-03-14 Manufacture of semiconductor device Pending JPH02239656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1059709A JPH02239656A (en) 1989-03-14 1989-03-14 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1059709A JPH02239656A (en) 1989-03-14 1989-03-14 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH02239656A true JPH02239656A (en) 1990-09-21

Family

ID=13121011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1059709A Pending JPH02239656A (en) 1989-03-14 1989-03-14 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH02239656A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5633523A (en) * 1994-04-28 1997-05-27 Ricoh Company, Ltd. Complementary mis semiconductor device of dual gate structure having a silicide layer including a thinned portion
JP2008288499A (en) * 2007-05-21 2008-11-27 Panasonic Corp Semiconductor device and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5633523A (en) * 1994-04-28 1997-05-27 Ricoh Company, Ltd. Complementary mis semiconductor device of dual gate structure having a silicide layer including a thinned portion
JP2008288499A (en) * 2007-05-21 2008-11-27 Panasonic Corp Semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US5905284A (en) Semiconductor device with a particular DMISFET structure
US4663825A (en) Method of manufacturing semiconductor device
JPH11330467A (en) Semiconductor device
JPH0645343A (en) Semiconductor device provided with borosilicate glass spacer and its manufacture
JP3250526B2 (en) Semiconductor device and manufacturing method thereof
JP2834775B2 (en) Method for manufacturing CMOS semiconductor device
JPH02101747A (en) Semiconductor integrated circuit and manufacture thereof
JPH02239656A (en) Manufacture of semiconductor device
JPS63281456A (en) Semiconductor integrated circuit device and manufacture thereof
JP2845899B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH03169022A (en) Semiconductor integrated circuit device
JP2886186B2 (en) Semiconductor device
JPH0837239A (en) Semiconductor device and manufacture thereof
JP2746959B2 (en) Method for manufacturing semiconductor device
JPH0322708B2 (en)
JP2808620B2 (en) Method for manufacturing semiconductor device
JPH02237024A (en) Semiconductor device and manufacture thereof
JP2847790B2 (en) Method of manufacturing complementary MOS transistor
JPH0831949A (en) Dual gate structure cmos semiconductor device and its manufacture
JPS63114160A (en) Integrated circuit for complementary type misfet
JPH07161826A (en) Manufacture of semiconductor device
JPH03283565A (en) Mos type semiconductor integrated circuit
JPH042168A (en) Mos type field effect transistor and manufacture thereof
JPH01110761A (en) Manufacture of semiconductor device
JP3147374B2 (en) Semiconductor device