JPH02237095A - Manufacture of heat-resistant printed wiring board - Google Patents

Manufacture of heat-resistant printed wiring board

Info

Publication number
JPH02237095A
JPH02237095A JP2837390A JP2837390A JPH02237095A JP H02237095 A JPH02237095 A JP H02237095A JP 2837390 A JP2837390 A JP 2837390A JP 2837390 A JP2837390 A JP 2837390A JP H02237095 A JPH02237095 A JP H02237095A
Authority
JP
Japan
Prior art keywords
heat
printed wiring
wiring board
organic solvent
polar organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2837390A
Other languages
Japanese (ja)
Other versions
JPH0767007B2 (en
Inventor
Takeo Kimura
武夫 木村
Hideo Takeyoshi
武吉 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KOUDOSHI KOGYO KK
Nippon Kodoshi Corp
Original Assignee
NIPPON KOUDOSHI KOGYO KK
Nippon Kodoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP10669886A external-priority patent/JPS62263692A/en
Application filed by NIPPON KOUDOSHI KOGYO KK, Nippon Kodoshi Corp filed Critical NIPPON KOUDOSHI KOGYO KK
Priority to JP2837390A priority Critical patent/JPH0767007B2/en
Publication of JPH02237095A publication Critical patent/JPH02237095A/en
Publication of JPH0767007B2 publication Critical patent/JPH0767007B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

PURPOSE:To obtain a heat-resistant flexible printed wiring board provided with an overlay which is capable of dealing with an automatic assembly line of high operational speed, excellent in dimensional stability in a hot and wet environment, soldering heat resistance, and flexibility, and simple in a manufacturing process by a method wherein the overlay is formed of specific aromatic polyamide-imide resin soluble in a polar organic solvent. CONSTITUTION:After the formation of a conductor pattern, resin solution, in which polar organic solvent soluble aromatic polyamide-imide resin obtained by reacting aromatic diamine with anhydrous trimellitic chloride in a polar organic solvent and filler, if necessary, are dispersed, is applied onto the conductor pattern to form an overlay. The used aromatic polyamide-imide resin is soluble in polar organic solvent, it is desirable that its end is hindered with aniline or the like, and its reduced viscosity is not limited if it is 0.5 or above but it is practical that the viscosity ranges from the viscosity of the solution in use to 3.5 or so. By this setup, a overlay is excellent in soldering heat resistance and other physical properties such as resistance to breakage, adhesion, and dielectric strength, and improved in reliability for long term service.

Description

【発明の詳細な説明】 〔産業−Vの利用分野〕 本発明は耐熱性プリント配線板(特にフレキシブルな耐
熱性プリント配線板)の製造方法に関1る。さらに詳し
くは、極性有機溶媒可溶性芳香族ポリアミドイミド樹脂
又はその組成物をカバーレイと16ことを特徴とする耐
熱性プリン1〜配線板(特に耐熱性フレキシブル1リン
1・配線板》の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of Industry-V] The present invention relates to a method for manufacturing a heat-resistant printed wiring board (particularly a flexible heat-resistant printed wiring board). More specifically, it relates to a method for producing a heat-resistant pudding 1 to a wiring board (particularly a heat-resistant flexible phosphor 1/wiring board), which is characterized by using a polar organic solvent-soluble aromatic polyamide-imide resin or a composition thereof as a coverlay. It is something.

(従来の技術) エレク]・ロニクス応用機器の小型化、軽め化、高性能
化が急速に進んでいる。この進歩を支えているものの1
つに周辺部品材料の著しい発展がある。とりわCプ、プ
リント配線板の進歩は[1ざましく、上記の小型軽量化
及び高性能化に大きく査勾してぎた。最近は、その中で
もフレキシブルプリント配線板に注目か集まってきてお
り、より−mの改良が望まれている。
(Conventional technology) Electronics and electronics application equipment is rapidly becoming smaller, lighter, and more sophisticated. One thing that supports this progress
There has been significant progress in materials for peripheral parts. In particular, advances in printed wiring boards have been dramatic, and have greatly influenced the above-mentioned miniaturization, weight reduction, and performance improvement. Recently, flexible printed wiring boards have been attracting attention, and further improvements in -m have been desired.

即ち、プリント配線板には半[[]{=J等の工程に耐
えるだけの高い耐熱性が必要とされるが、この様な耐熱
性があって、強度もあり、電気特性も優れて、しかも可
撓性(フレキシビリティがある)があるというような3
拍子も4拍子も揃った材料となると、いまだ実現してい
ない。
In other words, printed wiring boards must have high heat resistance to withstand processes such as half-[[] Moreover, it has flexibility (flexibility).
When it comes to materials that have both beats and quadruple beats, this has not yet been achieved.

今のところこれらの要請に最も近いものとしては、ポリ
イミドフイルムに銅箔を接着したフレキシブル銅張板を
パターニングしエッヂングした後、カバーレイフィルム
(予め金聖で穿孔した、接着剤付きのポリイミドフイル
ム》をII:@被覆して製造したものがある(電子材料
編集部編[プリン1・配線技術J 1983年6月10
日、工業調査会発行:参照)。
At present, the closest thing to these requirements is to pattern and edge a flexible copper-clad board made by bonding copper foil to a polyimide film, and then use a coverlay film (polyimide film with adhesive, pre-perforated with Kinsei). II: @Some products are manufactured by coating (edited by Electronic Materials Editorial Department [Princess 1/Wiring Technology J June 10, 1983)
Japan, Published by the Industrial Research Council: Reference).

