JP2000018742A - Cooling device - Google Patents

Cooling device

Info

Publication number
JP2000018742A
JP2000018742A JP10183799A JP18379998A JP2000018742A JP 2000018742 A JP2000018742 A JP 2000018742A JP 10183799 A JP10183799 A JP 10183799A JP 18379998 A JP18379998 A JP 18379998A JP 2000018742 A JP2000018742 A JP 2000018742A
Authority
JP
Japan
Prior art keywords
pulse tube
low
temperature end
cooled
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10183799A
Other languages
Japanese (ja)
Inventor
Hideo Mita
英夫 三田
Akira Hirano
明良 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP10183799A priority Critical patent/JP2000018742A/en
Publication of JP2000018742A publication Critical patent/JP2000018742A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1406Pulse-tube cycles with pulse tube in co-axial or concentric geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1411Pulse-tube cycles characterised by control details, e.g. tuning, phase shifting or general control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1412Pulse-tube cycles characterised by heat exchanger details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1414Pulse-tube cycles characterised by pulse tube details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1421Pulse-tube cycles characterised by details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir
    • F25B2309/14241Pulse tubes with basic schematic including an orifice reservoir multiple inlet pulse tube

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively utilize coldness and to improve cooling efficiency by providing a body to be cooled being thermally in contact between the high-temperature and low-temperature ends of a pulse pipe. SOLUTION: This cooling device is composed of a body 20 to be cooled that is in thermal contact continuously between a high-temperature end 18a and a low- temperature end 18b of a part for generating coldness of a pulse tube 18 of a pulse tube refrigerating machine A1 and a third body 32 to be cooled in thermal contact with the low-temperature end 16b of cold storage equipment 16 that communicates with the low-temperature end 18b of the pulse tube 18. The discharge side of a compression means 1 of a pressure vibration source communicates with high-pressure switching valves 2 and 3 via high-pressure pipes 6 and 7 and the suction side of the compression means 1 communicates with low-pressure switching valves 4 and 5 via low-pressure pipes 8 and 9. The high-pressure switching valves 2 and 3 and the low-pressure switching valves 4 and 5 are connected to such drive part 19 as a pulse motor, and the high-pressure switching valves 2 and 3 and the low-pressure switching valves 4 and 5 are switched at a certain timing, thus enabling the body 20 to be cooled to absorb heat over a wide continuous range between the high-temperature end 18a and the low-temperature end 18b of the pulse tube 18 and hence improving cooling efficiency.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、パルス管冷凍機に
より寒冷を得て、被冷却体を冷却する冷却装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device for cooling a body to be cooled by obtaining cold by a pulse tube refrigerator.

【0002】[0002]

【従来の技術】本発明に関する蓄冷式の冷凍機による冷
却装置としては、例えば図19に示す特公昭45−27
634号公報に開示されている様な構成になっている。
図19における冷却装置は、(逆)スターリングサイク
ル冷凍機の冷凍機101と、寒冷を被冷却体110へ搬
送する冷却回路120とから構成される。
2. Description of the Related Art As a cooling device using a regenerative refrigerator according to the present invention, for example, Japanese Patent Publication No. 45-27 shown in FIG.
The configuration is as disclosed in Japanese Patent Application Laid-Open No. 634/634.
The cooling device in FIG. 19 includes a refrigerator 101 of a (reverse) Stirling cycle refrigerator and a cooling circuit 120 that conveys cold to the cooled object 110.

【0003】冷凍機101は、シリンダー100と、シ
リンダー100中で往復動作するピストン102と、ピ
ストン102とはある位相差で往復動作するディスプレ
ーサ103と、ピストン102及ぴディスプレーサ10
3との間の圧縮室104と連通した冷却器106と、デ
ィスプレーサ103とシリンダー上端との間に配設され
た冷凍器108と、冷却器106と膨張室105との間
に配設された蓄冷器107とを具備する。
A refrigerator 101 includes a cylinder 100, a piston 102 reciprocating in the cylinder 100, a displacer 103 reciprocating from the piston 102 with a certain phase difference, a piston 102 and a displacer 10.
3, a cooler 108 disposed between the displacer 103 and the upper end of the cylinder, and a cool storage disposed between the cooler 106 and the expansion chamber 105. And a vessel 107.

