JPS6120560B2 - - Google Patents

Info

Publication number
JPS6120560B2
JPS6120560B2 JP52088556A JP8855677A JPS6120560B2 JP S6120560 B2 JPS6120560 B2 JP S6120560B2 JP 52088556 A JP52088556 A JP 52088556A JP 8855677 A JP8855677 A JP 8855677A JP S6120560 B2 JPS6120560 B2 JP S6120560B2
Authority
JP
Japan
Prior art keywords
add
gln
arg
asp
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52088556A
Other languages
Japanese (ja)
Other versions
JPS5424868A (en
Inventor
Masahiko Fujino
Mitsuhiro Wakimasu
Akira Ooneda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Original Assignee
Takeda Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Chemical Industries Ltd filed Critical Takeda Chemical Industries Ltd
Priority to JP8855677A priority Critical patent/JPS5424868A/en
Priority to US05/924,553 priority patent/US4206199A/en
Priority to GB7830677A priority patent/GB2002387B/en
Priority to DE19782832090 priority patent/DE2832090A1/en
Priority to FR7821686A priority patent/FR2398051A1/en
Priority to DE2858718A priority patent/DE2858718C2/de
Publication of JPS5424868A publication Critical patent/JPS5424868A/en
Publication of JPS6120560B2 publication Critical patent/JPS6120560B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