しかし、このものもカバーレイ被るにおいて接着剤を使
用しているため、せっかくのポリイミドの耐熱性が生か
ざれず半田耐熱性に於いて不満足のものとなっており、
又ポリイミド樹脂の吸湿性のため乾燥エージング工程に
イ1ざないと「ふくれ」等の問題が起こるという問題点
を有していた。
However, since this product also uses adhesive to cover the coverlay, the heat resistance of the polyimide is not fully utilized, resulting in unsatisfactory soldering heat resistance.
Furthermore, due to the hygroscopic nature of the polyimide resin, problems such as "blistering" may occur if the dry aging process is not completed.

加えて、ポリイミドはもともと高価な樹脂であるところ
、金型で型通り打ち抜く際に発生する口スが馬鹿になら
ず、多種多様のパターンに対応するための金型コスト及
び手間の増加と相まって高価に過ぎるという欠点を有し
ていた。
In addition, polyimide is an expensive resin to begin with, so the spouts that occur when punching out a mold with a mold are significant, and this increases the mold cost and labor needed to accommodate a wide variety of patterns, making it expensive. It had the disadvantage of being too large.

なお、工程が簡便で、コストも安い半tIlレジスト等
のコーティング剤によるオーバーコート方式も開発され
ているが、耐熱性が著しく低いか、可撓性が不足してい
るかのいずれかであり、安価であっても、性能的には前
記のポリイミド系のプリント配線板の域には達していな
い。
In addition, overcoating methods using coating agents such as half-tIl resists, which are simple and inexpensive, have been developed, but they either have extremely low heat resistance or lack flexibility, and are inexpensive. However, in terms of performance, it does not reach the level of the polyimide-based printed wiring board mentioned above.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この様な状況下にあって、本発明者は高速化している自
動組み立てラインに対応しうる熱湿時の寸法安定性、半
田耐熱性を有し、可撓性・b優れ、且つ工程も簡単なカ
バーレイ(カバーコート)を用いた耐熱プリント配線板
、とくに耐熱フレキシブルプリント配線板を提供1べく
、鋭意検ト1を重ねた結果、特定の極性有機溶媒可溶性
芳香族ポリ7ミドイミド樹脂を用いることによって、目
的を達成できることを見出し、本発明に到達した。
Under these circumstances, the present inventor developed a product that has dimensional stability in hot and humid conditions, soldering heat resistance, excellent flexibility, and is easy to process, making it compatible with increasingly high-speed automatic assembly lines. In order to provide a heat-resistant printed wiring board, especially a heat-resistant flexible printed wiring board, using a coverlay (cover coat), as a result of extensive research, we have found that a specific polar organic solvent-soluble aromatic poly7amide-imide resin is used. The inventors have discovered that the object can be achieved by the following methods, and have arrived at the present invention.

〔課題を解決するための手段〕[Means to solve the problem]

すなわら本発明は、導体パターン形成後に、芳香族ジア
ミンと無水トリメリット酸クロリドとを極性h−i溶媒
中で反応させて得た極性有機溶媒可溶性芳香族ポリアミ
ドイミド樹脂及び必要によりフィラーを分散した樹脂溶
液を該導体パターン上に塗1rjシ、カバーレイを形成
せしめることを特徴とする耐熱性プリント配線板の製造
方法を提供するものである。
That is, in the present invention, after forming a conductor pattern, a polar organic solvent-soluble aromatic polyamideimide resin obtained by reacting an aromatic diamine and anhydrous trimellitic acid chloride in a polar hi solvent and, if necessary, a filler is dispersed. The present invention provides a method for manufacturing a heat-resistant printed wiring board, which comprises applying a resin solution on the conductive pattern to form a coverlay.

又、本発明は上記芳香族ポリ7ミドイミド樹脂に特定の
フイラーを加えることにより一層その効果を向上せしめ
た耐熱性プリント配線板の製造方法も同時に提供するも
のである。
The present invention also provides a method for producing a heat-resistant printed wiring board in which the effect is further improved by adding a specific filler to the aromatic poly7imide resin.

以下本発明を詳しく説明する。The present invention will be explained in detail below.

本発明に使用ざれる芳香族ポリアミドイミド樹脂は極性
h機溶媒可溶性の芳香族ポリアミドイミド樹脂であって
、一般式 (但し、XはM素原子、メチレン基、硫黄原子、スルホ
ニル基、カルボニル阜を表わし、nは2以上の整数を表
わす)又は、その混合物が用いられる。尚ぞれらの中で
特に好ましいのはXが酸素原子のものである。
The aromatic polyamideimide resin used in the present invention is a polar solvent-soluble aromatic polyamideimide resin, and has the general formula (where X is an M atom, a methylene group, a sulfur atom, a sulfonyl group, or a carbonyl group). and n represents an integer of 2 or more) or a mixture thereof. Among these, particularly preferred are those in which X is an oxygen atom.

又、本発明の芳香族ポリアミドイミドは、その末端がア
ニリン等で封鎖ざれているものが特に好ましい。
Further, it is particularly preferable that the aromatic polyamideimide of the present invention has its terminal end-blocked with aniline or the like.

