JPH02239518A - Manufacture of transparent conductive laminated body - Google Patents

Manufacture of transparent conductive laminated body

Info

Publication number
JPH02239518A
JPH02239518A JP6140589A JP6140589A JPH02239518A JP H02239518 A JPH02239518 A JP H02239518A JP 6140589 A JP6140589 A JP 6140589A JP 6140589 A JP6140589 A JP 6140589A JP H02239518 A JPH02239518 A JP H02239518A
Authority
JP
Japan
Prior art keywords
thin film
film
transparent conductive
base material
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6140589A
Other languages
Japanese (ja)
Inventor
Tetsuo Yamanaka
哲夫 山中
Shige Hashimoto
樹 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP6140589A priority Critical patent/JPH02239518A/en
Publication of JPH02239518A publication Critical patent/JPH02239518A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electric Cables (AREA)

Abstract

PURPOSE:To enhance the transparency and heat insulating property of a transparent conductive laminated body by subjecting the surface of a film base material to the high-frequency spatter etching treatment, and then forming a conductive thin film while continuing the treatment. CONSTITUTION:A long-sized PET film 1 as a base material is set in a vacuum container 2. After the inside of the vacuum container 2 is exhausted, algon gas is introduced therein and a high-frequency voltage is applied to a main can 9 and a film 1 is moved while being caused to discharge, and the high frequency spatter etching treatment is carried out. After the spatter etching treatment, the film 1 wound up is moved in the reverse direction and oxygen gas is continuously introduced therein to make a mixed gas atmosphere of algon gas and oxygen gas, and the high-frequency spatter etching treatment is carried out and an ITO thin film is formed simultaneously by the reactive DC magnetron spattering method using an alloy target (10) of In and Sn, thereby fabricating a transparent conductive laminated body.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は透明なプラスチックフィルム基材の表面に透明
な導電性薄膜を設けてなる透明導電性積層体の製造法に
関する. 〔従来の技術〕 この種の透明導電性積層体は、有機分散型EL(エレク
トロルミネツセンス)やタッチパネルの透明電極のほか
、帯電防止や電磁波シールドなどの種々の用途に幅広く
利用されており、導電性薄膜として、酸化インジウムと
酸化スズとの複合酸化物からなるI T O (Ind
jum Tiri Oxide)薄膜を用いたものが特
によく知られている. 〔発明が解決しようとする課題〕 ところで、上記のITOi膜は、ガラス板などの基村上
には一般に300〜500℃の高温で形成されるが、プ
ラスチックフィルムを基材とするときは、基材の耐熱性
により、200℃以下の温度で形成する必要がある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a transparent conductive laminate comprising a transparent conductive thin film provided on the surface of a transparent plastic film base material. [Prior Art] This type of transparent conductive laminate is widely used in various applications such as organic dispersion EL (electroluminescence) and transparent electrodes of touch panels, as well as antistatic and electromagnetic shielding. As a conductive thin film, ITO (Ind
A method using a thin film of Tiri Oxide (Tiri Oxide) is particularly well known. [Problems to be Solved by the Invention] By the way, the above-mentioned ITOi film is generally formed on a substrate such as a glass plate at a high temperature of 300 to 500°C, but when a plastic film is used as a base material, Due to its heat resistance, it must be formed at a temperature of 200° C. or lower.

このため、プラスチックフィルムを基材とした透明導電
性積層体にあっては、ガラス板などを基材としたものに
較べて、導電性薄膜の透明性に劣り、またその耐熱性が
不充分で、高温使用下で抵抗値が増大するなどの弊害が
あった. 本発明は、上記の事情に鑑み、透明なプラスチックフィ
ルムを基材として用いた透明導電性積層体における透明
性と耐熱性との向上を図ることを目的としている. 〔課題を解決するための手段〕 本発明者らは、上記の目的を達成するために鋭意検討し
た結果、プラスチックフィルム基材の表面にXTO薄膜
などを形成1るに先立って、上記基材Q表面に特定のエ
ッチング処理を施し、かつこの処理を続けながら上記薄
膜を形成すると、この薄膜の透明性と耐熱性とが向上し
7てくることを知り、本発明を完成するに至った。
For this reason, in transparent conductive laminates based on plastic films, the transparency of the conductive thin film is inferior to those based on glass plates, etc., and their heat resistance is insufficient. However, there were disadvantages such as an increase in resistance when used at high temperatures. In view of the above circumstances, the present invention aims to improve the transparency and heat resistance of a transparent conductive laminate using a transparent plastic film as a base material. [Means for Solving the Problems] As a result of intensive studies to achieve the above object, the present inventors discovered that prior to forming an XTO thin film etc. on the surface of a plastic film base material, The present invention was completed based on the knowledge that if the surface is subjected to a specific etching treatment and the above-mentioned thin film is formed while this treatment is continued, the transparency and heat resistance of the thin film improve.