グルカゴンは動物の糖代謝に極めて重要な働き
をするホルモンであるが、その血中濃度の測定は
従つて臨床上極めて重要である。本出願は本ホル
モン、特に膵臓由来のグルカゴンの血中濃度の測
定に有用なイムノアツセイ用抗体の作成上有用な
抗原に関するものである。 グルカゴンには化学構造上類似しているといわ
れる膵グルカゴン(H―His―Ser―Gln―Gly―
Thr―Phe―Thr―Ser―Asp―Tyr―Ser―Lys―
Tyr―Leu―Asp―Ser―Arg―Arg―Ala―Gln―
Asp―Phe―Val―Gln―Trp―Len―Met―Asn―
Thr―OH)と腸管グルカゴンが存在し、血糖値
に影響するものは主として膵グルカゴンとされて
いる。従つて臨床的に必要な測定値は主として膵
由来グルカゴンの血中濃度であるが、従来、入手
可能な膵グルカゴンと牛血清アルブミンとの縮合
物による抗体の作成操作によては、膵グルカゴン
に特異性を持つ臨床応用可能な抗体の生成は極く
まれであり、主として膵グルカゴンと腸管グルカ
ゴンの両者と交叉する抗体が得られることは良く
知られている所である。本発明者らは、膵グルカ
ゴンに特異的な抗体を作成することが出来る抗原
の製造を目的とし、種々のペプチドを合成して、
検討した結果、グルカゴンの15番からC―端に至
るペンタデカペプチドが本目的に極めて有用なも
のであるという予期せざる新知見を得、本発明を
成したものである。 本発明は1 H―Asp―Ser―Arg―Arg―Ala
―Gln―Asp―Phe―Val―Gln―Trp―Leu―Met
―Asn―Thr―OHで表わされる新規ペプチド
()、2 ペプチド()と牛血清アルブミンと
をグルタルアルデヒドで縮合せしめた縮合生成物
に関する。 本明細書において、アミノ酸、ペプチド、保護
基、活性基、その他に関し略号で表示する場合、
それらはIUPAC―IUB Commission on
Biological Nomenelatureによる略号あるいは当
該分野における慣用略号に基づくものであり、そ
の例を次に挙げる。また、アミノ酸などに関し光
学異性体がありうる場合は、特に明示しなければ
L体を示すものとする。 Arg:アルギニン Trp:トリブトフアン Asn:アスパラギン Asp:アスパラギン酸 Thr:スレオニン Ser:セリン Glu:グルタミン酸 Gln:グルタミン Ala:アラニン Val:バリン Met:メチオニン Met(O):メチオニンスルフオキシド Leu:ロイシン Phe:フエニルアラニン Z :カルボベンゾキシ Boc:t―ブチルオキシカルボニル OBut:t―ブチルエステル OBzl:ベンジルエステル ONB:N―ヒドロキシ―5―ノルボルネン―
2,3―ジカルボキシイミドエステル MBS:p―メトキシベンゼンスルホニル HONB:N―ヒドロキシ―5―メルボルネン―
2,3―ジカルボキシイミド DOC:N,N′―ジシクロヘキシルカルボジイ
ミド DCU:N,N′―ジシクロヘキシルウレア DMF:N,N′―ジメチルホルムアミド NMP:N―メチル―2―ピロリドン TFA:トリフルオロ酢酸 THF:テトラヒドロフラン TEA:トリエチルアミン DCHA:ジシクロヘキシルアミン CMC:カルボキシメチルセルロース BSA:牛血清アルブミン 本発明のペプチド()は、ペプチド合成の常
套手段で製造しうる。固相合成法、液相合成法の
いずれによつてもよいが、液相合成法が有利な場
合が多い。そのようなペプチド合成の手段は、た
とえば“The Peptides”,第1巻(1966),
Schroder and Lubke著,Academic Press,
New York,U.S.A.あるいは“ペプチド合成”,
泉屋ら著,丸善株式会社(1975年)に記載されて
おり、たとえばアジド法、クロライド法、酸無水
物法、混酸無水物法、DCC法、活性エステル
法、ウツドワード試薬Kを用いる方法、カルボジ
イミダゾール法、酸化還元法、DCC/アデイテ
イブ(例、HONB,HOBt,HoSu)法などがあげ
られる。 本発明の化合物()は、そのペプチド結合の
任意の位置で2分される2種のフラグメントの一
方に相当する反応性カルボキシル基を有する原料
と、他方のフラグメントに相当する反応性アミノ
基を有する原料をペプチド合成の常套手段で縮合
させ、生成する縮合物が保護基を有する場合、そ
の保護基を常套手段で脱離させることにより製造
しうる。 ペプチド()を製造する反応工程で、Asp通
常保護しておくのが望ましい場合が多く、最終工
程としてはペプチド()の構成アミノ酸残基の
少くとも一つが保護された保護ペプチド()か
ら保護基をすべて脱離することにより製造しうる
場合が多い。 原料の反応に関与すべきでない官能基の保護お
よび保護基、ならびにその保護基の脱離、反応に
関与する能基の活性化などもまた公知のものある
いは手段から適宜選択しうる。 原料のアミノ基の保護基としては、たとえばカ
ルボベンゾキシ,t―ブチルオキシカルボニル,
t―アミルオキシカルニル,イソボルニルオキシ
カルボニル,p―メトキシベンジルオキシカルボ
ニル,2―クロル―ベンジルオキシカルボニル,
アダマンチルオキシカルボニル,トリフルオロア
セチル,フタリル,ホルミル,O―ニトロフエニ
ルスルフエニル,ジフエニルホスフイノチオイル
などがあげられる。カルボキシル基の保護基とし
ては、たとえばアルキルエステル(例、メチル,
エチル,プロピル,ブチル,t―ブチルなどのエ
ステル基)、ベンジルエステル基、p―ニトロベ
ンジルエステル基、p―メトキシベンジルエステ
ル基、p―クロルベンジルエステル基、ベンズヒ
ドリルエステル基、カルボベンゾキシヒドラジド
基、t―ブチルオキシカルボニルヒドラジド基,
トリチルヒドラジド基などがあげられる。 アルギニンのグアニジノ基の保護基としては、
たとえばニトロ基、トシル基、p―メトキシベン
ゼンスルホニル基、カルボベンゾキシ,イソボル
ニルオキシカルボニル,アダマンチルオキシカル
ボニル基等が例示される。また、そのグアニジノ
基は、酸(例、ベンゼンスルホン酸、トルエンス
ルホン酸、塩酸、硫酸な)塩の形で保護してもよ
い。 スレオニンの水酸基は、たとえばエステル化ま
たはエーテル化によつて保護することができる。
このエステル化に適する基としてはたとえばアセ
チル基などの低級アルカノイル基、ベンゾイル基
などのアロアル基、ベンジルオキシカルボニル
基、エチルオキシカルボニル基などの炭酸から誘
導される基などがあげられる。またエーテル化に
適する基としては、たとえばベンジル基、テトラ
ヒドロピラニル基,t―ブチル基などである。し
かしながらスレオニンの水酸基は必ずしも保護す
る必要はない。メチオニンはスルホキサイドの形
で保護しておいてもよい。原料のカルボキシル基
の活性化されたものとしては、たとえば対応する
酸無水物、アジト、活性エステル(ペンタクロロ
フエノール,p―ニトロフエノール,N―ハイド
ロキシサクシンイミド,N―ハイドロキシベンズ
トリアゾール,N―ハイドロキシ―5―ノルボル
ネン―2,3―ジカルボキシイミドなどとのエス
テル)などがあげられる。ペプタイド結合形成反
応は脱水剤(例、ジシクロヘキシルカルボジイミ
ド,カルボジイミダゾール等のカルボジイミド試
薬)の存在下に実施しうる場合がある。 本ペプタイド縮合反応は溶媒の存在下に行うこ
とができる。溶媒としては、ペプタイド縮合反応
に使用しうることが知られているものから適宜選
択されうる。たとえば無水または含水のジメチル
ホルムアミド,ジメチルスルホキサイド,ピリジ
ン,クロロホルム,ジオキサン,ジクロルメタ
ン,テトラハイドロフラン,酢酸エチル,N―メ
チルピロリドンあるいはこれらの適宜の混合物な
どがあげられる。 反応温度はペプチド結合形成反応に使用されう
ることが知られている範囲から適宜選択され、通
常約−40℃−約60℃,好ましくは約−20℃−約0
℃の範囲から適宜選択される。 本縮合反応終了後、生成物が保護基を有してい
る場合、それは常法により離脱できる。かかる常
法としては、たとえば還元的方法(例、パラジウ
ム黒等の触媒を用いる水素添加、液体アンモニア
中金属ナトリウムによる還元)、アシドリシス
(例、トリオルオロ酢酸、フツ化水素、メタンス
ルホン酸等の強酸によるアシドリシス)などがあ
げられる。 上記のようにして製造されたペプチド()は
反応終了混合物から、ペプチドの分離手段、抽
出、分配、カラムクロマトグラフイーなどにより
採取できる。 ペプチド()はアルギン残基を有するので、
塩としても採取しうる。塩を形成しうる酸として
は、たとえば塩酸、臭化水素酸、硝酸、硫酸、リ
ン酸などの無機機酸、あるいはギ酸、酢酸、プロ
ピオン酸、乳酸、クエン酸、シウ酸、マレイン酸
などの有機酸があげられる。 本発明のペプチド()を製造しうる原料もま
た前記ペプチド合成の常套手段で、そのアミノ酸
配列にしたがつて各々のアミノ酸を順次縮合させ
ることにより製造しうる。 この様にして得られた本発明のペンタデカペプ
チド()と牛血清アルブミンとの縮合は公知の
グルタルアルデヒド法〔例、PROCEEDINGS
OF THE SOIETY FOR Experimental Biology
and Medicine,128,347―350(1968)〕によつ
て実施しうる。牛血清アルブミンは、抗原のキヤ
リアーとして使用するものであり、場合により同
様の目的に使用しうる他の蛋白質で代替しうる場
合もありうる。ペンタデカペプチド()と牛血
清アルブミンの使用量比は10mg対約20mgが最適で
あり、反応PHは7.3前後が良好な結果を与える場
合が多い。また反応時間は室温で2〜6時間がよ
い場合が多いが、特に3時間前後が適当な場合が
多い。 この様にして作成した縮合生成物は常套手段で
4℃前後で水に対して透析し、凍結乾燥して保存
することができる。 以上の様にして製造した本発明の縮合生成物
は、種々の哺乳動物(例、ウサギ,マウス)に常
法に従つて投与することによつて効率よく膵グル
カゴンに対しし特異的な、しかも反応性のよい抗
体を産生することができる。ペプチド()は、
抗体産生するに有効な量でよく、たとえばウサギ
に1回約2mgの皮下投与を2週間おきに5回行う
と抗体を産生しうる場合もある。 以下の実施例において、薄層クロマトグラフイ
ーは、メルク社製シリカゲルプレート60F254
は、フトコシ薬品社製、セルロースプレート、ア
ビセルSFを用い、下記の展開溶媒を用いた。 Rf1:クロロホルム:メタノール:酢酸=9:
10.5 Rf2:クロロホルム:メタノール:水=7:
3:0.5 Rf3:n―ブタノール:ピリジン:酢酸:水=
30:20:6:24 実施例 1 (1) Boc―Asn―Thr OBzlの製法 Boc―Thr OBzl 112gをTFA300mlに溶かし、
室温で20分間振り混ぜた後、濃塩酸30mlを加え、
溶液を減圧濃縮する。残留物をTHF1に溶か
し、氷冷し、TEA50mlを加えて中和する。これ
にBoc―Asn―OH 76.7g,HONB64,5g,
DCC74.3gを加えて15時間かき混ぜる。析出した
DCUをろ去した後、溶媒を減圧で留去し、残留
物を酢酸エチル1に溶かす。これを10%クエン
酸水(300ml×3)、飽和炭酸水素ナトリウム水
(300ml×3)、水(300ml×3)で順次洗浄し、無
水硫酸ナトリウムで乾燥する。溶媒を減圧で留去
した後、残留物にエーテル(1)を加えて、粉
末として、ろ取した後、アセトニトリルより再結
晶する。収量105.1g(75.2%)m.p.165―166℃
〔α〕23 ―13.9℃(c=0.9、DMF中),Rf10.51,
C20H29O7N3としての元素分析計算値:C56.72;
H6.90;N9.92,実験値:C57.01;H6.89;N9.94 (2) Bocc―Met(O)―Asn―Thr―OBzlの製法 Boc―Asn―Thr―OBzl50.0gにTFA170mlを加
えて、室温で30分間振り混ぜた後、濃縮しエーテ
ル500mlを加えて粉末としてろ取し、乾燥する。
これをTHF400mlに溶かし、氷冷しTEA20mlを加
えた後、Boc―Met(O)―ONB(Boc―Met
(O)・OH31.3g,HONB23.3gをTHF200mlに溶解
し、氷冷し、DCC26.8gを加えて、4時間かき混
ぜて調製する。)を加え、15時間かき混ぜる。溶
媒を減圧で留去したのち、残留物に酢酸エチル
(200ml)、エーテル(200ml)を加え、粉末として
ろ取し、アセトナトリルより再沈澱する。収量
48.5g(72.0%)、m.p.145―147℃〔α〕23 −6.5
(c=1.1,DMF中,、Rf10.19,C25H38O9N4Sとし
ての元素分析計算値:C52.62;H6.71;N9.82;
S5.62,実験値:C52.44;H6.73;N9.60;S5.15 (3) Boc―Leu―Met(O)―Asn―Thr―OBzlの
製法 Boc―Met(O)―Asn―Thr―OBzl15.0gに
TFA45mlを加え、室温で45分間振り混ぜた後、
濃縮し、エーテル100mlを加えて粉末としてろ取
し、乾燥する。これをDMF50mlに溶解し、氷冷
し、TEA5.7mlを加え、これにBoc―Leu―ONB
(Boc―Leu―OH6.69g,HoNB5.70g,DCC6.56g
より調製)を加えて、15時間かき混ぜる。溶媒を
減圧で留去した後、残留物に酢酸エチル200mlを
加えて、粉末としてろ取し、アセトニトリル―酢
酸エチルより再沈澱する。収量15.0g(83.4%),
m.p.134―136℃,〔α〕24 ―15.1゜(c=1.0,
DMF中),Rf10.25,C31H49O10N5Sとしての元素
分析計算値:C54.45;H7.22;N10.24;S4.69,
実験値:C54.62;H7.60;N9.89;S3.95 (4) Z―Gln―Trp―OBzlの製造 H―Trp―OBzl・パラトルエンスルホン酸塩
50.0gをTHF500mlに溶かし、氷冷し、TEA15.4
ml,Z―Gln―OH28.0g,HONBl9.7g,
DCC22.7gを加えて、15時間かき混ぜる。析出し
たDCUをろ去した後、濃縮し、残留物を酢酸エ
チル300mlに溶かす。これを飽和炭酸水素ナトリ
ウム水(150ml×2),10%クエン酸水(150ml×
2),水(150ml×2)で順次洗浄する。溶媒を減
圧で留去した後、残留物をTHF300mlに溶かし、
不溶物をろ去する。これを濃縮した後、エーテル
500mlを加えて、粉末としてろ取し、アセトニト
リルより再結晶する。収量46.1g(82.8%),
〔α〕23 +5.8゜(c=1.0,DMF中),Rf10.60,
C31H32O5N4としての元素分析計算値:C66.89;
H5.80;10.07,実験値:C66.79;H5.71;N10.20 (5) Z―Val―Gln―Trp―OHの製造 Z―Gln―Trp―OBzl50.0gをメタノール700ml
に溶かし、5時間接触還元(触媒:パラジウム
黒)すると、結晶が析出するので、これをろ取す
る。これをDMF300mlに懸濁し、TEA13mlを加
えて溶かし、触媒をろ去する。これにZ―Val―
ONB37.0gを加えて、10時間かき混ぜた後、1N―
塩酸100mlを加えて中和し、さらに水500mlを加え
て、粉末としてろ取する。これをメタノールで十
分洗浄する。収量43.0g(84.7%),m.p.246―247
℃〔α〕23 +12.4゜(c=0.9,DMF中),
Rf10.14,C29H35O7N5としての元素分析計算値:
C61.58;H6.24;N12.38,実験値:C61.86;
H6.30;N12.36 (6) Z―Phe―Val―Gln―Trp―OHの製造 Z―Val―Gln―Trp―OH5.1gを酢酸100mlに溶
かし、3時間接触還元したのち触媒をろ去し、濃
縮する。これをDMF200mlに懸濁し、これに
TEA2ml,Z―Phe―OH2.70gより調製したZ―
Phe―ONBを加えて、7時間かき混ぜる。溶媒を
減圧で留去し、残留物に酢酸水を加えてゲルして
ろ取する。これをメタノールより再沈澱する。収
量5.50g(84.5%),m.p.240℃〔α〕24 +4.1゜(