本発明で用いる芳香族ポリアミドイミド樹脂の還元粘度
は0.5以上であれば特に制限されないが、使用時の溶
液粘度より3.54j近迄が実用的である。
The reduced viscosity of the aromatic polyamideimide resin used in the present invention is not particularly limited as long as it is 0.5 or more, but it is practical to have a reduced viscosity of about 3.54J compared to the solution viscosity at the time of use.

還元粘度が低すぎると機械的強度及び可撓性が低下する
し、還元粘度が高すぎると極性有機溶媒に対する溶解瓜
が低下し実用的でなくなる。
If the reduced viscosity is too low, the mechanical strength and flexibility will be reduced, and if the reduced viscosity is too high, the solubility in polar organic solvents will be reduced, making it impractical.

尚、極性有機溶媒に溶解した、いわゆるインクの形にし
て使用する際のインク粘度としては100〜3000 
poiseのものが好ましく、その際のインク濃度は樹
脂が5・〜30重母%のものが好適である。
In addition, when used in the form of so-called ink dissolved in a polar organic solvent, the ink viscosity is 100 to 3000.
A poise ink is preferred, and the ink concentration at that time is preferably 5% to 30% resin.

これらの芳香族ポリアミドイミド樹脂は、公知の方法、
例えば ■芳香族ジアミンと無水トリメリット酸クロライドとを
反応させるか或いは■芳香族ジイソシアネートとトリメ
リット酸無水物を反応させるかによって製迄することが
できる。
These aromatic polyamideimide resins can be prepared by known methods,
For example, it can be produced by (1) reacting an aromatic diamine with trimellitic anhydride chloride, or (2) reacting an aromatic diisocyanate with trimellitic anhydride.

このうち■の反応を代表例として以下に説明する。Among these, reaction (2) will be explained below as a representative example.

(八)    l−12N−@−X−@−N+−12(
式中のXは前記と同じ意味をもつ)或いは、(m−フエ
ニレンジアミン)の(A)(B)いづれかの芳香族ジア
ミンと無水トリメリット酸クロリドとを、N,N−ジメ
ヂルアセトアミド、N−メチル=2−ピロリドン等の極
性有機溶媒中で反応さゼる。なお、反応工程中アミド化
及びイミド化の反応条イ1、特に反応温庶のコントロー
ルを最適なものkすることh唯1要である。
(8) l-12N-@-X-@-N+-12(
(X in the formula has the same meaning as above), or (m-phenylenediamine), any one of (A) and (B) aromatic diamine and trimellitic anhydride chloride, N,N-dimedylacetamide, The reaction is carried out in a polar organic solvent such as N-methyl=2-pyrrolidone. It is important to optimally control the amidation and imidization reaction steps, especially the reaction temperature, during the reaction process.

(A)の芳香族ジアミンとしては、特に4,4“−ジア
ミノジフェニルエーテルが好ましいが、他にフェニルス
ルフイド、4,4゛−ジアミノジフエニルスルホン、4
.4゛−ジアミノベンゾフェノン等も使用することがで
きる。
As the aromatic diamine (A), 4,4"-diaminodiphenyl ether is particularly preferred, but phenyl sulfide, 4,4"-diaminodiphenyl sulfone, 4,4"-diaminodiphenyl ether, and
.. 4'-diaminobenzophenone and the like can also be used.

更に(A)の芳香族ジアミンと(8)の芳香族ジアミン
では、可撓性、耐熱性、耐湿性の優れている(A)の芳
香族ジアミンがより好適である。
Further, among the aromatic diamine (A) and the aromatic diamine (8), the aromatic diamine (A) is more preferable because it has excellent flexibility, heat resistance, and moisture resistance.

本発明の芳香族ポリアミドイミド樹脂の極性有機溶媒と
しては、N,N−ジメヂルホルムアミド、N,N−ジメ
ヂルアセトアミド、ジメヂルスルホキシド、N−メチル
−2−ピロリドン、ヘキリメチルホスホル7ミド、ハロ
ゲン化クレゾールまたはこれらの混合溶媒、或いはこれ
等と伯の慣用溶媒との混合系溶媒をあげることができる
Examples of the polar organic solvent for the aromatic polyamide-imide resin of the present invention include N,N-dimedylformamide, N,N-dimedylacetamide, dimedyl sulfoxide, N-methyl-2-pyrrolidone, and hexylymethylphosphoramide. , a halogenated cresol, a mixed solvent thereof, or a mixed solvent of these and a commonly used solvent.

なお、これらの中で特に好ましいのはN−メヂルー2−
ピロリドン及びN.N−ジメチルアセトアミドである。
Note that among these, particularly preferred is N-Mejiru 2-
pyrrolidone and N. N-dimethylacetamide.

次に、本発明において、より優れた効果を発揮させるた
め添加するフィラーは次の3種類の中から適宜選択して
使用する。
Next, in the present invention, fillers to be added in order to exhibit better effects are appropriately selected from the following three types.

■高熱伝導性フィラー:熱伝導度が0.05cal/c
m.sec. ”C以上の高熱伝導性無機フィラーであ
る。
■High thermal conductivity filler: Thermal conductivity is 0.05 cal/c
m. sec. It is a highly thermally conductive inorganic filler with grade C or higher.

