JPH0222871B2 - - Google Patents

Info

Publication number
JPH0222871B2
JPH0222871B2 JP22939983A JP22939983A JPH0222871B2 JP H0222871 B2 JPH0222871 B2 JP H0222871B2 JP 22939983 A JP22939983 A JP 22939983A JP 22939983 A JP22939983 A JP 22939983A JP H0222871 B2 JPH0222871 B2 JP H0222871B2
Authority
JP
Japan
Prior art keywords
refrigerator
working gas
heat exchanger
side wall
expansion space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22939983A
Other languages
Japanese (ja)
Other versions
JPS60122869A (en
Inventor
Takejiro Ukai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP22939983A priority Critical patent/JPS60122869A/en
Publication of JPS60122869A publication Critical patent/JPS60122869A/en
Publication of JPH0222871B2 publication Critical patent/JPH0222871B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、スターリング、ギフオード・マクマ
ホン等の20K以下の冷凍を得る超低温冷凍機シス
テムの熱交換器に関し、超伝導磁石、ジヨセフソ
ン素子、あるいはクライオポンプの吸着パネルの
冷却用として利用される。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a heat exchanger for an ultra-low temperature refrigerator system such as Stirling, Gifford-McMahon, etc. that obtains refrigeration at temperatures below 20K, and relates to a heat exchanger for an ultra-low temperature refrigerator system that obtains refrigeration at temperatures below 20K. Used for cooling adsorption panels.

〔従来技術〕[Prior art]

圧縮空間、冷却器、蓄冷器および膨張空間を順
次連通させている冷凍機を複数個配し、前記蓄冷
器と前記膨張空間との間に前記各冷凍機が相互に
共有する熱交換器を設けて向流型熱交換器を形成
させている超低温冷凍機システムを第1図に示
す。かかる形式の超低温冷凍機システムは公知で
あり、特公昭43−10942号および実開昭56−88059
号に記載されている。前記超低温冷凍機システム
について第1図に基づいて説明する。圧縮シリン
ダー1と圧縮ピストン2により形成される圧縮空
間3は、冷却器4、蓄冷器5を通り第1膨張空間
7と熱交換器6に連通し、さらに前記熱交換器6
は、第2膨張空間8へ連通している。この様にし
て圧縮空間3、冷却器4、蓄冷器5、第1膨張空
間7、熱交換器6、そして第2膨張空間8から冷
凍回路は構成され、作動ガスとして冷凍回路内に
はヘリウムガスが封入されている。圧縮ピストン
2にはロツド14が連結され、さらに圧縮ピスト
ン2の外周の一部には、ガス封止のためのシール
9が設けられ、そしてロツド14の外壁上の一部
にもガス封止のためのシール10が設置されてい
る。
A plurality of refrigerators are arranged in which a compression space, a cooler, a regenerator, and an expansion space are sequentially communicated, and a heat exchanger shared by each of the refrigerators is provided between the regenerator and the expansion space. Figure 1 shows an ultra-low temperature refrigerator system in which a countercurrent heat exchanger is formed. This type of ultra-low temperature refrigerator system is well known and is disclosed in Japanese Patent Publication No. 10942/1983 and Japanese Utility Model Publication No. 88059/1983.
listed in the number. The ultra-low temperature refrigerator system will be explained based on FIG. 1. A compression space 3 formed by a compression cylinder 1 and a compression piston 2 communicates with a first expansion space 7 and a heat exchanger 6 through a cooler 4 and a regenerator 5.
communicates with the second expansion space 8. In this way, the refrigeration circuit is constructed from the compression space 3, the cooler 4, the regenerator 5, the first expansion space 7, the heat exchanger 6, and the second expansion space 8, and helium gas is used as the working gas in the refrigeration circuit. is included. A rod 14 is connected to the compression piston 2, and a seal 9 for gas sealing is provided on a part of the outer circumference of the compression piston 2, and a seal 9 for gas sealing is also provided on a part of the outer wall of the rod 14. A seal 10 is installed for this purpose.

第1膨張空間7、第2膨張空間8は凸型を呈す
る膨張シリンダー17、膨張ピストン16によつ
て形成される。膨張ピストン16の各段の外周上
には、第1、2膨張空間7,8内のガス封止のた
めのシール11,12が設置されている。また、
膨張ピストン16にはロツド15が連絡され、ロ
ツド15の外壁上の一部には、ガス封止のための
シール13が設置されている。ロツド14,15
は図示されていない往復駆動機構(例えばクラン
ク)に連結され、破線で示された冷凍機Aと冷凍
機Bとは、ほぼ180度の位相差(即ち、冷凍機A
の膨張ピストン16および圧縮ピストン2に対し
て、ほぼ180度の位相差をもつて運動している。)
をもつて駆動されている。
The first expansion space 7 and the second expansion space 8 are formed by an expansion cylinder 17 and an expansion piston 16 having a convex shape. Seals 11 and 12 are installed on the outer periphery of each stage of the expansion piston 16 to seal gas in the first and second expansion spaces 7 and 8. Also,
A rod 15 is connected to the expansion piston 16, and a seal 13 for gas sealing is installed on a part of the outer wall of the rod 15. Rod 14, 15
is connected to a reciprocating drive mechanism (for example, a crank), which is not shown, and the refrigerators A and B shown in broken lines have a phase difference of approximately 180 degrees (i.e., refrigerator A
The expansion piston 16 and the compression piston 2 move with a phase difference of approximately 180 degrees. )
It is driven by

冷凍機Aの作用を説明する。 The function of refrigerator A will be explained.