=1.0,DMF中),Rf10.15,C38H44O8N6・1/2
H2Oとしての元素分析計算値:C63.23;H6.28;
N11.64,実験値:C63.11;H6.29;N11.80 (7) Boc―Asp(OBzl)―Phe―Val―Trp―OH
の製造 Z―Phe―Val―Gln―Trp―OH8.5gを、
DMF150ml、酢酸50mlの混液に溶かし、5時間接
触還元する。触媒をろ去した後、濃縮し、残留物
にメタノール100mlを加えて結晶としてろ取す
る。これを、DMF200mlに懸濁し、TEA3.0ml,
Bo―Asp(OBzl)ONB(Boc―Asp(OBzl)―
OH3.9g,HONB2.4g,DCC2.7gより調製)を加
えて、10時間かき混ぜる。溶媒を減圧で留去した
のち、残留物に酢酸水を加えて、ゲルとしてろ取
し、DMF,水より再沈澱する。収量6.3g(58.1
%),m.p.191―192℃(分解)、〔α〕24 ―6.2゜
(c=1.1,DMF中),Rf10.11C45H57O11N7・3/
2H2Oとしての元素分析計算値:C60.64;
H6.63;N10.76,実験値:C60.30;H6.48;
N11.34 (8) Boc―Gln―Asp(OBzl)―Phe―Val―Gln
―Trp―OHの製造 Boc―Asp(OBzl)―Phe―Val―Gln―Trp―
OH6.0gに、TFA50mlを窒素気流中加え、10分間
ふり混ぜた後、濃縮しエーテルを加えて、粉末と
してろ取する。これをDMF100mlに溶かし、
TEA2.0mlを加え、Boc―Gln―ONB(Boc―Gln
―OH1.76g,HONB1.34g,DCC1.54gから調製)
を加えて、15時間かき混ぜる。これに酢酸水を加
えて、粉末として、ろ取したのち、アセトニトリ
ル,水より再沈澱する。収量5.50g(82.6%),m.
p.210―212℃(分解),〔α〕24 ―10.1゜(c=
1.1,DMF中),Rf10.09,C51H65O13N9としての元
素分析計算値:C60.52;H6.47;N12.46,実験
値:C60.19;H6.37;N12.23 (9) Z―Arg(MBS)―Ala―OButの製造 Z―Ala―OBut31.0gをメタノール300mlに溶か
し、5時間接触還元した後、触媒をろ去し、濃縮
する。一方、Z―Arg(MBS)―OH.
DCHA53.0gを酢酸エチル500mlに懸濁し、10%ク
エン酸200mlを加えて、よく振り混ぜた後、水洗
し、無水硫酸ナトリウムで乾燥する。これを
THF500mlに溶かし、これに、先に調製製したH
―Ala―OButを加えHONB14.9gを加えて氷冷
し、DCC17.1gを加えて10時間かき混ぜる。析出
したDCUをろ去し、濃縮した後、酢酸エチル500
mlに溶かし、10%クエン酸水(200ml×3),飽和
炭酸水素ナトリウム水(200ml×3),水(200ml
×3)で洗浄し、無水硫酸ナトリウムで乾燥す
る。溶媒を減圧で留去したのち、残留物にエーテ
ル300mlを加えて粉末として、ろ取する。収量
44.5g(66.8%),m.p.125―127℃,〔α〕25 ―6.0

(c=1.0,DMF中),Rf10.62,C28H39O8N5Sとし
ての元素分析計算値:C55.52;H6.49;N11.56;
S5.27,実験値:C55.71;H6.49;N11.81;S5.29 (10) Z―Arg(MBS)―Arg(MBS)―Ala―
OButの製造 z―Arg(MBS)―Ala―OBut 43gをメタノー
ル500mlに溶かし、5時間還元したのち、濃縮す
る。残留物をDMF200mlに溶かし、Z―Arg
(MBS)―OH(Z―Aug(MBS)―OH・
DCHA49.7gより調製)、HONB14.0gを加え、氷
冷し、DCC16.1gを加えて、15時間かき混ぜる。
析出したDCUをろ去した後、濃縮し、残留物を
クロロホルム500mlに溶かす。これを10%クエン
酸水(300ml×3),飽和炭酸水素ナトリウム水
(300ml×3),水(300ml×3)の順に洗浄し、硫
酸マグネシウムで乾燥する。溶媒を減圧で留去し
たのち、メタノール300mlを加えて、結晶として
ろ取し、メタノールより再結晶する。収量52.4g
(79.2%),m.p.116―118℃〔α〕25 ―8.8゜(c

1.0,DMF中),Rf10.42,C41H57O12N9S2・2H2O
としての元素分析計算値:C50.86;H6.35;
N13.02;S6.62,実験値:C51.05;H6.08;
N13.11;S6.62 (11) Boc―Ser―Aug(MBS)―Arg(MS)―
Ala―OButの製造 Z―Arg(MBS)―Arg(MBS)―Ala―
OBut30.0gをDMF80ml,メタノール300mlの混液
に溶かし、7時間接触還元する。触媒をろし、メ
タノールを減圧で留去したのち、これにBoc―
Ser―OH7.3g,HONB6.3gを加え、氷冷し、
DCC7.3gを加えて10時間かき混ぜる。析出した
DCUをろ去し、溶媒を減圧で留去し、残留物を
クロロホルム500mlに溶かす。これを飽和炭酸水
素ナトリウム(300ml×2),水(300ml×2)で
洗浄し、硫酸マグネシウムで乾燥する。溶媒を減
圧で留去したのち、ロロホルム30mlにとかしシリ
カゲルのカラム(400g)につける。クロロホル
ム:メタノール:酢酸(9:0.7:0.35)の溶媒
で展開し、600mlから2までの画分を集めて、
濃縮し、エーテルを加えて粉末とする。収量
25.5g(79.0%),m.p.85―88℃,〔α〕26 ―20.9

(c=1.0,メタノール中),Rf10.33,
C41H64O14N10S2・H2Oとしての元素分析計算値:
C49.09;H6.63;N13.96;S6.39,実験値:
C48.96;H6.55;N13.70;S5.84 (12) Boc―Asp(OBzl)―Ser―Arg(MBS)―
Arg(MBS)―Ala―OHの製造 Boc―Ser―Arg(MBS)―Arg(MBS)―Ala
―OBut10.5gにTFA50mlを加え、室温で60分振り
混ぜた後、濃縮し、エーテル300mlを加えて粉末
としてろ取する。これをDMF50mlに溶かし、
TEA4.1ml,Boc―Asp(OBzl)・ONB(Boc―
Asp(OBzl)・OH3.4g,HONB1.97g,DCC2.27g
より調製)を加えて15時間かき混ぜる。溶媒を減
圧で留去したのち、残留物に酢酸水を加えて、粉
末として、ろ取し乾燥する。これをアセトニトリ
ル・エーテルより再沈澱する。収量6.0g(51.5
%),m.p.126―130℃,〔α〕24 +3.5゜(c=1.0