具体例としては、ベリリャ(Bed) 、マグネシア(
MgO)、窒化ホウ素(BN>、アルミナ(八1203
)、炭化ケイ素(S i C) 、窒化ケイ素(Si3
N4)、カーボン(C)及びこれらの混合物をあげるこ
とができる。また、毒性、耐湿性、絶縁性の点を考慮す
ると、窒化ホウ素若しくはアルミナが特に好ましいフィ
ラーとして推奨ざれる。
Specific examples include Berilla (Bed), Magnesia (
MgO), boron nitride (BN>, alumina (81203)
), silicon carbide (S i C), silicon nitride (Si3
N4), carbon (C) and mixtures thereof. Further, in consideration of toxicity, moisture resistance, and insulation, boron nitride or alumina is particularly recommended as a filler.

■導電性金属微粉体:具体的には金、銀、白金、銅、ニ
ッケル、アルミニウム、珪素、モリブデン、鉄、コバル
ト、タングステン、チタン、亜鉛及びこれらの合金並び
にこれらの混合物から選ばれた微粉体を用いる。
■ Conductive metal fine powder: Specifically, fine powder selected from gold, silver, platinum, copper, nickel, aluminum, silicon, molybdenum, iron, cobalt, tungsten, titanium, zinc, alloys of these, and mixtures thereof. Use.

■雲母:天然雲母或いは合成雲母 これらフィラーの形状は特に限定ざれず、球状、角形状
、釧状、層状、リン片状等、いずれの形状でも用いるこ
とができる。また、粒径もいわゆる微粉体であれば使用
できるが、通常200μm以下、特に50μm以下が好
ましい。
(2) Mica: Natural mica or synthetic mica The shape of these fillers is not particularly limited, and any shape such as spherical, angular, chime-like, layered, scale-like, etc. can be used. Further, the particle size can be used as long as it is a so-called fine powder, but it is usually 200 μm or less, particularly preferably 50 μm or less.

フィラーの配合割合は1〜35容量%であり、好ましく
は5〜25容ω%である。フィラーの配合割合が高すぎ
ると機械的強度及び可撓性が低下し、また低すぎると耐
熱性、及び耐湿性向上効果が小さい。したがって、フイ
ラーの配合割合いが低すぎるとより厳しい条件下でのハ
ンダ耐熱試験でカールが発生してしまう。
The blending ratio of the filler is 1 to 35% by volume, preferably 5 to 25% by volume. If the blending ratio of the filler is too high, mechanical strength and flexibility will decrease, and if it is too low, the effect of improving heat resistance and moisture resistance will be small. Therefore, if the blending ratio of filler is too low, curling will occur during the solder heat resistance test under more severe conditions.

なお、目的とづる用途、フィラーの形状、粒径によって
、その最適配合量が変化するので、使用するフィラーの
物性と配合割合との関係を実験で予備的に求めておき、
これにもとづいて配合を決定することが推奨される。
Note that the optimum blending amount will vary depending on the intended use, filler shape, and particle size, so the relationship between the physical properties of the filler to be used and the blending ratio should be preliminarily determined through experiments.
It is recommended that formulations be determined based on this.

本発明のフィラーを含む組成物を製造する方法としては
、従来公知の方法が使用できる。例えば芳香族ポリアミ
ドイミド樹脂を、極性有機溶媒中に加え、完全に溶解さ
せた後、フィラーを添加し、攪拌機、ボールミール、三
本口ールミル等で均一に分散させることによって製造す
ることができる。
Conventionally known methods can be used to produce the composition containing the filler of the present invention. For example, it can be produced by adding an aromatic polyamide-imide resin to a polar organic solvent, dissolving it completely, adding a filler, and uniformly dispersing it using a stirrer, a ball mill, a three-necked mill, etc.

本発明のカバーレイには他に必要により種々の添加物を
加えることができる。例えば接着性、機械的強度或いは
他の特性を高めるためにシランカツプリング剤やガラス
粉末、ガラス繊維、耐熱繊維、界面話性剤等を添加覆る
のもその一例である。
Various other additives can be added to the coverlay of the present invention, if necessary. For example, silane coupling agents, glass powder, glass fibers, heat-resistant fibers, interfacial agents, etc. may be added to enhance adhesion, mechanical strength, or other properties.

本発明のプリント配線板の製造方法を本発明の特徴が最
も発揮ざれるフレキシブルプリント配線板を例にして説
明する。
The method for manufacturing a printed wiring board of the present invention will be explained using a flexible printed wiring board as an example where the features of the present invention are most fully exhibited.

ポリイミド樹脂、ポリ))ミド樹脂、ポリエステル樹脂
、又はガラスイ5基材lポキシ樹脂含浸材からなるフィ
ルム或いはシートに導電性材料例えば銅箔を張り合わせ
てフレキシブルプリント配線板とする。これをホトレジ
スト法又はスクリーン印刷法によってパターニングし、
次いで配線パターン以外の不要銅箔を薬品で溶解除去し
て銅回路板を形成せしめる。
A flexible printed wiring board is prepared by laminating a conductive material such as copper foil onto a film or sheet made of a polyimide resin, poly(mide) resin, polyester resin, or a glass material impregnated with a poxy resin. This is patterned by photoresist method or screen printing method,
Next, unnecessary copper foil other than the wiring pattern is dissolved and removed using chemicals to form a copper circuit board.