釘なわら、本発明は、透明なプラスチックフィルム基材
の表面にドrO薄膜などの透明な導電性薄膜を形成する
にあたり、上記のフィルム基材の表面を高周波スパッタ
エッチング処理し、ついでこの処理を続けながら上記の
導電性薄膜を形成することを特徴とする透明R電性積層
体の製造法に係るものである. 〔発明の構成・作用〕 本発明におけるプラスチックフィルム基材は、透明であ
ればその材質は特に限定されず、種々のものを用いるこ
とができるが、透明性.強度.耐熱性の点から、ポリエ
チレンテレフタレート(以下、1)E Tという》フィ
ルムを用いるのが最も好ましい。このフィルム基材の厚
みとしては、通常15〜200μm程度である。
In addition, in the present invention, when forming a transparent conductive thin film such as a DrO thin film on the surface of a transparent plastic film base material, the surface of the film base material is subjected to high frequency sputter etching treatment, and then this treatment is performed. The present invention relates to a method for manufacturing a transparent R-conductive laminate, which is characterized in that the above-mentioned conductive thin film is formed in succession. [Structure and operation of the invention] The material of the plastic film base material in the present invention is not particularly limited as long as it is transparent, and various materials can be used. Strength. From the viewpoint of heat resistance, it is most preferable to use a polyethylene terephthalate (hereinafter referred to as 1) ET film. The thickness of this film base material is usually about 15 to 200 μm.

本発明においては、このようなプラスチックフィルム基
材の表面にまず高周波スバッタエッチング処理を施す.
この高周波スバッタエッチング処理とは、特公昭5L−
22108号公報などにも開示されているように、真空
容器内で陰陽両電極間に高周波電圧を印加し、放電域の
イオンエネルギーの大きい陰極暗部において、放電によ
って生じた陽イオンを加速して、これを陰極上に配置し
たプラスチックフィルム基材の表面に衝突させ、基材表
面をエッチングするものである。
In the present invention, the surface of such a plastic film base material is first subjected to high-frequency sputter etching treatment.
This high frequency spatter etching process is
As disclosed in Japanese Patent Application No. 22108, etc., a high frequency voltage is applied between both negative and positive electrodes in a vacuum container, and positive ions generated by the discharge are accelerated in the dark part of the cathode where the ion energy is large in the discharge region. This is made to collide with the surface of a plastic film base material placed on the cathode, thereby etching the base material surface.

このための装置としては、真空容器内に陰極と陽極が対
向して配設され、陰極はインピーダンス整合器を介して
高周波電源に接続され、陽極は高周波電源のアース側に
接続されて構成されており、さらに陰極の外側にはシー
ルド用電極が配設され、ア〜ス電位に保たれている。こ
のような装置の例としては、上記の公告公報やその他特
公昭56一1337号公報、同56−1340号公報な
どの公報に開示のものが挙げられる。
The device for this purpose consists of a cathode and an anode placed facing each other in a vacuum container, the cathode being connected to a high frequency power source via an impedance matching box, and the anode being connected to the ground side of the high frequency power source. Furthermore, a shielding electrode is disposed outside the cathode and maintained at ground potential. Examples of such devices include those disclosed in the above-mentioned gazette and other publications such as Japanese Patent Publication No. 56-1337 and Japanese Patent Publication No. 56-1340.