DMF中)、Rf10.17,C48H67O17N11S2・2H2Oとし
ての元素分析計算値:C49.26;H6.12;N13.17;
S5.48,実験値:C49.62;H5.84;N13,OO;
S5.03 (13) Boc―Gln―Asp(OBzl)―Phe―Val―
Gln―Trp―Leu―Met(O)―Asn―Thr―
OBzlの製造 Boc―Leu―Met(O)―Asn―Thr―OBzl
3.25gにTFA25mlを加え、室温で15分間ふり混ぜ
た後、濃縮し、残留物にエーテル100mlを加えて
粉末として、ろ取し、乾燥する。これをNMP10
mlに溶かし、TEA2ml加えてよく振り混ぜたの
ち、エーテル100mlを加え、粉末として再びろ取
する。これをDMF100mlに溶かし、さらにBoc―
Gln―Asp(OBzl)―Phe―Val―Gln―Trp―
OH4.80g,HONB2.70gを加えて溶かしてのち、
氷冷し、DCC1.55gを加えて58時間かき混ぜると
反応液がゲル状になる。溶媒を減圧で留去したの
ち、残留物を含水アセトニトリルで十分に洗浄す
る。収量5.75g(76.8%),m.p.23.4℃(分解)
〔α〕26 ―15.8゜(c=0.4,酢酸中),Rf20.63,
C77H104O20N14Sとしての元素分析計算値:
C58.61;H6.64;N12.43;S2.03,実験値:
C59.13;H6.96;N12.40;S1.70 (14) Boc―Asp(OBzl)―Ser―Arg(MBS)
―Arg(MBS)―Ala―Gln―Asp(OBzl)―
Phe―Val―Gln―Trp―Leu―Met(O)―Asn
―Thr―OBzlの製造 Boc―Gln―Asp(OBzl)―Phe―Val―Gln―
Trp―Leu―Met(O)―Asn―Thr―OBzl
5.20gにアニソール1mlを加え、さらに窒素気流
中、TFA35mlを加えて、室温で15分間かき混
ぜ、濃縮し、残留物にエーテル100mlを加えて粉
末としてろ取する。これをNMP20mlにとかし、
TEA2.7mlを加えて十分に振り混ぜたのち、エー
テル200mlを加えて、粉末としてろ取する。これ
をDMF150mlに溶かし、Boc―Asp(OBzl)―
Ser―Arg(MBS)―Arg(MBS)―Ala―
OH3.66g,HONB2.36gを加え、氷、食塩で−10
℃に冷却し、DCC1.02gを加える。反応液を0℃
で10時間、室温で24時間かき混ぜたのち、析出し
たDCUをろ去し、溶媒を減圧で留去する。残留
物に水50mlを加えて粉末としてろ取したのち、含
水アセトニトリルで十分に洗浄する。収量5.3g
(61.1%),m.p.237℃(分解),〔α〕26 −7.1゜
(c
=0.9,酢酸中),Rf2 0.63,C120H161O34N25S3
2H2Oとしての元素分析計算値:C54.82;
H6.32;N13.32;S3.57,実験値:C54.47;
H6.16;N13.07;S3.47 (15) H―Asp―Ser―Arg―Arg―Ala―Gln―
Asp―Phe―Val―Gln―Trp―Leu―Met(O)
―Asn―Thr―OHの製造 Boc―Asp(OBzl)―Ser―Arg(MBS)―
Arg(MBS)―Ala―Gln―Asp(OBzl)―Phe―
Val―Gln―Trp―Leu―Met(O)―Asn―Thr―
OBzl 400mgにアニソール0.25mlを加え、これに
メタンスルホン酸5mlを加えて、室温で60分振り
混ぜた後、エーテル100mlを加えて油状物を沈澱
させる。エーテルを傾斜法で除いたのち、残留物
を水10mlにとかし、アンバーライトIRA―410
(酢酸型)のカラム(1×10cm)を通し、溶出液
(液量50ml)を氷冷し、3Nアンモニア水10mlを加
えて0℃で30分間かき混ぜたのち、凍結乾燥す
る。これを水30mlにとかし、CMCのカラム(2.2
×18cm)に付し、水(500ml)から0.2M酢酸アン
モニア水(500ml)までの線型勾配法で溶出し、
150mlから195mlまでの画分を集めて凍結乾燥す
る。収量150mg。次にこれを水20mlに溶かし、ア
ンバーライトXAD―2のカラム(1.6×5cm)に
付し、水(200ml)から80%エタノール(200ml)
までの線型勾配法で溶出し、180mlから25mlまで
の画分を集め、エタノールを留去したのち、凍結
乾燥する。収量115mg,〔α〕24 −33.6゜(c=
0.6,50%酢酸水中),Rf30.54(アビセル),アミ
ノ酸分析(4%チオグリコール酸5.7N―塩酸加
水分解):Arg2.03(2);Trp0.87(1);
Asp3.03(3);Thr0.97(1);Ser0.73
(1);Glu2.13(2);Ala1.00(1);Val1.03
(1);Met1.00(1);Leu1.03(1);
Phe1.03(1),(ペプチド含量85.7%) (16) H―Asp―Ser―Arg―Arg―Ala―Gln―
Asp―Phe―Val―Gln―Trp―Leu―Met―Asn
―Thr―OH(glucagon(15―29))の製造 H―Asp―Ser―Arg―Arg―Gln―Asp―Phe
―Val―Gln―Trp―Leu―Met(O)―Asn―Thr
―OH 225mgを5%チオグリコール酸水20mlに溶
かし、50℃で20時間放置するとゲルが析出する。
水を減圧で留去したのち、残留物を50%酢酸5ml
に溶かし、セフイデクスG―25のカラム(2.3×
118cm)に付す。50%酢酸水で溶出し、180mlから
24mlまでの画分を集めて凍結乾燥する。収量220
mg,〔α〕24 ―30.0゜(c=0.50%酢酸水中),
Rf30.59(アビセル),アミノ酸分析(4%チオグ
リコール酸,5.7N―塩酸加水分解):Arg2.15
(2);Trp0.91(1);Asp3.13(3);
Thr0.99(1);Ser0.87(1);Glu2.20
(2);Ala1.05(1);Val0.96(1);Met1.00
(1);Leu1.07(1);Phe1.07(1);ペプチ
ド含量79.3% 実施例 2 glucagon(15―29)とBSAとの結合体の製造 グルカゴン(15―29)10mg,BSA20mgを0.2M
リン酸緩衝液(PH7.3)4mlに溶かし、5%グル
タルアルデヒド水溶液4mlを加えて、室温で3時
間かき混ぜた後、4℃で透析(水2×4)し、
凍結乾燥する。収量38mg。 上記で得られた凍結乾燥物〔グルカゴン(15―
29)とBSAの縮合物〕及びBSAのアミノ酸分析
(各1mgを6N―HCl 1ml中で110℃,24時間加水
分解)の測定結果を次表に示す。
Glucagon is a hormone that plays an extremely important role in sugar metabolism in animals, and measurement of its blood concentration is therefore extremely important clinically. The present application relates to antigens useful for producing antibodies for immunoassays useful for measuring the blood concentration of this hormone, particularly glucagon derived from the pancreas. Pancreatic glucagon (H-His-Ser-Gln-Gly-
Thr―Phe―Thr―Ser―Asp―Tyr―Ser―Lys―
Tyr―Leu―Asp―Ser―Arg―Arg―Ala―Gln―
Asp―Phe―Val―Gln―Trp―Len―Met―Asn―
Thr-OH) and intestinal glucagon exist, and pancreatic glucagon is said to be the main one that affects blood sugar levels. Therefore, the clinically necessary measurement value is mainly the blood concentration of glucagon derived from the pancreas. It is well known that the production of antibodies with specificity that can be used clinically is extremely rare, and that antibodies that cross-react with both pancreatic glucagon and intestinal glucagon are mainly obtained. The present inventors synthesized various peptides with the aim of producing antigens that can produce antibodies specific to pancreatic glucagon.
As a result of the investigation, we obtained an unexpected new finding that a pentadecapeptide extending from the 15th position of glucagon to the C-terminus is extremely useful for this purpose, and the present invention was completed. The present invention relates to 1 H-Asp-Ser-Arg-Arg-Ala
―Gln―Asp―Phe―Val―Gln―Trp―Leu―Met
This invention relates to a condensation product obtained by condensing a novel peptide (2) represented by -Asn-Thr-OH with peptide (2) and bovine serum albumin with glutaraldehyde. In this specification, when amino acids, peptides, protective groups, active groups, etc. are indicated by abbreviations,
They are IUPAC - IUB Commission on
The abbreviations are based on Biological Nomenelature or common abbreviations in the field, examples of which are listed below. Furthermore, when an amino acid or the like can have optical isomers, the L-isomer is indicated unless otherwise specified. Arg: Arginine Trp: Tributophane Asn: Asparagine Asp: Aspartic acid Thr: Threonine Ser: Serine Glu: Glutamic acid Gln: Glutamine Ala: Alanine Val: Valine Met: Methionine Met (O): Methionine sulfoxide Leu: Leucine Phe: Phenyl Alanine Z: Carbobenzoxy Boc: t-Butyloxycarbonyl OBu t : t-Butyl ester OBzl: Benzyl ester ONB: N-Hydroxy-5-norbornene-
2,3-dicarboximide ester MBS: p-methoxybenzenesulfonyl HONB: N-hydroxy-5-merbornene-
2,3-dicarboximide DOC: N,N'-dicyclohexylcarbodiimide DCU: N,N'-dicyclohexylurea DMF: N,N'-dimethylformamide NMP: N-methyl-2-pyrrolidone TFA: Trifluoroacetic acid THF: Tetrahydrofuran TEA: Triethylamine DCHA: Dicyclohexylamine CMC: Carboxymethylcellulose BSA: Bovine serum albumin The peptide () of the present invention can be produced by conventional methods of peptide synthesis. Either a solid phase synthesis method or a liquid phase synthesis method may be used, but the liquid phase synthesis method is often advantageous. Such means of peptide synthesis are described, for example, in “The Peptides”, Volume 1 (1966),
Schroder and Lubke, Academic Press,
New York, USA or “Peptide Synthesis”
Izumiya et al., Maruzen Co., Ltd. (1975). Examples include imidazole method, redox method, and DCC/additive (eg, HONB, HOBt, HoSu) method. The compound () of the present invention has a starting material having a reactive carboxyl group corresponding to one of two fragments divided into two at any position of its peptide bond, and a reactive amino group corresponding to the other fragment. When the raw materials are condensed using a conventional method for peptide synthesis and the resulting condensate has a protecting group, it can be produced by removing the protective group using a conventional method. In the reaction process for producing peptide (), it is often desirable to protect Asp, and as a final step, the protecting group is removed from the protected peptide () in which at least one of the constituent amino acid residues of the peptide () is protected. In many cases, it can be produced by eliminating all of the Protection of functional groups that should not participate in the reaction of raw materials, protective groups, removal of the protective groups, activation of functional groups that participate in the reaction, etc. can also be appropriately selected from known methods or methods. As the protecting group for the amino group of the raw material, for example, carbobenzoxy, t-butyloxycarbonyl,
t-amyloxycarnyl, isobornyloxycarbonyl, p-methoxybenzyloxycarbonyl, 2-chloro-benzyloxycarbonyl,
Examples include adamantyloxycarbonyl, trifluoroacetyl, phthalyl, formyl, O-nitrophenylsulfenyl, diphenylphosphinothioyl, and the like. Examples of protecting groups for carboxyl groups include alkyl esters (e.g., methyl,
ester groups such as ethyl, propyl, butyl, t-butyl), benzyl ester group, p-nitrobenzyl ester group, p-methoxybenzyl ester group, p-chlorobenzyl ester group, benzhydryl ester group, carbobenzoxyhydrazide group , t-butyloxycarbonyl hydrazide group,
Examples include trityl hydrazide group. As a protecting group for the guanidino group of arginine,
Examples include nitro group, tosyl group, p-methoxybenzenesulfonyl group, carbobenzoxy, isobornyloxycarbonyl, and adamantyloxycarbonyl group. The guanidino group may also be protected in the form of an acid (eg, benzenesulfonic acid, toluenesulfonic acid, hydrochloric acid, sulfuric acid) salt. The hydroxyl group of threonine can be protected, for example, by esterification or etherification.
Examples of groups suitable for this esterification include lower alkanoyl groups such as acetyl groups, aroal groups such as benzoyl groups, and groups derived from carbonic acid such as benzyloxycarbonyl groups and ethyloxycarbonyl groups. Further, examples of groups suitable for etherification include benzyl group, tetrahydropyranyl group, and t-butyl group. However, the hydroxyl group of threonine does not necessarily need to be protected. Methionine may be protected in the form of sulfoxide. Raw materials with activated carboxyl groups include corresponding acid anhydrides, azides, active esters (pentachlorophenol, p-nitrophenol, N-hydroxysuccinimide, N-hydroxybenztriazole, N-hydroxy- Examples include esters with 5-norbornene-2,3-dicarboximide, etc. The peptide bond forming reaction may be carried out in the presence of a dehydrating agent (eg, a carbodiimide reagent such as dicyclohexylcarbodiimide, carbodiimidazole, etc.). This peptide condensation reaction can be carried out in the presence of a solvent. The solvent may be appropriately selected from those known to be usable in peptide condensation reactions. Examples include anhydrous or water-containing dimethylformamide, dimethyl sulfoxide, pyridine, chloroform, dioxane, dichloromethane, tetrahydrofuran, ethyl acetate, N-methylpyrrolidone, or a suitable mixture thereof. The reaction temperature is appropriately selected from the range known to be usable for peptide bond forming reactions, usually about -40°C to about 60°C, preferably about -20°C to about 0°C.
It is appropriately selected from the range of °C. After the completion of the condensation reaction, if the product has a protecting group, it can be removed by a conventional method. Such conventional methods include, for example, reductive methods (e.g., hydrogenation using catalysts such as palladium black, reduction with metallic sodium in liquid ammonia), acidolysis (e.g., with strong acids such as triooroacetic acid, hydrogen fluoride, methanesulfonic acid, etc.). acidolysis). The peptide () produced as described above can be collected from the reaction mixture by peptide separation means, extraction, distribution, column chromatography, etc. Since the peptide () has an argine residue,
It can also be extracted as salt. Examples of acids that can form salts include inorganic acids such as hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid, and phosphoric acid, and organic acids such as formic acid, acetic acid, propionic acid, lactic acid, citric acid, oxalic acid, and maleic acid. Acid can be given. The raw material from which the peptide (2) of the present invention can be produced can also be produced by sequentially condensing each amino acid according to its amino acid sequence using the conventional method of peptide synthesis. The condensation of the pentadecapeptide () of the present invention thus obtained with bovine serum albumin can be carried out using the known glutaraldehyde method [e.g., PROCEEDINGS
OF THE SOIETY FOR EXPERIMENTAL BIOLOGY