次に、カバーレイとして用いる本発明の極性有機溶媒可
溶性芳香族ポリアミドイミド樹脂又はその組成物を上記
回路板上にスクリーン印刷法により、所定のパターンに
塗布し、更に加熱処理し塗イliシた該樹脂又はその組
成物から溶媒を除去することによりカバーレイが設(プ
られたフレキシブノレプリント配線板が製造ざれる。
Next, the polar organic solvent-soluble aromatic polyamide-imide resin of the present invention used as a coverlay or its composition was applied onto the circuit board in a predetermined pattern by screen printing, and the coating was further heated and cured. By removing the solvent from the resin or its composition, a flexible printed wiring board with a coverlay provided thereon is produced.

このスクリーン印刷法によるカーバレイ設置が71し好
ましい方法であるが、他に本発明の極性有機溶媒酊溶竹
芳香族ポリアミドイミド樹脂、及びこれを○む組成物で
フィルムをあらかじめ作っておき、これを所定のパター
ンに穿孔、切断したものを回路面に正しく置き(位置合
t!)、熱斤看して製造する方法もとることかでぎる。
Although this screen printing method is the preferred method, it is also possible to prepare a film in advance using the polar organic solvent-diluted bamboo aromatic polyamide-imide resin of the present invention and a composition containing the same. It is also possible to manufacture the parts by punching and cutting them in a predetermined pattern, placing them correctly on the circuit surface (alignment t!), and then hot-rolling them.

〔実施例〕〔Example〕

次に参考例、実施例及び比較例をあげて本発明を説明す
る。
Next, the present invention will be explained with reference to Reference Examples, Examples, and Comparative Examples.

参考例1:耐熱性絶縁インクAの製造例4,4゜−ジア
ミノジフエニルエーテル(DADPE)無水トリメリッ
ト酸クロライド(1−MAC)から合成した極性有機溶
媒可溶性の芳香族ポリアミドイミド(FAI:還元粘度
1.3 ) 100重母部にN−メチル−2ピロリドン
(NMP>400重間部を加え、該PAIをNMP中に
溶解させて耐熱性絶縁インクAを{qた。
Reference example 1: Production example of heat-resistant insulating ink A 4, 4°-diaminodiphenyl ether (DADPE) Polar organic solvent soluble aromatic polyamideimide (FAI: reduced) synthesized from trimellitic anhydride (1-MAC) Viscosity: 1.3) Heat-resistant insulating ink A was prepared by adding N-methyl-2-pyrrolidone (NMP>400 parts) to 100 parts (viscosity: 1.3) and dissolving the PAI in NMP.

参考例2:耐熱性絶縁インクBの製造例実施例1と同様
にDADPEとTMACから合成した極性有機溶媒可溶
性の芳香族ポリ7ミドイミド(PAI:還元粘度1.4
) 100重ω部にNMI)470重量部を加え、該P
AIをNMP中に溶解する。
Reference Example 2: Production example of heat-resistant insulating ink B Similar to Example 1, aromatic poly-7mide-imide (PAI: reduced viscosity 1.4) soluble in polar organic solvent was synthesized from DADPE and TMAC.
) Add 470 parts by weight of NMI to 100 parts by weight of P
Dissolve AI in NMP.

次いで、窒化ホウ素(昭和電工社製、粒径1.7μm》
17重最部を上記PAI樹脂溶液と混合し、万能沢fi
&1機で均一に分散させ耐熱性絶縁インクBを1qた。
Next, boron nitride (manufactured by Showa Denko, particle size 1.7 μm)
Mix the most part of the 17-layer with the above PAI resin solution, and
1 q of heat-resistant insulating ink B was uniformly dispersed using one machine.

参考例3:耐熱性絶縁インクCの製造例DADI)Eと
TMACから合成した極性イjll&溶媒可溶性の芳香
族ポリアミドイミド(PAI:還元粘度1.4)100
重聞部にN M P 490重量部を加え、該PAIを
溶解する。
Reference example 3: Production example of heat-resistant insulating ink C Polar ink synthesized from DADI) E and TMAC & solvent-soluble aromatic polyamide-imide (PAI: reduced viscosity 1.4) 100
Add 490 parts by weight of NMP to the heavy part to dissolve the PAI.

次いで雲母(マイカ)(玉木マイカ社製、粒径46μm
)48重吊娶をNMP90重量部に分散させた溶液と上
記FAI樹脂溶液とを混合し、二−ダーでマイ力を均一
分散させ耐熱性絶縁インクCを得た。
Next, mica (manufactured by Tamaki Mica Co., Ltd., particle size 46 μm)
) A solution prepared by dispersing 48 parts by weight of NMP in 90 parts by weight of NMP was mixed with the above FAI resin solution, and the heat resistant insulating ink C was obtained by uniformly dispersing the force using a seconder.