圧縮空間3内の作動ガス(ヘリウムガス)は圧
縮ピストン2により圧縮された後、冷却器4で約
20Kに冷却され、蓄冷器5に流入する。蓄冷器5
に流入した作動ガスはさらに冷却され、第1膨張
空間7および熱交換器6へと流入する。第1膨張
空間7に入つた作動ガスは膨張ピストン16によ
り膨張され、約10Kの温度の冷凍を発生する。と
ころで熱交換器6に流入した作動ガスは、冷凍機
Bの熱交換器6内を蓄冷器5の方向に流れる作動
ガスによつて冷却され、第2膨張空間8へ流入
し、膨張ピストン16により膨張され、約4Kの
温度の冷凍を発生する。第2膨張空間8で膨張し
終つた作動ガスは、前記膨張ピストン16の圧縮
により、熱交換器6へ流入すると、冷凍機Bの熱
交換器6内を第2膨張空間8の方向に流れている
作動ガスによつて、熱を与えられ温度が高めら
れ、蓄冷器5へ流入する。第1膨張空間7で膨張
し終つた作動ガスは、膨張ピストン16の圧縮に
より蓄冷器5へ流入する。蓄冷器5へ冷入した作
動ガスは温められて冷却器4へ流入し、さらに圧
縮空間3流入する。この様にして冷凍機Aは、1
サイクルを形成する。
After the working gas (helium gas) in the compression space 3 is compressed by the compression piston 2, it is compressed by the cooler 4.
It is cooled to 20K and flows into the regenerator 5. Cool storage device 5
The working gas flowing into the first expansion space 7 and the heat exchanger 6 is further cooled and flows into the first expansion space 7 and the heat exchanger 6. The working gas entering the first expansion space 7 is expanded by the expansion piston 16 to produce refrigeration at a temperature of approximately 10K. By the way, the working gas that has flowed into the heat exchanger 6 is cooled by the working gas flowing in the heat exchanger 6 of the refrigerator B in the direction of the regenerator 5, flows into the second expansion space 8, and is cooled by the expansion piston 16. It is expanded and produces refrigeration at a temperature of approximately 4K. When the working gas that has finished expanding in the second expansion space 8 flows into the heat exchanger 6 due to compression by the expansion piston 16, it flows inside the heat exchanger 6 of the refrigerator B in the direction of the second expansion space 8. The working gas is given heat, the temperature is raised, and the working gas flows into the regenerator 5. The working gas that has finished expanding in the first expansion space 7 flows into the regenerator 5 due to compression by the expansion piston 16 . The working gas cooled into the regenerator 5 is warmed and flows into the cooler 4, and then into the compression space 3. In this way, refrigerator A has 1
form a cycle.

冷凍機Bの作用は、冷凍機Aよりほぼ180度の
位相差をもつて駆動されている点を除いては冷凍
機Aと同様である。
The operation of refrigerator B is similar to that of refrigerator A except that it is driven with a phase difference of approximately 180 degrees from refrigerator A.

第1図に示す超低温冷凍機システムに用いる熱
交換器6について、特公昭43−10942号では具体
的な構造は何も示していないが、実開昭56−
88059号では、第2図、第3図、および第4図に
示す構造が記載されている。
Regarding the heat exchanger 6 used in the ultra-low temperature refrigerator system shown in FIG.
No. 88059 describes the structures shown in FIGS. 2, 3, and 4.

以下、従来の超低温冷凍機の熱交換器について
第2図に基づいて説明する。プレート101は、
連通孔102,103を有し、連通孔102,1
03はそれぞれ冷凍機A及びBの蓄冷器5に連通
している。プレート101は、熱伝導率の悪い部
材104(第3図参照)が気密に固着されて部材
104の上には多数個の孔を有する熱伝導率の良
い部材105(第4図参照)が気密に固着されて
いる。この様に部材104と部材105を交互に
積み重ね気密に固着せしめ、最後の部材104の
上に連通孔107,108を有するプレート10
6が気密に固着されている。連通孔107,10
8は、それぞれ冷凍機AおよびBの第2膨張空間
8に連通されている。
Hereinafter, a conventional heat exchanger for an ultra-low temperature refrigerator will be explained based on FIG. 2. The plate 101 is
It has communication holes 102 and 103, and the communication holes 102 and 1
03 are connected to the regenerators 5 of the refrigerators A and B, respectively. To the plate 101, a member 104 (see FIG. 3) with poor thermal conductivity is airtightly fixed, and on top of the member 104, a member 105 (see FIG. 4) with good thermal conductivity and having a large number of holes is airtightly fixed. is fixed to. In this way, the members 104 and 105 are alternately stacked and airtightly fixed, and a plate 10 having communication holes 107 and 108 on the last member 104 is formed.
6 is airtightly fixed. Communication holes 107, 10
8 communicate with the second expansion spaces 8 of refrigerators A and B, respectively.

〔従来技術の問題点およびその技術的分析〕[Problems with conventional technology and its technical analysis]

第2図に示す従来の熱交換器6では、熱伝導の
良い部材105の材料としてアルミニウム、熱伝
導の悪い部材104の材料として、エポキシ・グ
ラスフアイバー等のFRPが用いられ、両者の間
をエポキシ系の接着剤で接合していた。
In the conventional heat exchanger 6 shown in FIG. 2, aluminum is used as the material for the member 105 with good thermal conductivity, and FRP such as epoxy glass fiber is used as the material for the member 104 with poor thermal conduction. It was joined with a type of adhesive.