and Medicine, 128, 347-350 (1968)]. Bovine serum albumin is used as a carrier for antigens, and in some cases it may be replaced with other proteins that can be used for the same purpose. The optimal ratio of pentadecapeptide () to bovine serum albumin is 10 mg to approximately 20 mg, and a reaction pH of around 7.3 often gives good results. Further, the reaction time is often 2 to 6 hours at room temperature, but around 3 hours is often particularly appropriate. The condensation product thus prepared can be stored by dialysis against water at around 4° C. and freeze-drying in a conventional manner. The condensation product of the present invention produced as described above can be administered to various mammals (e.g., rabbits, mice) according to conventional methods to efficiently produce a product that is specific for pancreatic glucagon. Antibodies with good reactivity can be produced. Peptide () is
Any amount effective to produce antibodies may be sufficient; for example, subcutaneous administration of about 2 mg once to rabbits five times at two-week intervals may produce antibodies. In the following examples, thin layer chromatography was carried out using Silica Gel Plate 60F 254 manufactured by Merck Co., Ltd. or Cellulose Plate, Avicel SF manufactured by Futokoshi Yakuhin Co., Ltd., and the following developing solvent was used. Rf 1 : Chloroform: Methanol: Acetic acid = 9:
10.5 Rf 2 :Chloroform:methanol:water=7:
3:0.5 Rf 3 :n-butanol:pyridine:acetic acid:water=
30:20:6:24 Example 1 (1) Production method of Boc-Asn-Thr OBzl Dissolve 112g of Boc-Thr OBzl in 300ml of TFA,
After shaking at room temperature for 20 minutes, add 30 ml of concentrated hydrochloric acid,
Concentrate the solution under reduced pressure. Dissolve the residue in 1 THF, cool on ice, and neutralize by adding 50 ml of TEA. To this, Boc―Asn―OH 76.7g, HONB64, 5g,
Add 74.3g of DCC and stir for 15 hours. precipitated
After filtering off the DCU, the solvent is distilled off under reduced pressure and the residue is dissolved in ethyl acetate. This is washed successively with 10% citric acid water (300 ml x 3), saturated sodium bicarbonate water (300 ml x 3), and water (300 ml x 3), and dried over anhydrous sodium sulfate. After the solvent was distilled off under reduced pressure, ether (1) was added to the residue, the powder was collected by filtration, and then recrystallized from acetonitrile. Yield 105.1g (75.2%) mp165-166℃
[α] 23 D -13.9℃ (c=0.9, in DMF), Rf 1 0.51,
Elemental analysis calculation value as C 20 H 29 O 7 N 3 : C56.72;
H6.90; N9.92, Experimental value: C57.01; H6.89; N9.94 (2) Production method of Bocc-Met(O)-Asn-Thr-OBzl 50.0g of Boc-Asn-Thr-OBzl and 170ml of TFA After shaking at room temperature for 30 minutes, concentrate, add 500 ml of ether, filter as a powder, and dry.
Dissolve this in 400ml of THF, cool on ice, add 20ml of TEA, and then dissolve Boc-Met(O)-ONB (Boc-Met
Dissolve 31.3 g of (O).OH and 23.3 g of HONB in 200 ml of THF, cool on ice, add 26.8 g of DCC, and stir for 4 hours to prepare. ) and stir for 15 hours. After the solvent was distilled off under reduced pressure, ethyl acetate (200 ml) and ether (200 ml) were added to the residue, the powder was collected by filtration, and reprecipitated from acetonatrile. yield
48.5g (72.0%), mp145-147℃ [α] 23D -6.5
(c=1.1, in DMF, Rf 1 0.19, elemental analysis calculation as C 25 H 38 O 9 N 4 S: C52.62; H6.71; N9.82;
S5.62, experimental value: C52.44; H6.73; N9.60; S5.15 (3) Boc-Leu-Met(O)-Asn-Thr-Production method of OBzl Boc-Met(O)-Asn- Thr―OBzl15.0g
After adding 45 ml of TFA and shaking at room temperature for 45 minutes,
Concentrate, add 100 ml of ether, filter to obtain a powder, and dry. Dissolve this in 50ml of DMF, cool on ice, add 5.7ml of TEA, and add Boc-Leu-ONB.
(Boc―Leu―OH6.69g, HoNB5.70g, DCC6.56g
(prepared above) and stir for 15 hours. After the solvent was distilled off under reduced pressure, 200 ml of ethyl acetate was added to the residue, the powder was collected by filtration, and reprecipitated from acetonitrile-ethyl acetate. Yield 15.0g (83.4%),
mp134-136℃, [α] 24 D -15.1゜(c=1.0,
(in DMF), Rf 1 0.25, elemental analysis calculation as C 31 H 49 O 10 N 5 S: C54.45; H7.22; N10.24; S4.69,
Experimental value: C54.62; H7.60; N9.89; S3.95 (4) Production of Z-Gln-Trp-OBzl H-Trp-OBzl/paratoluenesulfonate
Dissolve 50.0g in THF500ml, cool on ice, TEA15.4
ml, Z-Gln-OH28.0g, HONBl9.7g,
Add 22.7g of DCC and stir for 15 hours. After filtering off the precipitated DCU, it is concentrated and the residue is dissolved in 300 ml of ethyl acetate. This was mixed with saturated sodium bicarbonate water (150ml x 2) and 10% citric acid water (150ml x 2).
2) Wash sequentially with water (150ml x 2). After distilling off the solvent under reduced pressure, the residue was dissolved in 300 ml of THF.
Insoluble matter is filtered off. After concentrating this, ether
Add 500ml, filter it as a powder, and recrystallize it from acetonitrile. Yield 46.1g (82.8%),
[α] 23 D +5.8° (c=1.0, in DMF), Rf 1 0.60,
Elemental analysis calculation value as C 31 H 32 O 5 N 4 : C66.89;
H5.80; 10.07, Experimental value: C66.79; H5.71; N10.20 (5) Production of Z-Val-Gln-Trp-OH Add 50.0 g of Z-Gln-Trp-OBzl to 700 ml of methanol
When the solution is dissolved in water and subjected to catalytic reduction (catalyst: palladium black) for 5 hours, crystals precipitate, which are collected by filtration. This is suspended in 300 ml of DMF, 13 ml of TEA is added and dissolved, and the catalyst is filtered off. Z-Val- to this
After adding ONB37.0g and stirring for 10 hours, 1N-
Add 100 ml of hydrochloric acid to neutralize, then add 500 ml of water and filter as a powder. Wash this thoroughly with methanol. Yield 43.0g (84.7%), mp246-247
℃〔α〕 23 D +12.4゜(c=0.9, in DMF),
Elemental analysis calculation as Rf 1 0.14, C 29 H 35 O 7 N 5 :
C61.58; H6.24; N12.38, Experimental value: C61.86;
H6.30; N12.36 (6) Production of Z-Phe-Val-Gln-Trp-OH Dissolve 5.1 g of Z-Val-Gln-Trp-OH in 100 ml of acetic acid, perform catalytic reduction for 3 hours, and then remove the catalyst by filtration. and concentrate. Suspend this in 200ml of DMF and add
Z- prepared from 2ml of TEA and 2.70g of Z-Phe-OH
Add Phe-ONB and stir for 7 hours. The solvent was distilled off under reduced pressure, and aqueous acetic acid was added to the residue to form a gel, which was collected by filtration. This is reprecipitated from methanol. Yield 5.50g (84.5%), mp240℃〔α〕 24D +4.1゜(
c.
= 1.0, in DMF), Rf 1 0.15, C 38 H 44 O 8 N 6・1/2
Elemental analysis calculation as H 2 O: C63.23; H6.28;
N11.64, experimental value: C63.11; H6.29; N11.80 (7) Boc―Asp(OBzl)―Phe―Val―Trp―OH
Production of Z―Phe―Val―Gln―Trp―OH8.5g,
Dissolve in a mixture of 150 ml of DMF and 50 ml of acetic acid and perform catalytic reduction for 5 hours. After filtering off the catalyst, concentrate, add 100 ml of methanol to the residue, and collect by filtration as crystals. Suspend this in 200ml of DMF, 3.0ml of TEA,
Bo―Asp(OBzl)ONB(Boc―Asp(OBzl)―
(prepared from 3.9 g of OH, 2.4 g of HONB, and 2.7 g of DCC) and stir for 10 hours. After evaporating the solvent under reduced pressure, aqueous acetic acid is added to the residue, the gel is collected by filtration, and reprecipitated from DMF and water. Yield 6.3g (58.1
%), mp191-192℃ (decomposition), [α] 24 D -6.2゜ (c=1.1, in DMF), Rf 1 0.11C 45 H 57 O 11 N 7・3/
Elemental analysis calculated value as 2H 2 O: C60.64;
H6.63; N10.76, experimental value: C60.30; H6.48;
N11.34 (8) Boc―Gln―Asp(OBzl)―Phe―Val―Gln
-Production of Trp-OH Boc-Asp (OBzl)-Phe-Val-Gln-Trp-
Add 50 ml of TFA to 6.0 g of OH in a nitrogen stream, shake for 10 minutes, concentrate, add ether, and filter to obtain a powder. Dissolve this in 100ml of DMF,
Add 2.0ml of TEA and add Boc-Gln-ONB (Boc-Gln
- Prepared from OH1.76g, HONB1.34g, DCC1.54g)
Add and stir for 15 hours. Aqueous acetic acid is added to this, the powder is collected by filtration, and then reprecipitated from acetonitrile and water. Yield 5.50g (82.6%), m.
p.210-212℃ (decomposition), [α] 24 D -10.1゜(c=
1.1, in DMF), Rf 1 0.09, Elemental analysis calculated value as C 51 H 65 O 13 N 9 : C60.52; H6.47; N12.46, experimental value: C60.19; H6.37; N12. 23 (9) Production of Z-Arg(MBS)-Ala-OBu t Dissolve 31.0 g of Z-Ala-OBu t in 300 ml of methanol and perform catalytic reduction for 5 hours, then filter off the catalyst and concentrate. On the other hand, Z-Arg(MBS)-OH.
Suspend 53.0 g of DCHA in 500 ml of ethyl acetate, add 200 ml of 10% citric acid, shake well, wash with water, and dry over anhydrous sodium sulfate. this
Dissolve in 500 ml of THF and add the previously prepared H
-Ala-OBu t , add 14.9g of HONB, cool on ice, add 17.1g of DCC and stir for 10 hours. After filtering off the precipitated DCU and concentrating, 500% ethyl acetate was added.
ml, 10% citric acid water (200ml x 3), saturated sodium bicarbonate water (200ml x 3), water (200ml
Wash with x3) and dry with anhydrous sodium sulfate. After the solvent is distilled off under reduced pressure, 300 ml of ether is added to the residue to form a powder, which is collected by filtration. yield
44.5g (66.8%), mp125-127℃, [α] 25D -6.0
゜ (c=1.0, in DMF), Rf 1 0.62, elemental analysis calculated value as C 28 H 39 O 8 N 5 S: C55.52; H6.49; N11.56;
S5.27, experimental value: C55.71; H6.49; N11.81; S5.29 (10) Z―Arg(MBS)―Arg(MBS)―Ala―
Production of OBu t Dissolve 43g of z-Arg(MBS)-Ala-OBu t in 500ml of methanol, reduce for 5 hours, and then concentrate. Dissolve the residue in 200ml of DMF and add Z-Arg
(MBS)-OH(Z-Aug(MBS)-OH・
Add 14.0 g of DCHA (prepared from 49.7 g of DCHA) and 14.0 g of HONB, cool on ice, add 16.1 g of DCC, and stir for 15 hours.
After filtering off the precipitated DCU, concentrate and dissolve the residue in 500 ml of chloroform. This is washed with 10% citric acid water (300 ml x 3), saturated sodium bicarbonate water (300 ml x 3) and water (300 ml x 3) in this order, and dried over magnesium sulfate. After distilling off the solvent under reduced pressure, 300 ml of methanol is added and the crystals are collected by filtration and recrystallized from methanol. Yield 52.4g
(79.2%), mp116-118℃ [α] 25 D -8.8゜(c
=
1.0, in DMF), Rf 1 0.42, C 41 H 57 O 12 N 9 S 2・2H 2 O
Elemental analysis calculation value as: C50.86; H6.35;
N13.02; S6.62, experimental value: C51.05; H6.08;
N13.11; S6.62 (11) Boc―Ser―Aug(MBS)―Arg(MS)―
Manufacturing of Ala-OBu t Z-Arg(MBS)-Arg(MBS)-Ala-
Dissolve 30.0 g of OBut in a mixture of 80 ml of DMF and 300 ml of methanol, and catalytically reduce the solution for 7 hours. After filtering the catalyst and distilling off the methanol under reduced pressure, add Boc-
Add Ser-OH7.3g and HONB6.3g, cool on ice,
Add 7.3g of DCC and stir for 10 hours. precipitated
The DCU is filtered off, the solvent is distilled off under reduced pressure and the residue is dissolved in 500 ml of chloroform. This is washed with saturated sodium bicarbonate (300 ml x 2) and water (300 ml x 2), and dried over magnesium sulfate. After distilling off the solvent under reduced pressure, dissolve in 30 ml of loloform and apply to a silica gel column (400 g). Developed with a solvent of chloroform: methanol: acetic acid (9:0.7:0.35), collected fractions 2 from 600 ml,
Concentrate and add ether to a powder. yield
25.5g (79.0%), mp85-88℃, [α] 26D - 20.9
° (c=1.0, in methanol), Rf 1 0.33,
Elemental analysis calculation values as C 41 H 64 O 14 N 10 S 2・H 2 O:
C49.09; H6.63; N13.96; S6.39, experimental value:
C48.96; H6.55; N13.70; S5.84 (12) Boc―Asp(OBzl)―Ser―Arg(MBS)―
Production of Arg(MBS)-Ala-OH Boc-Ser-Arg(MBS)-Arg(MBS)-Ala
- Add 50 ml of TFA to 10.5 g of OBu t , shake and mix at room temperature for 60 minutes, concentrate, add 300 ml of ether, and filter to obtain a powder. Dissolve this in 50ml of DMF,
TEA4.1ml, Boc―Asp(OBzl)・ONB(Boc―
Asp (OBzl)・OH3.4g, HONB1.97g, DCC2.27g
(prepared above) and stir for 15 hours. After distilling off the solvent under reduced pressure, aqueous acetic acid is added to the residue, and the powder is collected by filtration and dried. This is reprecipitated from acetonitrile ether. Yield 6.0g (51.5
%), mp126-130℃, [α] 24 D +3.5゜(c=1.0