この高周波スパッタエッチング処理において、雰囲気ガ
スは、とくに限定されないが、基材と導電性薄膜との密
着性の点からすると、一般にはアルゴンガス単独かまた
はこのガスを主体としてこれに窒素ガス、ヘリウムガス
、ネオンガス、水素ガス、酸素ガス、空気などの他のガ
スを含ませた混合ガスを適用するのが好ましい. また、このようなガス組成からなる雰囲気圧、つまり真
空度は、通常1×lO弓〜l X 1 0−’TOr『
、特にI X l OI〜I X 1 0−”To r
 rの範囲に設定するのがよい。高真空になりすぎると
グロー放電が不安定となりやすく、逆に低真空になりす
ぎると基材と導電性薄膜との密着性の点で好結果を得に
くい。
In this high-frequency sputter etching process, the atmospheric gas is not particularly limited, but from the viewpoint of adhesion between the base material and the conductive thin film, argon gas is generally used alone, or argon gas is used as the main gas, and nitrogen gas or helium gas is used. It is preferable to use a mixed gas containing other gases such as , neon gas, hydrogen gas, oxygen gas, and air. In addition, the atmospheric pressure, that is, the degree of vacuum consisting of such a gas composition, is usually 1 × 1 O - l X 1 0 -' TOr
, especially IXlOI~IX10-"Tor
It is preferable to set it within the range of r. If the vacuum is too high, the glow discharge tends to become unstable, and if the vacuum is too low, it is difficult to obtain good results in terms of adhesion between the base material and the conductive thin film.

さらに、電極単位面積当たりの高周波出力(W/一)と
放電処理時間との積で表される放電処理量は、通常0.
1〜30W・秒/Cjの範囲に設定するのがよい.この
処理量が小さすぎては充分な効果が得られず、逆に,ζ
きくなりすぎるとフ・イルム基材が変形したり、着色し
たりするなどの弊害があるため、好ましくない。
Furthermore, the amount of discharge treatment expressed as the product of the high frequency output (W/1) per unit area of the electrode and the discharge treatment time is usually 0.
It is best to set it in the range of 1 to 30 W・sec/Cj. If this processing amount is too small, a sufficient effect cannot be obtained; on the contrary, ζ
If it becomes too strong, the film base material may be deformed or colored, which is not preferable.

本発明においては、このような高周波スパッタエッチン
グ処理を施したのち、上記のガス雰囲気を保持したまま
、あるいは一旦高真空に排気後上記同様のガスを導入し
て同様の真空度に調整し2たうえで、上記の高周波スパ
ッタエッチング処理を続けながら、透明な導電性薄膜を
形成する.ここで、導電性薄膜の形成時に高周波スバッ
タエッチング処理をストツブすると、後記の比較例から
も明らかなように、上記薄膜の透明性や耐熱性の向上効
果が低減する。これは、予め施す高周波スバッタエッチ
ング処理によってこの上に形成される上記薄膜の基材表
面に対する密着性や膜構造などに好ましい変化が生じ、
この変化が」一記処理を続けることで良好に保たれるも
のであるのに対し、上記処理をストツブするとこのよう
な保持効果が失われるためではないかと思われる.透明
な導電性″In!の材質としては、従来公知のものを種
々使用できるが,、透明性や導電性などの点から、前記
したITO薄膜が特に好ましい。■?゛0薄膜の場合、
ターゲットとしてInとSnとの合金か、あるいはIn
,O,とSnO■との焼結体を使用して、DCマグネト
ロンスパッタリング法により、常法に準じて膜形成する
。導電性薄膜の厚みは、薄1膜の材質や用途目的によっ
ても異なるが、通常20〜2.000人程度として、シ
ート抵抗が20〜5,000Ω/口となるようにするの
が適当である. このようにして得られる透明導電性積層体は、上記薄膜
形成時の温度がプラスチックフィルム基材に悪影響を与
えることのない、たとえば200℃以下の温度であって
も、導電性薄膜の透明性と耐熱性とにすぐれるという特
徴を有している.このため、本発明法にて得られる透明
導電性積層体は、既述した種々の用途に対し非常に存利
に使用することができる. 〔発明の効果〕 本発明の方法によれば、プラスチックフィルム基材を用
いた透明導電性積層体の透明性と耐熱性との向上を容易
に図ることができる。
In the present invention, after performing such a high frequency sputter etching process, the above gas atmosphere is maintained, or after being evacuated to a high vacuum, the same gas as above is introduced and the same degree of vacuum is adjusted. Then, while continuing the high-frequency sputter etching process described above, a transparent conductive thin film is formed. Here, if the high-frequency sputter etching process is stopped when forming the conductive thin film, the effect of improving the transparency and heat resistance of the thin film is reduced, as is clear from the comparative examples described later. This is because favorable changes occur in the adhesion of the thin film formed thereon to the substrate surface and the film structure due to the high-frequency sputter etching treatment applied in advance.
This seems to be because, while this change is well maintained by continuing the above treatment, this retention effect is lost when the above treatment is stopped. As the material for the transparent conductive "In!", various conventionally known materials can be used, but the above-mentioned ITO thin film is particularly preferred from the viewpoint of transparency and conductivity.
As a target, an alloy of In and Sn or In
, O, and SnO2, a film is formed by DC magnetron sputtering according to a conventional method. The thickness of the conductive thin film varies depending on the material and purpose of the thin film, but it is usually appropriate to set the sheet resistance to 20 to 5,000 Ω/mouth for about 20 to 2,000 people. .. The transparent conductive laminate obtained in this way can maintain the transparency of the conductive thin film even if the temperature at which the thin film is formed does not adversely affect the plastic film base material, for example, at a temperature of 200°C or lower. It is characterized by excellent heat resistance. Therefore, the transparent conductive laminate obtained by the method of the present invention can be used very effectively for the various applications mentioned above. [Effects of the Invention] According to the method of the present invention, it is possible to easily improve the transparency and heat resistance of a transparent conductive laminate using a plastic film base material.