一般に、ヘリウム等の質量数の小さい気体に対
して気密性を得ることはむずかしく、しかも第2
図の構造では接着箇所が通常500〜1000程度にも
のぼり、すべての接着箇所に気密性を得ることは
極めて困難である。さらに、当初気密性が得られ
ていても、冷凍機の運転・休止のたびに室温から
4Kまでの熱サイクルを受けるため、使用中に気
密性を失なうことが頻繁に生ずる。
Generally, it is difficult to obtain airtightness for gases with small mass numbers such as helium, and
In the structure shown in the figure, there are usually about 500 to 1000 bonding points, and it is extremely difficult to achieve airtightness at all bonding points. Furthermore, even if airtightness is initially obtained, the air temperature will rise from room temperature each time the refrigerator is started or stopped.
Because they are subjected to thermal cycling up to 4K, they often lose their tightness during use.

従つて、熱伝導の悪い部材104と熱伝導の良
い部材105で形成される、冷凍機Aと冷凍機B
の作動ガスの境界壁が気密性を失ない連通する。
本来、冷凍機Aと冷凍機Bは180度の位相差を持
つているため、例えば、冷凍機Aの作動ガスの圧
力が最大のとき、冷凍機Bの作動ガスの圧力は最
低になつており、また、冷凍機Aの作動ガスの圧
力が最低のとき、冷凍機Bの作動ガスの圧力は最
大になる。このため、冷凍機Aと冷凍機Bの作動
ガスの境界壁が連通している場合、冷凍機Aと冷
凍機Bの作動ガスの圧力の差が小さくなり、各冷
凍機A,Bの最大圧力と最低圧力が接近し、従つ
て圧縮比が小さくなり、冷凍出力が低下ることに
なる。
Therefore, refrigerator A and refrigerator B are formed by a member 104 with poor heat conduction and a member 105 with good heat conduction.
The boundary walls of the working gas communicate without losing airtightness.
Normally, refrigerator A and refrigerator B have a phase difference of 180 degrees, so for example, when the working gas pressure of refrigerator A is at the maximum, the working gas pressure of refrigerator B is the lowest. Furthermore, when the pressure of the working gas of the refrigerator A is the lowest, the pressure of the working gas of the refrigerator B is the highest. Therefore, when the boundary walls of the working gases of refrigerators A and B are in communication, the difference in pressure of the working gases of refrigerators A and B becomes small, and the maximum pressure of each refrigerator A and B is reduced. As the minimum pressure approaches, the compression ratio becomes smaller and the refrigeration output decreases.

また、熱伝導の良い部材105の孔は通常フオ
トエツチングで明けられるが、孔の直径は板厚よ
り小さくすることは不可能なため、孔はあまり多
く明けられなく、従つて伝熱面積が限られてしま
う。このため、熱交換器6の熱交換効率が低下
し、この非効率分は冷凍出力によつて補われるの
で、有効な冷凍出力が低下することになる。
In addition, holes in the member 105 with good thermal conductivity are normally drilled by photo etching, but since it is impossible to make the diameter of the holes smaller than the plate thickness, it is not possible to drill too many holes, which limits the heat transfer area. I end up getting beaten up. For this reason, the heat exchange efficiency of the heat exchanger 6 decreases, and this inefficiency is compensated for by the refrigeration output, resulting in a decrease in the effective refrigeration output.

〔技術的課題〕[Technical issues]

そこで本発明は、熱交換器6において冷凍機A
の作動ガスと冷凍機Bの作動ガスの境界において
信頼性の高い気密性が容易に得られることを技術
的課題とする。
Therefore, in the present invention, in the heat exchanger 6, the refrigerator A
The technical problem is to easily obtain reliable airtightness at the boundary between the working gas of the refrigerator B and the working gas of the refrigerator B.

また本発明は熱交換器6の伝熱面積を大きくす
ることを技術的課題とする。
Moreover, the technical object of the present invention is to increase the heat transfer area of the heat exchanger 6.

〔従来的手段〕[Conventional means]

上記の技術的課題を達成するために講じた技術
的手段は、熱交換器6の内部に、作動ガスの流れ
方向に貫通する薄い側壁を設け、この側壁の両面
に接して作動ガスの流れ方向に垂直な姿勢で金網
を積層し、側壁と金網を拡散接合することであ
る。
The technical means taken to achieve the above technical problem is to provide a thin side wall penetrating in the flow direction of the working gas inside the heat exchanger 6, and to contact both sides of this side wall in the flow direction of the working gas. The wire mesh is stacked in a vertical position, and the side walls and the wire mesh are diffusion bonded.

〔技術的手段の作用〕[Effect of technical means]

上記技術的手段は次のように作用する。冷凍機
Aの作動ガスが第1蓄冷器5から熱交換器6へ流
入すると、冷凍機Aの作動ガスが冷凍機A側の金
網、側壁、そして冷凍機B側の金網を介して、冷
凍機Bの熱交換器6内を蓄冷器5の方向に流れる
作動ガスによつて冷却され、第2膨張空間に流入
する。逆に、冷凍機Aの作動ガスが第2膨張空間
から熱交換器6へ流入すると、冷凍機Aの作動ガ
スが冷凍機A側の金網、側壁、そして冷凍機B側
の金網を介して、冷凍機Bの熱交換器6内を第2
膨張空間の方向に流れる作動ガスによつて加熱さ
れ、蓄冷器5に流入する。
The above technical means works as follows. When the working gas of the refrigerator A flows from the first regenerator 5 to the heat exchanger 6, the working gas of the refrigerator A flows through the wire mesh on the refrigerator A side, the side wall, and the wire mesh on the refrigerator B side. It is cooled by the working gas flowing in the heat exchanger 6 of B in the direction of the regenerator 5, and flows into the second expansion space. Conversely, when the working gas of the refrigerator A flows into the heat exchanger 6 from the second expansion space, the working gas of the refrigerator A flows through the wire mesh on the refrigerator A side, the side wall, and the wire mesh on the refrigerator B side. The inside of the heat exchanger 6 of refrigerator B is
It is heated by the working gas flowing in the direction of the expansion space and flows into the regenerator 5.