(in DMF), Rf 1 0.17, elemental analysis calculation as C 48 H 67 O 17 N 11 S 2・2H 2 O: C49.26; H6.12; N13.17;
S5.48, experimental value: C49.62; H5.84; N13, OO;
S5.03 (13) Boc―Gln―Asp(OBzl)―Phe―Val―
Gln―Trp―Leu―Met(O)―Asn―Thr―
Production of OBzl Boc-Leu-Met(O)-Asn-Thr-OBzl
Add 25 ml of TFA to 3.25 g, shake at room temperature for 15 minutes, concentrate, add 100 ml of ether to the residue, make a powder, filter, and dry. This is NMP10
ml, add 2 ml of TEA, shake well, add 100 ml of ether, and filter again as a powder. Dissolve this in 100ml of DMF and add Boc-
Gln―Asp(OBzl)―Phe―Val―Gln―Trp―
After adding 4.80g of OH and 2.70g of HONB and dissolving it,
Cool on ice, add 1.55 g of DCC, and stir for 58 hours to form a gel-like reaction solution. After the solvent is distilled off under reduced pressure, the residue is thoroughly washed with aqueous acetonitrile. Yield 5.75g (76.8%), mp23.4℃ (decomposition)
[α] 26 D -15.8° (c=0.4, in acetic acid), Rf 2 0.63,
Elemental analysis calculation as C 77 H 104 O 20 N 14 S:
C58.61; H6.64; N12.43; S2.03, experimental value:
C59.13; H6.96; N12.40; S1.70 (14) Boc―Asp(OBzl)―Ser―Arg(MBS)
―Arg(MBS)―Ala―Gln―Asp(OBzl)―
Phe-Val-Gln-Trp-Leu-Met(O)-Asn
―Production of Thr―OBzl Boc―Gln―Asp(OBzl)―Phe―Val―Gln―
Trp―Leu―Met(O)―Asn―Thr―OBzl
Add 1 ml of anisole to 5.20 g, then add 35 ml of TFA in a nitrogen stream, stir at room temperature for 15 minutes, concentrate, add 100 ml of ether to the residue, and collect by filtration as a powder. Dissolve this in 20ml of NMP,
Add 2.7 ml of TEA and shake thoroughly, then add 200 ml of ether and filter as a powder. Dissolve this in 150ml of DMF, Boc―Asp(OBzl)―
Ser―Arg(MBS)―Arg(MBS)―Ala―
Add 3.66g of OH and 2.36g of HONB, add ice and salt to -10
Cool to ℃ and add 1.02 g of DCC. The reaction solution was heated to 0°C.
After stirring for 10 hours at room temperature and 24 hours at room temperature, the precipitated DCU was filtered off and the solvent was distilled off under reduced pressure. Add 50 ml of water to the residue, filter it as a powder, and wash thoroughly with aqueous acetonitrile. Yield 5.3g
(61.1%), mp237℃ (decomposition), [α] 26 D -7.1゜(c
= 0.9, in acetic acid), Rf 2 0.63, C 120 H 161 O 34 N 25 S 3
Elemental analysis calculation value as 2H 2 O: C54.82;
H6.32; N13.32; S3.57, experimental value: C54.47;
H6.16; N13.07; S3.47 (15) H―Asp―Ser―Arg―Arg―Ala―Gln―
Asp―Phe―Val―Gln―Trp―Leu―Met(O)
-Production of Asn-Thr-OH Boc-Asp (OBzl)-Ser-Arg (MBS)-
Arg(MBS)-Ala-Gln-Asp(OBzl)-Phe-
Val―Gln―Trp―Leu―Met(O)―Asn―Thr―
Add 0.25 ml of anisole to 400 mg of OBzl, add 5 ml of methanesulfonic acid, shake and mix at room temperature for 60 minutes, and then add 100 ml of ether to precipitate an oily substance. After removing the ether by decanting, the residue was dissolved in 10 ml of water and mixed with Amberlite IRA-410.
(acetic acid type) column (1 x 10 cm), cool the eluate (liquid volume 50 ml) on ice, add 10 ml of 3N ammonia water, stir at 0°C for 30 minutes, and freeze-dry. Dissolve this in 30 ml of water, and add it to a CMC column (2.2
x 18 cm) and eluted using a linear gradient method from water (500 ml) to 0.2 M ammonia acetate (500 ml).
Fractions from 150 ml to 195 ml are collected and lyophilized. Yield 150mg. Next, dissolve this in 20 ml of water, apply it to an Amberlite XAD-2 column (1.6 x 5 cm), and mix water (200 ml) with 80% ethanol (200 ml).
Elute with a linear gradient method up to 25 ml, collect fractions from 180 ml to 25 ml, distill off the ethanol, and freeze-dry. Yield 115 mg, [α] 24 D -33.6° (c=
0.6, 50% acetic acid in water), Rf 3 0.54 (Avicel), amino acid analysis (4% thioglycolic acid 5.7N - hydrochloric acid hydrolysis): Arg2.03 (2); Trp0.87 (1);
Asp3.03 (3); Thr0.97 (1); Ser0.73
(1); Glu2.13 (2); Ala1.00 (1); Val1.03
(1);Met1.00(1);Leu1.03(1);
Phe1.03 (1), (peptide content 85.7%) (16) H-Asp-Ser-Arg-Arg-Ala-Gln-
Asp―Phe―Val―Gln―Trp―Leu―Met―Asn
-Production of Thr-OH (glucagon (15-29)) H-Asp-Ser-Arg-Arg-Gln-Asp-Phe
―Val―Gln―Trp―Leu―Met(O)―Asn―Thr
- Dissolve 225mg of OH in 20ml of 5% thioglycolic acid water and leave it at 50℃ for 20 hours to precipitate a gel.
After distilling off the water under reduced pressure, 5 ml of 50% acetic acid was added to the residue.
Sefidex G-25 column (2.3×
118cm). Elute with 50% acetic acid water, from 180ml
Fractions up to 24 ml are collected and lyophilized. Yield 220
mg, [α] 24 D -30.0° (c = 0.50% acetic acid in water),
Rf 3 0.59 (Avicel), amino acid analysis (4% thioglycolic acid, 5.7N-hydrochloric acid hydrolysis): Arg2.15
(2); Trp0.91 (1); Asp3.13 (3);
Thr0.99 (1); Ser0.87 (1); Glu2.20
(2);Ala1.05(1);Val0.96(1);Met1.00
(1); Leu1.07 (1); Phe1.07 (1); Peptide content 79.3% Example 2 Production of conjugate of glucagon (15-29) and BSA 10 mg of glucagon (15-29), 20 mg of BSA at 0.2 M
Dissolved in 4 ml of phosphate buffer (PH7.3), added 4 ml of 5% glutaraldehyde aqueous solution, stirred at room temperature for 3 hours, and dialyzed at 4°C (2 x 4 water).
Freeze dry. Yield 38mg. Lyophilized product obtained above [glucagon (15-
The results of amino acid analysis of BSA (1 mg of each were hydrolyzed in 1 ml of 6N HCl at 110°C for 24 hours) are shown in the table below.