〔実施例〕〔Example〕

つぎに、本発明の実施例を記載してより共体的に説明す
る。
Next, embodiments of the present invention will be described to provide a more comprehensive explanation.

実施例l 基材としての厚さ100μmの長尺のPETフィルム夏
を、図面に示すような真空容器2にセットする。真空容
器2の内部には、繰出口−ル3、巻取ロール4、ガイド
ロール5〜8、メインキャン9、薄膜形成用のターゲッ
ト10が配置されており、上記のPETフィルムlは繰
出口−ル3上に巻回されて、その・一端が巻取ロール4
に導かれている.なお、11.12は真空容器2内にア
ルゴンガスと酸素ガスとを供給するためのガス供給部で
ある. 真空ボンブにより、真空容器2内をまず4XlO−’T
orr以下にまで排気したのち、アルゴンガスを導入し
、3X10−’Torrの真空度に調整した.ついで、
メインキャン9に高周波電力を印加し、放電させながら
フィルム1を移動させて、高周波スパッタエッチング処
理を行った.このときの高周波電力は0.05W/一で
、処理時間は30秒とした. このスパッタエッチング処理後、巻取られたフィルムl
を逆方向に移し、引き続き酸素ガスを導入してアルゴン
ガスと酸素ガスとの混合ガス雰囲気にし、4XIO−’
Torrの真空度に調整したうえで、高周波スパッタエ
ッチング処理を行うと同時に、InとSnの合金ターゲ
ット(SnはInに対しlO重量%)からなるターゲッ
トlOを用いて、反応性DCマグネトロンスパッタリン
グ法により、シート抵抗が300Ω/口となるITOF
iI.膜を形成し、目的とする透明導電性積層体を作製
した. 比較例I ITO薄膜の形成前および形成時共に高周波スパッタエ
ッチング処理を行わなかった以外は、実施例1と同様に
して、つまり従来方法にて、透明導電性積層体を作製し
た. 比較例2 ITO薄膜の形成時だけ高周波スバ′ンタエッチング処
理を行わなかった以外は、実施例lと同様にして、透明
導電性積層体を作製した.実施例2 Snの量がInに対し5重量%である合金ターゲットを
用いて、シート抵抗が300Ω/口となるITO薄膜を
形成した以外は、実施例1と同様にして、透明導電性積
層体を作製した.比較例3 ITO薄膜の形成時だけ高周波スバウタエッチング処理
を行わなかった以外は、実施例2と同様にして、透明導
電性aS体を作製した。
Example 1 A long PET film sheet having a thickness of 100 μm as a base material is set in a vacuum container 2 as shown in the drawing. Inside the vacuum container 2, a feeding outlet 3, a take-up roll 4, guide rolls 5 to 8, a main can 9, and a target 10 for forming a thin film are arranged. one end of which is wound onto the take-up roll 4.
I am guided by. Note that 11 and 12 are gas supply units for supplying argon gas and oxygen gas into the vacuum container 2. First, the inside of the vacuum container 2 is filled with 4XlO-'T using a vacuum bomb.
After evacuating the chamber to a pressure of less than orr, argon gas was introduced and the degree of vacuum was adjusted to 3X10-'Torr. Then,
High frequency power was applied to the main can 9, and the film 1 was moved while being discharged to perform high frequency sputter etching. The high frequency power at this time was 0.05 W/1, and the processing time was 30 seconds. After this sputter etching process, the film l
4XIO-'
After adjusting the degree of vacuum to Torr, high-frequency sputter etching is performed, and at the same time, reactive DC magnetron sputtering is performed using a target IO made of an alloy target of In and Sn (Sn is IO by weight% relative to In). , ITOF with sheet resistance of 300Ω/mouth
iI. A film was formed to produce the desired transparent conductive laminate. Comparative Example I A transparent conductive laminate was produced in the same manner as in Example 1, that is, by the conventional method, except that high-frequency sputter etching was not performed before and during the formation of the ITO thin film. Comparative Example 2 A transparent conductive laminate was produced in the same manner as in Example 1, except that the high-frequency svanter etching treatment was not performed only during the formation of the ITO thin film. Example 2 A transparent conductive laminate was produced in the same manner as in Example 1, except that an ITO thin film with a sheet resistance of 300 Ω/mouth was formed using an alloy target in which the amount of Sn was 5% by weight relative to In. was created. Comparative Example 3 A transparent conductive aS body was produced in the same manner as in Example 2, except that the high-frequency swirler etching process was not performed only when forming the ITO thin film.