〔本発明によつて生じた特有の効果〕[Special effects produced by the present invention]

本発明は、次の特有の効果を生ずる。側壁が作
動ガスの流れ方向に貫通して、冷凍機Aの作動ガ
スと冷凍機Bの作動ガスを分離しているため、両
者の間の気密性が容易に得られ、しかも運転・休
止に伴なう熱サイクルによつて気密性を失なうこ
とがない。
The present invention produces the following unique effects. Since the side wall penetrates in the flow direction of the working gas and separates the working gas of refrigerator A and the working gas of refrigerator B, airtightness can be easily achieved between the two, and it is also possible to easily maintain airtightness during operation or stoppage. The airtightness will not be lost due to thermal cycling.

また、金網は通常、熱伝導の良いタフピツチ銅
等の材質が用いられるが、この材質に対して、
100メツシユ(線径0.11mm;ピツチ0.25mm)程度
のものが容易に得られるため、従来の多孔板(第
4図、熱伝導の良い部材105)と比較して数倍
の伝熱面積を得ることができる。
In addition, wire mesh is usually made of materials such as tough pitch copper, which has good thermal conductivity, but compared to this material,
100 meshes (wire diameter 0.11mm; pitch 0.25mm) can be easily obtained, providing several times the heat transfer area compared to conventional perforated plates (Fig. 4, member 105 with good heat conduction). be able to.

このような形式の熱交換器6において、従来の
熱交換器6のような、熱絶縁物(第3図、熱伝導
の悪い部材104)を使用していないため、熱交
換器6の高温部から低温部へ伝導による熱侵入が
心配になる。この熱侵入の可能性として、側壁の
伝導によるものと積層金網を貫く伝導によるもの
の2つが考えられる。
In this type of heat exchanger 6, unlike the conventional heat exchanger 6, a thermal insulator (Fig. 3, member 104 with poor heat conduction) is not used, so the high temperature part of the heat exchanger 6 is not used. There is a concern that heat may enter the low-temperature area through conduction. There are two possibilities for this heat intrusion: conduction through the side walls and conduction through the laminated wire mesh.

まず、側壁の熱伝導による熱侵入については、
側壁の肉厚を極力薄くすることで小さくすること
ができ、同時に冷凍機Aの作動ガスと冷凍機Bの
作動ガスの熱交換効率も向上させることができ
る。しかも、極力薄くした側壁を用いても、側壁
の材質を熱伝導率の高い材料(タフピツチ銅等)
とすると、冷凍機Aの作動ガスと冷凍機Bの作動
ガスの間の熱交換効率は良くなるが、熱交換器6
の高温部から低温部への熱侵入量が大きくなり過
ぎる。逆に、側壁の材質を熱伝導率の低い材料
(SUS304等)とすると、熱交換器6の高温部か
ら低温部への熱侵入量はほぼ完全に抑えることが
できるが、冷凍機Aの作動ガスと冷凍機Bの作動
ガスの熱交換効率がかなり低下する。そこで、側
壁の材質を中程度の熱伝導率を有する材料(リン
脱酸銅・工業用純チタン等)とすれば、熱交換器
6の高温部から低温部への熱侵入量を十分に抑え
ながら、かつ冷凍機Aの作動ガスと冷凍機Bの作
動ガスの熱交換効率も十分に高くすることができ
る。
First, regarding heat intrusion due to heat conduction on the side walls,
By making the wall thickness of the side wall as thin as possible, the size can be reduced, and at the same time, the heat exchange efficiency between the working gas of the refrigerator A and the working gas of the refrigerator B can be improved. Moreover, even if the side walls are made as thin as possible, the material of the side walls must be made of a material with high thermal conductivity (such as Tough Pitch copper).
If so, the heat exchange efficiency between the working gas of refrigerator A and the working gas of refrigerator B will be improved, but the heat exchanger 6
The amount of heat entering from the high temperature section to the low temperature section becomes too large. Conversely, if the side walls are made of a material with low thermal conductivity (SUS304, etc.), the amount of heat intrusion from the high temperature section to the low temperature section of the heat exchanger 6 can be almost completely suppressed, but the operation of the refrigerator A The heat exchange efficiency between the gas and the working gas of refrigerator B is considerably reduced. Therefore, if the side wall is made of a material with medium thermal conductivity (phosphorus-deoxidized copper, industrially pure titanium, etc.), the amount of heat intrusion from the high temperature section to the low temperature section of the heat exchanger 6 can be sufficiently suppressed. However, the heat exchange efficiency between the working gas of refrigerator A and the working gas of refrigerator B can also be made sufficiently high.