参考例4:耐熱性絶縁インクDの製造例DADPEとl
MACから合成した極性′4−i機溶媒可溶性の芳香庫
ポリアミドイミド(PAI:遠zt粘!1.5 > 1
20重fii 部ニN M P 480重量部を加え、
該PAIをNMP中に溶解する。次いでアルミニウム粉
末(平均粒径15μm福田金属熱粉工業製ALC用ファ
イン)54重量部ヲNMP 108重U}部に分散させ
た溶液と上記PAI樹脂溶液とを混合し、二−ダーでア
ルミニウム粉末を均一分散させ耐熱性絶縁インクDを得
た。
Reference example 4: Production example of heat-resistant insulating ink D DADPE and l
Polar '4-i organic solvent soluble aroma storage polyamideimide (PAI: far zt viscosity! 1.5 > 1) synthesized from MAC
Add 20 parts by weight of NMP and 480 parts by weight,
The PAI is dissolved in NMP. Next, a solution prepared by dispersing aluminum powder (average particle size 15 μm, fine for ALC manufactured by Fukuda Metal Powder Industry Co., Ltd.) in 54 parts by weight of NMP (108 parts by weight) and the above PAI resin solution were mixed, and the aluminum powder was mixed with a seconder. A heat-resistant insulating ink D was obtained by uniformly dispersing the mixture.

参考例5:耐熱性絶縁インクEの製造例m−フェニレン
ジアミン(m−PD)と−rMACから合成した極性有
機溶媒可溶性の芳香族ポリアミドイミド(PAI:還元
粘度1.0 ) 100重ω部にNMP400重量部を
加え、PAIをNMP中に溶解させ、耐熱性絶縁インク
Eを得た。
Reference Example 5: Production example of heat-resistant insulating ink E 100 parts of polar organic solvent-soluble aromatic polyamideimide (PAI: reduced viscosity 1.0) synthesized from m-phenylenediamine (m-PD) and -rMAC 400 parts by weight of NMP was added to dissolve PAI in NMP to obtain heat-resistant insulating ink E.

実施例 通常のフレキシブルプリント基板用片面胴張り板(銅箔
厚35μrn、カプトン厚25μm、接着剤厚25μT
rL)を用いフAトレジスト法よりエッチングパターン
を形成し、次いで塩化第二鉄液でエッチングし、さらに
エッチングレジストを除去して、配線回路パターンを得
た。
Example: Ordinary single-sided body panel for flexible printed circuit boards (copper foil thickness: 35μrn, Kapton thickness: 25μm, adhesive thickness: 25μT)
An etching pattern was formed by the photoresist method using (rL), followed by etching with a ferric chloride solution, and the etching resist was further removed to obtain a wiring circuit pattern.

次に参考例1〜5に記載した極性有機溶媒可溶性ポリア
ミドイミド(ソクシール(登録商標)ニッポン高度紙工
業社製)を主成分とする各種の樹脂組成物からなる耐熱
性絶縁インクA.B.C.D及びEをラインヶメタルス
クリーン(165メッシュ、乳剤厚10μTrt)を用
いスクリーン印刷法で上記配線回路パターン上に所定パ
ターンの膜厚を約10μmになるように印刷した。続い
て、この配線回路パターンを80℃のホツ1〜プレート
上で10分予備乾燥後、アルミニウム製の当て板に、印
刷面が表面になるように固定して250℃で10分熱処
理し、溶媒を除去してフレキシブル配線回路板を19だ
Next, heat-resistant insulating ink A. B. C. D and E were printed on the wiring circuit pattern by screen printing using a line metal screen (165 mesh, emulsion thickness 10 μm) so that the film thickness of the predetermined pattern was about 10 μm. Next, this wiring circuit pattern was pre-dried on a hot plate at 80°C for 10 minutes, then fixed on an aluminum backing plate with the printed side facing up, heat-treated at 250°C for 10 minutes, and then heated with a solvent. 19 by removing the flexible wiring circuit board.

上記の方法で得たフレキシブル配線回路板を用い、ハン
ダ耐熱性、耐折性、密着性、耐電圧について恒温恒湿下
(40℃,90%RH)及び冷熱衝撃下(−55℃30
分〜125℃30分)での特性評価を行つた。これ等の
結果を表−1に承りが、優れたフレキシブル配線回路板
であることがわかる。
Using the flexible wiring circuit board obtained by the above method, the solder heat resistance, folding durability, adhesion, and voltage resistance were tested under constant temperature and humidity (40°C, 90% RH) and thermal shock (-55°C, 30% RH).
Characteristics were evaluated at temperatures ranging from 30 minutes to 125°C. These results are shown in Table 1, and it can be seen that the flexible printed circuit board is excellent.

なお、ハンダ耐熱性の試験を300℃,20秒という、
より厳しい一条何で行った場合、フイラーの入っていな
い耐熱性絶縁インクA及びEでは、力一ル(そり)が発
生した。又、フィラ一入りの耐熱性絶縁インク(例えば
C)において耐折性が若干低目に出ているが、実用上全
く問題がない耐折性であることを付言しておく。
In addition, the solder heat resistance test was conducted at 300°C for 20 seconds.
When tested with a more severe straight line, warpage occurred in heat-resistant insulating inks A and E that did not contain filler. Furthermore, although the folding durability of the heat-resistant insulating ink containing one filler (for example, C) is slightly low, it should be noted that the folding durability does not pose any practical problems.

特性評価の各測定は次に示す通り行った。Each measurement for characteristic evaluation was performed as shown below.

■ハンダ耐熱性:試験片を260℃のハンダ浴に10秒
間浸漬し、ふくれ、はがれの発生状態を11!察。
■Solder heat resistance: The test piece was immersed in a 260°C solder bath for 10 seconds, and the occurrence of blistering and peeling was evaluated as 11! Inspection.