【表】 上記のアミノ酸分析の結果は、BSA1分子に対
しグルカゴン(15―29)の約10分子が縮合してい
ることを示す。また本縮合物は約270〜300℃の分
解点を示す。 参考例 1 抗体の製造法 実施例2と同様な方法で製造したグルカゴン
(15―29)と牛血清の結合物8mg(グルカゴン
(15―29)2mgを、牛血清と結合したもの)を蒸
留水1mlに溶かし、これにフロイント コンプリ
ート アジユバンド(Freund complete
adjuvant)1mlを加えてよく混和し、乳剤を作
り、これをウサギの皮下数ケ所に注射する。以上
の操作を2週間おきに5回行ない、最終の注射
後、10日で採血し、Pilot assayを行なう。その
結果、膵グルカゴンと特異的に反応し、腸管グル
カゴンとは反応せず、最終希釈濃度63000倍で使
用可能なグルカゴン抗体を得る事が出来る。又、
この抗体は、各種グルカゴンフラグメント(グル
カゴン(15―23)NH2,グルカゴン(1―14)
OMe,グルカゴン(25―29))とは全く反応しな
い。
[Table] The above amino acid analysis results show that approximately 10 molecules of glucagon (15-29) are condensed to one molecule of BSA. Moreover, this condensate exhibits a decomposition point of about 270-300°C. Reference Example 1 Method for producing antibodies 8 mg of a conjugate of glucagon (15-29) and bovine serum produced in the same manner as in Example 2 (2 mg of glucagon (15-29) conjugated with bovine serum) was added to distilled water. Dissolve in 1 ml and add Freund Complete Ajiyuband to this.
Add 1 ml of adjuvant) and mix well to make an emulsion, which is injected subcutaneously into the rabbit at several locations. The above procedure is performed 5 times at two-week intervals, and 10 days after the final injection, blood is collected and pilot assay is performed. As a result, it is possible to obtain a glucagon antibody that specifically reacts with pancreatic glucagon, does not react with intestinal glucagon, and can be used at a final dilution concentration of 63,000 times. or,
This antibody contains various glucagon fragments (glucagon (15-23) NH 2 , glucagon (1-14)
OMe, glucagon (25-29)) does not react at all.