実施例3 In.O,とSnOzの焼結体(SnO.は■n,0,
に対し10重量%)からなるターゲットを用いて、シー
ト抵抗が300Ω/口となるITO薄膜を形成した以外
は、実施例1と同様にして、透明導電性積層体を作製し
た. 比較例4 ITO薄膜の形成時だけ高周波スパッタエッチング処理
を行わなかった以外は、実施例3と同様にして、透明導
電性積層体を作製した。
Example 3 In. A sintered body of O, and SnOz (SnO. is ■n, 0,
A transparent conductive laminate was produced in the same manner as in Example 1, except that an ITO thin film with a sheet resistance of 300 Ω/hole was formed using a target consisting of 10% by weight of 10% by weight). Comparative Example 4 A transparent conductive laminate was produced in the same manner as in Example 3, except that the high frequency sputter etching treatment was not performed only when forming the ITO thin film.

以上の実施例1〜3および比較例1〜4に係る各積層体
につき、その透明性と耐熱性とを下記の方法で調べた。
The transparency and heat resistance of each of the laminates according to Examples 1 to 3 and Comparative Examples 1 to 4 above were examined by the following methods.

その結果は、後記の表に示されるとおりであった. 〈透明性〉 分光光度計を用いて、波長550nsの光透過率を測定
した. く耐熱性〉 175℃のオーブン中に1時間放置後のシート抵抗R,
を求め、初期のシート抵抗R.に対する抵抗変化率(R
l /R@ )を求めた。なお、シート抵抗は、Van
 der Pawの方法で測定した.上記の表から明ら
かなように、本発明の方法によれば、透明性と耐熱性と
にすぐれた透明導電性積層体を製造できるものであるこ
とがわかる。
The results were as shown in the table below. <Transparency> Light transmittance at a wavelength of 550 ns was measured using a spectrophotometer. Heat resistance〉 Sheet resistance R after being left in an oven at 175℃ for 1 hour,
, and the initial sheet resistance R. rate of change in resistance (R
l/R@) was calculated. Note that the sheet resistance is Van
It was measured by the method of der Paw. As is clear from the above table, the method of the present invention makes it possible to produce a transparent conductive laminate with excellent transparency and heat resistance.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の方法に用いた装置の構成例を示す概略図
である. l・・・プラスチックフィルム基材、10・・・薄膜形
成用のターゲット 特許出願人  日東電工株式会社
The drawing is a schematic diagram showing an example of the configuration of an apparatus used in the method of the present invention. l...Plastic film base material, 10...Target for thin film formation Patent applicant Nitto Denko Corporation