次に、積層金網を貫く熱伝導による熱侵入につ
いては、金網を積層した場合の接触面積は非常に
小さく、従つて熱侵入量も非常に小さい。
Next, regarding heat intrusion due to thermal conduction through the laminated wire mesh, the contact area when the wire meshes are stacked is very small, and therefore the amount of heat intrusion is also very small.

〔第1の実施例〕 以下、上記技術的手段の一具体例を示す第1の
実施例について、第5図および第6図を参照して
説明する。連通孔107は冷凍機A側の第2膨張
空間8に接着し、連通孔102は冷凍機A側の蓄
冷器5に接着する。連通孔108は冷凍機B側の
第2膨張空間8に接続し、貫通孔103は冷凍機
B側の蓄冷器5に接続する。側壁202は薄肉円
管の形状を有し、熱交換器6の上下を貫通してい
る。側壁202の内外両面に接して、金網20
4,205が積層され、側壁202と金網20
4,205は拡散接合される。ハウジング203
によつて熱交換器6の外壁が形成される。キヤツ
プ201は冷凍機Aの作動ガスの流路を形成す
る。
[First Example] Hereinafter, a first example showing a specific example of the above technical means will be described with reference to FIGS. 5 and 6. The communication hole 107 is bonded to the second expansion space 8 on the refrigerator A side, and the communication hole 102 is bonded to the regenerator 5 on the refrigerator A side. The communication hole 108 is connected to the second expansion space 8 on the refrigerator B side, and the through hole 103 is connected to the regenerator 5 on the refrigerator B side. The side wall 202 has the shape of a thin circular tube and passes through the top and bottom of the heat exchanger 6 . A wire mesh 20 is placed in contact with both the inner and outer surfaces of the side wall 202.
4,205 are stacked, side wall 202 and wire mesh 20
4,205 is diffusion bonded. Housing 203
The outer wall of the heat exchanger 6 is formed by this. The cap 201 forms a flow path for the working gas of the refrigerator A.

第5図および第6図に示す実施例の作用につい
て説明する。冷凍機Aの作動ガスが蓄冷器5から
連通孔102およびキヤツプ201を通つて金網
204の積層部に流入する。同時に、冷凍機Bの
作動ガスが第2膨張空間8から連通孔108を通
り金網205の積層部分に流入する。このとき、
冷凍機Aの作動ガスの温度は10K程度、冷凍機B
の作動ガスの温度は4K程度であるため、金網2
04,205と側壁202を介して、効率良く熱
交換が行われる。冷凍機Aの作動ガスは冷却され
て、キヤツプ201および連通孔107を通つて
第2膨張空間8に流入する。劣凍機Bの作動ガス
は加熱されて、連通孔103を通つて蓄冷器5に
流入する。
The operation of the embodiment shown in FIGS. 5 and 6 will be explained. Working gas from the refrigerator A flows from the regenerator 5 through the communication hole 102 and the cap 201 into the laminated portion of the wire mesh 204 . At the same time, the working gas of the refrigerator B flows from the second expansion space 8 through the communication hole 108 into the laminated portion of the wire mesh 205. At this time,
The temperature of the working gas of refrigerator A is about 10K, and the temperature of the working gas of refrigerator B is about 10K.
Since the temperature of the working gas is about 4K, wire mesh 2
04, 205 and the side wall 202, heat exchange is performed efficiently. The working gas of the refrigerator A is cooled and flows into the second expansion space 8 through the cap 201 and the communication hole 107. The working gas of the refrigerating machine B is heated and flows into the regenerator 5 through the communication hole 103.

冷凍機Aの作動ガスが第2膨張空間8から連通
孔107、キヤツプ201を通り、金網204の
積層部分に流入する。同時に、冷凍機Bの作動ガ
スが蓄冷器5から連通孔103を通り、金網20
5の積層部分に流入する。このとき、冷凍機Aの
作動ガスの温度は4K程度、冷凍機Bの作動ガス
の温度は10K程度であるため、金網204,20
5と側壁202を介して、効率良く熱交換が行な
われる。冷凍機Aの作動ガスは加熱されて、キヤ
ツプ201および連通孔102を通り、蓄冷器5
に流入する。冷凍機Bの作動ガスは冷却されて、
連通孔108を通つて第2膨張空間8に流入す
る。
Working gas from the refrigerator A flows from the second expansion space 8 through the communication hole 107 and the cap 201 into the laminated portion of the wire mesh 204. At the same time, the working gas of refrigerator B passes through the communication hole 103 from the regenerator 5 and passes through the wire mesh 20.
It flows into the laminated portion of No.5. At this time, the temperature of the working gas of refrigerator A is about 4K, and the temperature of the working gas of refrigerator B is about 10K, so the wire meshes 204, 20
5 and the side wall 202, heat exchange is performed efficiently. The working gas of the refrigerator A is heated, passes through the cap 201 and the communication hole 102, and enters the regenerator 5.
flows into. The working gas of refrigerator B is cooled,
It flows into the second expansion space 8 through the communication hole 108.