■耐折れ性:JIS P 811!]に準じ、M I 
1−型試験器でR=0.38、萄重boo gで測定。
■Breakability: JIS P 811! ] According to M I
Measured with R=0.38 using a Type 1 tester and a Suju boo g.

■密着性:クロス力ットテープ法、即ら塗膜をつくりJ
ISκbaooxi目試験に準じてクロスカットし、P
EI−テープを付着、次いで引き剥がして1〜100個
の中の残存升目を数える。
■Adhesion: Cross force tape method, that is, creating a coating film.
Cross-cut according to the ISκbaooxidial test, and P
Apply the EI-tape, then peel it off and count the remaining squares from 1 to 100.

■耐電[:試験HにAC500Vの電IJ−を1分間印
加し、異常の有無を観察。
■Electrical resistance [: AC 500V electricity IJ- was applied to test H for 1 minute, and the presence or absence of abnormality was observed.

比較例: 上記の実施例と同一の方法にて同一の配線回路パターン
を作製し、これに接着剤付きポリイミドのカバーフィル
ム(カプトン(登録商標》厚さ25μm、接る剤1ウみ
25μm、デュポン社製)を所定の形状に切り出し、穴
あCノ加工したものを、熱ロールでラミネートし、次い
でプレス斤50K’J/CIi、加熱温1i150℃で
30分間熱プレスをかcノ、カバーフィルム付きのフレ
キシブル配線回路板を1qだ。
Comparative example: The same wiring circuit pattern was produced by the same method as in the above example, and a polyimide cover film with adhesive (Kapton (registered trademark) thickness 25 μm, adhesive 1 layer 25 μm, DuPont (manufactured by Kawasaki Co., Ltd.) was cut into a predetermined shape and processed with holes C, then laminated with a heat roll, and then heat-pressed at 50K'J/CIi and a heating temperature of 1i150℃ for 30 minutes to form a cover film. 1q of flexible wiring circuit boards with attached.

実施例と同様にし゛τ(260℃、10秒ハンダ浴浸漬
)、ハンダ耐熱性の評価試験を行った。
A solder heat resistance evaluation test was conducted in the same manner as in the example (260° C., 10 seconds solder bath immersion).

40℃90%曲の恒温恒湿下にO時間、500時間放置
後直ちにハンダ耐熱試験を行った場合、いずれもふくれ
、はがれが発生した。そこで該恒温恒湿下に放置後80
℃60分間予描乾燥を加えハンダ耐熱試験を行ったとこ
ろ、O時間俊のものは安常がみられなかったが、500
時間後のものはふくれ、はがれの発生がみられた。
When a solder heat resistance test was conducted immediately after being left for 500 hours at a constant temperature and humidity of 40° C. and 90% bending, blistering and peeling occurred in all cases. Therefore, after leaving it under constant temperature and humidity,
When we conducted a solder heat resistance test by pre-drawing drying for 60 minutes at
After some time, swelling and peeling were observed.

又冷熱衝撃}−(−55℃、30分〜125℃、30分
》での試験結果は、やはり予備乾燥(80℃、60分間
》がないとOサイクル目でふくれ、はがれがみられた。
In addition, the test results for thermal shock}-(-55°C, 30 minutes to 125°C, 30 minutes) showed that, without pre-drying (80°C, 60 minutes), blistering and peeling were observed at the Oth cycle.

なお、予備乾燥を実施すると異常(ふくれ、はがれ)の
発生はかなり抑えられることが観察できた。
It was observed that the occurrence of abnormalities (blistering, peeling) was considerably suppressed when pre-drying was performed.

これによって、予備乾燥かなくても異常発生はみられな
かった本発明とは、最も重要な特性評価テスi・である
ハンダ耐熱試験において、明確な差異があることが確認
ざれた。
As a result, it was confirmed that there is a clear difference in the solder heat resistance test, which is the most important characteristic evaluation test, from the present invention, in which no abnormality was observed even without pre-drying.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によって得られた耐熱性プリント
配線板は、近年重要視されているハンダ耐熱情の点で優
れた性能を有し、その伯の物性、例えば耐折れ性、密着
性、耐電圧性においても優れている上、長期使用に対す
る信頼性も極めて高いという巾越した効宋を有するもの
である。
As described above, the heat-resistant printed wiring board obtained by the present invention has excellent performance in terms of solder heat resistance, which has been emphasized in recent years, and has excellent physical properties such as bending resistance, adhesion, It has excellent voltage resistance and extremely high reliability for long-term use, making it extremely effective.

また、本発明の耐熱性プリント配線板の製造方法は、煩
雑でコストアップにつながる後処理工程(■−ジング)
を必要とけず、特別な金型:し要しない、材料ロスの無
い極めて経済的且つ簡便な製jムh法を採ることができ
るという優れた効果を有する。
In addition, the method for manufacturing a heat-resistant printed wiring board of the present invention requires a post-processing process (■-ging) that is complicated and increases costs.
It has the excellent effect of being able to employ an extremely economical and simple manufacturing method that does not require any special molds or material loss.