Claims (1)

【特許請求の範囲】[Claims] (1)透明なプラスチックフィルム基材の表面に透明な
導電性薄膜を形成するにあたり、上記のフィルム基材の
表面を高周波スパッタエッチング処理し、ついでこの処
理を続けながら上記の導電性薄膜を形成することを特徴
とする透明導電性積層体の製造法。
(1) In forming a transparent conductive thin film on the surface of a transparent plastic film base material, the surface of the above film base material is subjected to high frequency sputter etching treatment, and then this process is continued while forming the above conductive thin film. A method for producing a transparent conductive laminate, characterized by:
JP6140589A 1989-03-14 1989-03-14 Manufacture of transparent conductive laminated body Pending JPH02239518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6140589A JPH02239518A (en) 1989-03-14 1989-03-14 Manufacture of transparent conductive laminated body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6140589A JPH02239518A (en) 1989-03-14 1989-03-14 Manufacture of transparent conductive laminated body

Publications (1)

Publication Number Publication Date
JPH02239518A true JPH02239518A (en) 1990-09-21

Family

ID=13170194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6140589A Pending JPH02239518A (en) 1989-03-14 1989-03-14 Manufacture of transparent conductive laminated body

Country Status (1)

Country Link
JP (1) JPH02239518A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04192218A (en) * 1990-11-27 1992-07-10 Idemitsu Kosan Co Ltd Method for manufacturing surface conductive high polymer material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6120560B2 (en) * 1977-07-22 1986-05-22 Takeda Yakuhin Kogyo Kk
JPS61268437A (en) * 1985-05-22 1986-11-27 日東電工株式会社 Damp-proof film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6120560B2 (en) * 1977-07-22 1986-05-22 Takeda Yakuhin Kogyo Kk
JPS61268437A (en) * 1985-05-22 1986-11-27 日東電工株式会社 Damp-proof film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04192218A (en) * 1990-11-27 1992-07-10 Idemitsu Kosan Co Ltd Method for manufacturing surface conductive high polymer material

Similar Documents

Publication Publication Date Title
EP0478010B1 (en) Process for producing a continuous web of an electrically insulated metallic substrate
EP0261245B1 (en) Process for producing transparent conductive film
KR100336621B1 (en) Method of depositing an io or ito thin film on polymer substrate
JP2635385B2 (en) Ion plating method
JPH02239518A (en) Manufacture of transparent conductive laminated body
JP2003086025A (en) Transparent conductive film forming substrate and method for manufacturing the same
JP2000192237A (en) Production of high transparent gas barrier film
JPH0273963A (en) Formation of thin film on low-temperature substrate
JP4410846B2 (en) Laminate having SiO2 film and method for producing transparent conductive laminate
JP2002025362A (en) Manufacturing method of silver series transparent conductive thin film and transparent laminate
JPH04198469A (en) Manufacture of laminated body
JPH02189816A (en) Method for forming transparent conductive film
JP2878299B2 (en) Ion plating method
JPH0266158A (en) Production of transparent laminate
JP2688999B2 (en) Method for producing transparent conductive film
KR101060994B1 (en) Method for manufacturing ito thin film with high-transmittance
KR20020053010A (en) Method and apparatus for forming thin film
JP3031551B2 (en) Method for producing vapor-deposited film having gas barrier properties
JP2604850B2 (en) Sputtering apparatus and thin film manufacturing method
JPH0211756A (en) Formation of thin film
KR20150029188A (en) A Method for Preparing Film of Transparent Electrode Layer
CN1277162A (en) Electrically heating glass preparing method and product
JPS6226869A (en) Manufacture of photovoltaic device
JPH03257717A (en) Manufacture of transparent conductor
JPH10183333A (en) Formation of transparent conductive film