〔第2の実施例〕 次に、本発明の技術的手段の一具体例を示す第
2の実施例ついて第7図、第8図を参照して説明
する。連通孔107は冷凍機A側の第2膨張空間
8に接続し、連通孔102は冷凍機A側の蓄冷器
5に接続する。連通孔108は冷凍機B側の第2
膨張空間8に接続し、連通孔103は冷凍機B側
の蓄冷器5に接続する。側壁302は4本の薄肉
円管の形状を有し、熱交換器6の上下を貫通して
いる。側壁302の内外両面に接して、金網30
4,305が積層され、側壁302と金網30
4,305は拡散接合される。ハウジング303
につて熱交換器6の外壁が形成される。キヤツプ
301は冷凍機Aの作動ガスの流路を形成する。
[Second Embodiment] Next, a second embodiment showing a specific example of the technical means of the present invention will be described with reference to FIGS. 7 and 8. The communication hole 107 is connected to the second expansion space 8 on the refrigerator A side, and the communication hole 102 is connected to the regenerator 5 on the refrigerator A side. The communication hole 108 is the second one on the side of the refrigerator B.
It is connected to the expansion space 8, and the communication hole 103 is connected to the regenerator 5 on the refrigerator B side. The side wall 302 has the shape of four thin-walled circular tubes and passes through the top and bottom of the heat exchanger 6. In contact with both the inner and outer surfaces of the side wall 302, the wire mesh 30
4,305 are stacked, side wall 302 and wire mesh 30
4,305 is diffusion bonded. Housing 303
The outer wall of the heat exchanger 6 is formed. The cap 301 forms a flow path for the working gas of the refrigerator A.

第7図および第8図に示す実施例の作用につい
て説明する。冷凍機Aの作動ガスが蓄冷器5から
連通孔102およびキヤツプ301を通つて金網
304の積層部に流入する。同時に、冷凍機Bの
作動ガスが第2膨張空間8から連通孔108を通
り金網305の積層部分に流入する。このとき、
冷凍機Aの作動ガスの温度は10K程度、冷凍機B
の作動ガスの温度は4K程度であるため、金網3
04,305と側壁302を介して、効率良く熱
交換が行なわれる。冷凍機Aの作動ガスは冷却さ
れて、キヤツプ301および連通孔107を通つ
て第2膨張空間8に流入する。冷凍機Bの作動ガ
スは加熱されて、連通孔103を通つて蓄冷器5
に流入する。
The operation of the embodiment shown in FIGS. 7 and 8 will be explained. Working gas from the refrigerator A flows from the regenerator 5 through the communication hole 102 and the cap 301 into the laminated portion of the wire mesh 304 . At the same time, the working gas of the refrigerator B flows from the second expansion space 8 through the communication hole 108 into the laminated portion of the wire mesh 305. At this time,
The temperature of the working gas of refrigerator A is about 10K, and the temperature of the working gas of refrigerator B is about 10K.
Since the temperature of the working gas is about 4K, wire mesh 3
04, 305 and the side wall 302, heat exchange is performed efficiently. The working gas of the refrigerator A is cooled and flows into the second expansion space 8 through the cap 301 and the communication hole 107. The working gas of the refrigerator B is heated and passes through the communication hole 103 to the regenerator 5.
flows into.

冷凍機Aの作動ガスが第2膨張空間8から連通
孔107、キヤツプ301を通り、金網304の
積層部分に流入する。同時に、冷凍機Bの作動ガ
スが蓄冷器5から連通孔103を通り、金網30
5の積層部分に流入する。このとき、冷凍機Aの
作動ガスの温度は4K程度、冷凍機Bの作動ガス
の温度は10K程度であるため、金網304,30
5と側壁302を介して、効率良く熱交換が行な
われる。冷凍機Aの作動ガスは加熱されて、キヤ
ツプ301および連通孔102を通り、蓄冷器5
に流入する。冷凍機Bの作動ガスは冷却されて、
連通孔108を通つて第2膨張空間8に流入す
る。
Working gas from the refrigerator A flows from the second expansion space 8 through the communication hole 107 and the cap 301 into the laminated portion of the wire mesh 304. At the same time, the working gas from refrigerator B passes through the communication hole 103 from the regenerator 5 and passes through the wire mesh 30.
It flows into the laminated portion of No.5. At this time, the temperature of the working gas of refrigerator A is about 4K, and the temperature of the working gas of refrigerator B is about 10K, so the wire meshes 304, 30
5 and the side wall 302, heat exchange is performed efficiently. The working gas of the refrigerator A is heated, passes through the cap 301 and the communication hole 102, and enters the regenerator 5.
flows into. The working gas of refrigerator B is cooled,
It flows into the second expansion space 8 through the communication hole 108.

〔第3の実施例〕 次に、本発明の技術的手段の一具体例を示す第
3の実施例によいて第9図を参照して説明する。
圧縮シリンダー1と圧縮ピストン2により形成さ
れる圧縮空間3は、冷却器4、熱交換器6および
膨張空間8に連通している。この様にして圧縮空
間3、冷却器4、熱交換器6、そして膨張空間8
から冷凍回路は構成され、作動ガスとして冷凍回
路内にはヘリウムガスが封入されている。圧縮ピ
ストン2にはロツド14が連結され、さらに圧縮
ピストン2の外周の一部には、ガス封止のための
シール9が設けられ、そしてロツド14の外壁上
の一部にもガス封止のためのシール10が設置さ
れている。
[Third Embodiment] Next, a third embodiment illustrating a specific example of the technical means of the present invention will be described with reference to FIG. 9.
A compression space 3 formed by the compression cylinder 1 and the compression piston 2 communicates with a cooler 4, a heat exchanger 6, and an expansion space 8. In this way, a compression space 3, a cooler 4, a heat exchanger 6, and an expansion space 8 are created.
The refrigeration circuit is constructed from the following, and helium gas is sealed in the refrigeration circuit as a working gas. A rod 14 is connected to the compression piston 2, and a seal 9 for gas sealing is provided on a part of the outer circumference of the compression piston 2, and a seal 9 for gas sealing is also provided on a part of the outer wall of the rod 14. A seal 10 is installed for this purpose.