Claims (1)

【特許請求の範囲】 1 H―Asp―Ser―Arg―Arg―Ala―Gln―Asp
―Phe―Vel―Gln―Trp―Leu―Met―Asn―Thr
―OHで表わされるペプチド。 2 H―Asp―Ser―Arg―Arg―Ala―Gln―Asp
―Phe―VAl―Gln―Trp―leu―Met―Asn―Thr
―OHで表わされるペプチドと牛血清アルブミン
とをグルタルアルデヒドで縮合せしめた縮合生成
物。
[Claims] 1 H-Asp-Ser-Arg-Arg-Ala-Gln-Asp
-Phe-Vel-Gln-Trp-Leu-Met-Asn-Thr
-Peptide represented by OH. 2 H-Asp-Ser-Arg-Arg-Ala-Gln-Asp
―Phe―VAl―Gln―Trp―leu―Met―Asn―Thr
- A condensation product obtained by condensing a peptide represented by OH and bovine serum albumin with glutaraldehyde.
JP8855677A 1977-07-22 1977-07-22 Novel glucagon fragment Granted JPS5424868A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP8855677A JPS5424868A (en) 1977-07-22 1977-07-22 Novel glucagon fragment
US05/924,553 US4206199A (en) 1977-07-22 1978-07-14 Novel glucagon fragment and its derivatives
GB7830677A GB2002387B (en) 1977-07-22 1978-07-21 Glucagon fragment and derivatives thereof
DE19782832090 DE2832090A1 (en) 1977-07-22 1978-07-21 GLUCAGON FRAGMENT AND ITS DERIVATIVES
FR7821686A FR2398051A1 (en) 1977-07-22 1978-07-21 NEW FRAGMENT OF GLUCAGON AND ITS DERIVATIVES
DE2858718A DE2858718C2 (en) 1977-07-22 1978-07-21

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8855677A JPS5424868A (en) 1977-07-22 1977-07-22 Novel glucagon fragment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP60251114A Division JPS61148128A (en) 1985-11-08 1985-11-08 Preparation of antibody

Publications (2)

Publication Number Publication Date
JPS5424868A JPS5424868A (en) 1979-02-24
JPS6120560B2 true JPS6120560B2 (en) 1986-05-22

Family

ID=13946133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8855677A Granted JPS5424868A (en) 1977-07-22 1977-07-22 Novel glucagon fragment

Country Status (1)

Country Link
JP (1) JPS5424868A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02239518A (en) * 1989-03-14 1990-09-21 Nitto Denko Corp Manufacture of transparent conductive laminated body
JPH0559985B2 (en) * 1985-03-14 1993-09-01 Nippon Denso Co

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5657753A (en) * 1979-10-16 1981-05-20 Toyo Jozo Co Ltd Novel glucagon fragment, and its use
JPS57183797A (en) * 1981-05-06 1982-11-12 Yamanouchi Pharmaceut Co Ltd Straight and purely short-chain peptide and its preparation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559985B2 (en) * 1985-03-14 1993-09-01 Nippon Denso Co
JPH02239518A (en) * 1989-03-14 1990-09-21 Nitto Denko Corp Manufacture of transparent conductive laminated body

Also Published As

Publication number Publication date
JPS5424868A (en) 1979-02-24

Similar Documents

Publication Publication Date Title
US3853837A (en) Novel nonapeptide amide analogs of luteinizing hormone releasing factor
US4206199A (en) Novel glucagon fragment and its derivatives
JPH03504013A (en) Peptide with T cell helper activity
EP2611825B1 (en) Solid phase synthesis of h(gly2)glp-2
JPS6319520B2 (en)
EP0270376B1 (en) Calcitonin gene-related peptide derivatives
JPH0273100A (en) Compound for medicine
JPS6223822B2 (en)
US3928306A (en) Peptides having xenopsin-like pharmacological activity
JPS60226898A (en) Novel gonadoliberin derivative and manufacture
JPS6120560B2 (en)
JPS6223258B2 (en)
JPS6121240B2 (en)
JPS5959654A (en) Hormone releasing factor analog and manufacture
US4358440A (en) Polypeptide and its production and use
US4820804A (en) Analogs of [1,7-di-alanine, des-19-leucine]calcitonin
JPH0461880B2 (en)
STÜBER et al. Synthesis and photolytic cleavage of bovine insulin B22–30 on a nitrobenzoylglycyl‐poly (ethylene glycol) support
JPS6251280B2 (en)
EP0370165B1 (en) Novel calcitonin derivative and salt thereof
JPH047360B2 (en)
JPS6126559B2 (en)
JP2628082B2 (en) Immunosuppressants
WO2024153090A1 (en) Glp-1-based triple agonist
JPH06192293A (en) Cyclic pentapeptide, its production and use thereof