出願人 ニッポン高度紙T業株式会社 代理人  弁理士  野 崎 鋏 也Applicant: Nippon Kokushi T Gyo Co., Ltd. Agent: Patent attorney: Kazuya Nozaki

Claims (3)

【特許請求の範囲】[Claims] 1.導体パターン形成後に、芳香族ジアミンと無水トリ
メリット酸クロリドとを極性有機溶媒中で反応させて得
た極性有機溶媒可溶性芳香族ポリアミドイミド樹脂及び
必要によりフィラーを分散した樹脂溶液を該導体パター
ン上に塗布し、カバーレイを形成せしめることを特徴と
する耐熱性プリント配線板の製造方法。
1. After the conductor pattern is formed, a resin solution in which a polar organic solvent-soluble aromatic polyamide-imide resin obtained by reacting an aromatic diamine and anhydrous trimellitic acid chloride and a filler, if necessary, is dispersed, is applied onto the conductor pattern. 1. A method for producing a heat-resistant printed wiring board, characterized by coating the board and forming a coverlay.
2.フィラーが高熱伝導性フィラー、導電性金属微粉体
、及び雲母から選ばれたものであることを特徴とする請
求項1項記載の耐熱性プリント配線板の製造方法。
2. 2. The method for manufacturing a heat-resistant printed wiring board according to claim 1, wherein the filler is selected from a highly thermally conductive filler, a conductive metal fine powder, and mica.
3.耐熱性プリント配線板が耐熱性フレキシブルプリン
ト配線板であることを特徴とする請求項1又は2記載の
耐熱性プリント配線板の製造方法。
3. 3. The method for manufacturing a heat-resistant printed wiring board according to claim 1, wherein the heat-resistant printed wiring board is a heat-resistant flexible printed wiring board.
JP2837390A 1986-05-12 1990-02-09 Method for manufacturing heat resistant printed wiring board Expired - Lifetime JPH0767007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2837390A JPH0767007B2 (en) 1986-05-12 1990-02-09 Method for manufacturing heat resistant printed wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10669886A JPS62263692A (en) 1986-05-12 1986-05-12 Heat-resistant printed wiring board and manufacture of the same
JP2837390A JPH0767007B2 (en) 1986-05-12 1990-02-09 Method for manufacturing heat resistant printed wiring board

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10669886A Division JPS62263692A (en) 1986-05-12 1986-05-12 Heat-resistant printed wiring board and manufacture of the same

Publications (2)

Publication Number Publication Date
JPH02237095A true JPH02237095A (en) 1990-09-19
JPH0767007B2 JPH0767007B2 (en) 1995-07-19

Family

ID=26366469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2837390A Expired - Lifetime JPH0767007B2 (en) 1986-05-12 1990-02-09 Method for manufacturing heat resistant printed wiring board

Country Status (1)

Country Link
JP (1) JPH0767007B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003198105A (en) * 2001-12-28 2003-07-11 Hitachi Chem Co Ltd Resin paste and flexible wiring board using the same
JP2008135510A (en) * 2006-11-28 2008-06-12 Shindo Denshi Kogyo Kk Flexible printed wiring board, flexible printed circuit board, and method for manufacturing them
JP2008251877A (en) * 2007-03-30 2008-10-16 Nippon Kodoshi Corp Flexible printed board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003198105A (en) * 2001-12-28 2003-07-11 Hitachi Chem Co Ltd Resin paste and flexible wiring board using the same
JP2008135510A (en) * 2006-11-28 2008-06-12 Shindo Denshi Kogyo Kk Flexible printed wiring board, flexible printed circuit board, and method for manufacturing them
JP2008251877A (en) * 2007-03-30 2008-10-16 Nippon Kodoshi Corp Flexible printed board

Also Published As

Publication number Publication date
JPH0767007B2 (en) 1995-07-19

Similar Documents

Publication Publication Date Title
EP1791692B1 (en) Metallic laminate and method for preparing thereof
US20070009751A1 (en) Polyamic acid resin composition modified with laminate nanometer silica sheet and polyimide prepared therefrom
JPH0231516B2 (en)
CN101516616B (en) Laminate of heat resistant film and metal foil, and method for production thereof
JPS62263692A (en) Heat-resistant printed wiring board and manufacture of the same
CN101296757B (en) Flexible laminate board, process for manufacture of the board, and flexible print wiring board
JP2007031622A (en) Polyimide resin and film with conductor using the same
DE602004000671T2 (en) Polyimide materials for electrical insulation
JP5368143B2 (en) Polyimide metal laminate and method for producing the same
JPH02237095A (en) Manufacture of heat-resistant printed wiring board
JPS62208690A (en) Flexible printed circuit and manufacture of the same
JP4976380B2 (en) Metal laminate
JPS62106960A (en) Heat-resistant resin composition
JP3059248B2 (en) Manufacturing method of flexible printed circuit board
JP3065388B2 (en) Manufacturing method of flexible printed circuit board
JP4923678B2 (en) Flexible substrate with metal foil and flexible printed wiring board
JPS6345051A (en) Heat-resistant laminate
JP4325008B2 (en) Maleimide resin adhesive and flexible printed circuit board using the same as an adhesive layer
JPS62151458A (en) Moisture-and heat-resistant resin composition
JP2797044B2 (en) Bonding method and adhesive member
JPS61182941A (en) Manufacture of flexible copper lined circuit substrate
JPH0230333B2 (en) FUKAGATAIMIDOJUSHIPURIPUREGUNOSEIHO
JPH08218051A (en) Adhesive composition
JPS62199651A (en) Flexible heat-resistant resin composition
JPH01114433A (en) Heat resistant laminated body

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term