膨張空間8は膨張シリンダー17、膨張ピスト
ン16によつて形成される。膨張ピストン16の
外周上には、膨張空間8内のガス封止のためのシ
ール12が設置されている。また、膨張ピストン
16にはロツド15が連結され、ロツド15の外
壁上の一部には、ガス封止のためのシール13が
設置されている。ロツド14,15は図示されて
いない往復駆動機構(例えばクランク)に連結さ
れ、破線で示された冷凍機Aと冷凍機Bとは、ほ
ぼ180度の位相差(即ち、冷凍機Aの膨張ピスト
ン16および圧縮ピストン2に対して、ほぼ180
度位相差をもつて運動している。)をもつて駆動
されている。
The expansion space 8 is formed by an expansion cylinder 17 and an expansion piston 16. A seal 12 is installed on the outer periphery of the expansion piston 16 for sealing gas in the expansion space 8 . Further, a rod 15 is connected to the expansion piston 16, and a seal 13 for gas sealing is installed on a part of the outer wall of the rod 15. The rods 14 and 15 are connected to a reciprocating drive mechanism (for example, a crank) not shown, and the refrigerator A and refrigerator B shown in broken lines have a phase difference of approximately 180 degrees (i.e., the expansion piston of refrigerator A 16 and compression piston 2, approximately 180
It moves with a degree phase difference. ).

冷凍機Aの作用を説明する。 The function of refrigerator A will be explained.

圧縮空間3内の作用ガス(ヘリウムガス)は圧
縮ピストン2により圧縮された後、冷却器4で約
20Kに冷却され、熱交換器6に流入する。熱交換
器6に流入した作動ガスは、冷凍機Bの熱交換器
6内を冷却器4の方向に流れる作動ガスによつて
冷却され、膨張空間8へ流入し、膨張ピストン1
6により膨張され、約4Kの温度の冷凍を発生す
る。膨張空間8で膨張し終つた作動ガスは、前記
膨張ピストン16の圧縮により、熱交換器6へ流
入すると、冷凍機Bの熱交換器6内を膨張空間8
の方向に流れている作動ガスによつて、熱を与え
られ温度が高められ、冷却器4へ流入し、さらに
圧縮空間3へ流入する。この様にして冷凍機Aは
1サイクルを形成する。
After the working gas (helium gas) in the compression space 3 is compressed by the compression piston 2, it is compressed by the cooler 4.
It is cooled to 20K and flows into the heat exchanger 6. The working gas that has flowed into the heat exchanger 6 is cooled by the working gas that flows in the heat exchanger 6 of the refrigerator B in the direction of the cooler 4, flows into the expansion space 8, and moves into the expansion piston 1.
6 to produce refrigeration at a temperature of about 4K. When the working gas that has finished expanding in the expansion space 8 flows into the heat exchanger 6 due to compression by the expansion piston 16, it flows inside the heat exchanger 6 of the refrigerator B into the expansion space 8.
The working gas flowing in the direction gives heat and increases its temperature, and flows into the cooler 4 and further into the compression space 3. In this way, refrigerator A forms one cycle.

冷凍機Bの作用は、冷凍機Aよりほぼ180度の
位相差をもつて駆動されている点を除いては冷凍
機Aと同様である。
The operation of refrigerator B is similar to that of refrigerator A except that it is driven with a phase difference of approximately 180 degrees from refrigerator A.

この様な超低温冷凍機システムに対しても、本
発明の熱交換器6(例えば、第5図に示す第1の
実施例、第7図に示す第2の実施例)を使用でき
る。
The heat exchanger 6 of the present invention (for example, the first embodiment shown in FIG. 5 and the second embodiment shown in FIG. 7) can be used for such ultra-low temperature refrigerator systems as well.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は超低温冷凍機システム示す説明図、第
2図は従来の熱交換器を示す説明用断面図、第3
図は第2図における部材104の説明用平面図、
第4図は第2図における部材105の説明用平面
図、第5図は本発明の熱交換器の一具体例を示す
第1の実施例の説明用断面図、第6図は第5図の
−横断面図、第7図は本発明の熱交換器の一
具体例を示す第2の実施例の説明用断面図、第8
図は第7図の−横断面図、そして第9図は本
発明の熱交換器を用いることができる、第1図と
は別の超低温冷凍機システムを示す説明図であ
る。 3……圧縮空間、4……冷却器、5……蓄冷
器、8……膨張空間、A,B……冷凍機、6……
熱交換器、202,302……側壁、204,2
05,304,305……金網。
Fig. 1 is an explanatory diagram showing an ultra-low temperature refrigerator system, Fig. 2 is an explanatory sectional view showing a conventional heat exchanger, and Fig. 3 is an explanatory diagram showing an ultra-low temperature refrigerator system.
The figure is an explanatory plan view of the member 104 in FIG.
4 is an explanatory plan view of the member 105 in FIG. 2, FIG. 5 is an explanatory sectional view of the first embodiment showing a specific example of the heat exchanger of the present invention, and FIG. FIG. 7 is an explanatory cross-sectional view of the second embodiment showing one specific example of the heat exchanger of the present invention, and FIG.
The figure is a cross-sectional view of FIG. 7, and FIG. 9 is an explanatory diagram showing an ultra-low temperature refrigerator system different from that of FIG. 1, in which the heat exchanger of the present invention can be used. 3... Compression space, 4... Cooler, 5... Regenerator, 8... Expansion space, A, B... Freezer, 6...
Heat exchanger, 202, 302...Side wall, 204, 2
05,304,305...wire mesh.

Claims (1)

【特許請求の範囲】 1 圧縮空間、冷却器、蓄冷器および膨張空間を
順次連通させている冷凍機を複数個配し、前記蓄
冷器と前記膨張空間との間に前記冷凍機が相互に
共有する熱交換器を設けて向流型熱交換器を形成
させている超低温冷凍機システムにおいて、前記
熱交換器を、側壁が前記各冷凍機の作動ガスの流
れ方向に貫通し、前記側壁の両面に接して作動ガ
スの流れ方向に垂直な姿勢で金網を積層し、前記
側壁と金網を接合することによつて構成した超低
温冷凍機システムの熱交換器。 2 圧縮空間、冷却器および膨張空間を順次連通
させている冷凍機を複数個配し、前記冷却器と前
記膨張空間との間に前記冷凍機が相互に共有する
熱交換器を設けて向流型熱交換器を形成させてい
る超低温冷凍機システムにおいて、前記熱交換器
を、側壁が前記各冷凍機の作動ガスの流れ方向に
貫通し、前記側壁の両面に接して作動ガスの流れ
方向に垂直な姿勢で金網を積層し、前記側壁と金
網を接合することによつて構成した超低温冷凍機
システムの熱交換器。
[Scope of Claims] 1. A plurality of refrigerators are arranged in which a compression space, a cooler, a regenerator, and an expansion space are connected in sequence, and the refrigerating machines are mutually shared between the regenerator and the expansion space. In an ultra-low temperature refrigerator system in which a heat exchanger is provided to form a countercurrent heat exchanger, a side wall penetrates the heat exchanger in the flow direction of the working gas of each of the refrigerators, and both sides of the side wall A heat exchanger for an ultra-low temperature refrigerator system, which is constructed by stacking wire mesh in a position perpendicular to the flow direction of working gas in contact with the side wall and joining the wire mesh to the side wall. 2 A plurality of refrigerators are arranged in which a compression space, a cooler, and an expansion space are sequentially communicated, and a heat exchanger shared by the refrigerators is provided between the cooler and the expansion space to achieve countercurrent flow. In an ultra-low temperature refrigerator system in which a type heat exchanger is formed, the heat exchanger has a side wall that penetrates in the flow direction of the working gas of each of the refrigerators, and is in contact with both sides of the side wall in the flow direction of the working gas. A heat exchanger for an ultra-low temperature refrigerator system constructed by stacking wire mesh in a vertical position and joining the side wall and the wire mesh.
JP22939983A 1983-12-05 1983-12-05 Heat exchanger for cryogenic refrigerator system Granted JPS60122869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22939983A JPS60122869A (en) 1983-12-05 1983-12-05 Heat exchanger for cryogenic refrigerator system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22939983A JPS60122869A (en) 1983-12-05 1983-12-05 Heat exchanger for cryogenic refrigerator system

Publications (2)

Publication Number Publication Date
JPS60122869A JPS60122869A (en) 1985-07-01
JPH0222871B2 true JPH0222871B2 (en) 1990-05-22

Family

ID=16891595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22939983A Granted JPS60122869A (en) 1983-12-05 1983-12-05 Heat exchanger for cryogenic refrigerator system

Country Status (1)

Country Link
JP (1) JPS60122869A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06230721A (en) * 1992-01-03 1994-08-19 Isocel Sarl Marking label for article

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5606744B2 (en) * 2010-01-20 2014-10-15 住友重機械工業株式会社 Pulse tube refrigerator
JP2011149600A (en) * 2010-01-20 2011-08-04 Sumitomo Heavy Ind Ltd Pulse tube refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06230721A (en) * 1992-01-03 1994-08-19 Isocel Sarl Marking label for article

Also Published As

Publication number Publication date
JPS60122869A (en) 1985-07-01

Similar Documents

Publication Publication Date Title
US4259844A (en) Stacked disc heat exchanger for refrigerator cold finger
US20150168027A1 (en) Miniaturized gas refrigeration device with two or more thermal regenerator sections
JPH0222871B2 (en)
KR20010083614A (en) Aftercooler and its manufacturing mathod for pulse tube refrigerator
JP2551000B2 (en) Cryogenic generator
JP2609327B2 (en) refrigerator
US4281517A (en) Single stage twin piston cryogenic refrigerator
JP2019536972A (en) Heat exchanger for cryogenic refrigerator with helium as working gas, method for producing such heat exchanger, and cryogenic refrigerator including such heat exchanger
CN114877552A (en) Miniature throttling refrigerator, application method thereof and infrared detector
JP2889221B1 (en) Regenerator
WO2019009019A1 (en) Cryogenic refrigerator
CN112867898B (en) Pulse tube refrigerator and method for manufacturing pulse tube refrigerator
JP2910438B2 (en) Cool storage refrigerator
JP3354364B2 (en) External combustion engine regenerator
US4877434A (en) Cryogenic refrigerator
JPH11223398A (en) Heat exchanger for heat engine
JPH0451662B2 (en)
JPS6256420B2 (en)
JPH0311663Y2 (en)
JPH047492Y2 (en)
JPH0349019B2 (en)
JPH0147713B2 (en)
JP2019015489A (en) Cryogenic refrigerator
JPS61237874A (en) Heat exchanger of displacer type stirling engine
JP2000018742A (en) Cooling device