【0004】冷却回路120は、圧縮機121と、冷凍
器108に熱接触された複数の寒冷伝達用熱交換器12
5及び被冷却体110を冷却する複数の冷却用熱交換器
126が交互に直列に配設された導管系124と、導管
系124と圧縮機121との間に介在された向流型熱交
換器123とから構成される。
[0004] A cooling circuit 120 includes a compressor 121 and a plurality of cold transfer heat exchangers 12 in thermal contact with the refrigerator 108.
5 and a conduit system 124 in which a plurality of cooling heat exchangers 126 for cooling the object to be cooled 110 are alternately arranged in series, and a counter-flow heat exchange interposed between the conduit system 124 and the compressor 121. And a vessel 123.

【0005】上記冷却装置では、冷凍機101におい
て、先ずピストン102の圧縮動作(等温圧縮)によっ
て圧縮室104に熱が発生し、続くデイスプレーサ10
3のピストン102側への移動によって、作動媒体は冷
却されながら蓄冷器107を通過し(定積冷却)、ディ
スプレーサ103が後退すると膨張室105に寒冷を発
生して(等温膨張)、冷凍器108に熱接触した寒冷伝
達用熱交換器125内を流れている作動媒体から吸熱す
る。更に、ディスプレーサ103の上端死点への移行に
より、作動媒体は蓄冷器107を冷却しつつ圧縮室10
4に戻る(定積加熱)。
[0005] In the cooling device, in the refrigerator 101, first, heat is generated in the compression chamber 104 by the compression operation (isothermal compression) of the piston 102, and then the displacer 10 is pressed.
By moving the piston 3 toward the piston 102, the working medium passes through the regenerator 107 while being cooled (constant volume cooling). The heat is absorbed from the working medium flowing in the cold transfer heat exchanger 125 that has come into thermal contact with the cooling medium. Further, due to the shift of the displacer 103 to the top dead center, the working medium cools the regenerator 107 while compressing the compression chamber 10.
Return to 4 (fixed volume heating).

【0006】従って、冷却回路120では、寒冷伝達用
熱交換器125内を流れている作動媒体が吸熱されるこ
とにより、各冷却用熱交換器126に寒冷が伝達され、
被冷却体110を冷却する。向流型熱交換器123は、
各作動媒体を圧縮機121へ戻す低圧の作動媒体で冷却
している。
Accordingly, in the cooling circuit 120, the working medium flowing in the cold transfer heat exchanger 125 absorbs heat, so that the cold is transferred to each cooling heat exchanger 126,
The object to be cooled 110 is cooled. The countercurrent heat exchanger 123 is
Each working medium is cooled by a low-pressure working medium returning to the compressor 121.

【0007】[0007]

【発明が解決しようとする課題】しかしながら従来のも
のは、冷凍機101の膨張室105で生成したある特定
の温度の寒冷を、冷凍器108で寒冷伝達用熱交換器1
25内を流れている作動媒体に伝達するため、冷却効率
が低いといった欠点がある。係る欠点は、ディスプレー
サ103の往復動作によって形成される膨張室105で
生成された特定の温度の寒冷のみを使うためである。
However, in the conventional apparatus, the cold of a specific temperature generated in the expansion chamber 105 of the refrigerator 101 is cooled in the refrigerator 108 by the cold transfer heat exchanger 1.
Since it is transmitted to the working medium flowing in the inside 25, there is a disadvantage that the cooling efficiency is low. Such a drawback is that only the cold of a specific temperature generated in the expansion chamber 105 formed by the reciprocating operation of the displacer 103 is used.

【0008】そこで本発明は、パルス管の広い温度範囲
で被冷却体を冷却することにより、冷凍機全体で得られ
る冷寒を有効に活用し、冷却効率を向上させることを目
的とする。
Therefore, an object of the present invention is to improve the cooling efficiency by effectively utilizing the cold obtained by the entire refrigerator by cooling the object to be cooled in a wide temperature range of the pulse tube.

【0009】[0009]

【課題を解決するための手段】請求項1の発明は、作動
媒体を圧縮、膨張させる圧力振動源と、該圧力振動源と
連通した蓄冷器と、該蓄冷器と連通したパルス管を有す
るパルス管冷凍機と、上記パルス管の高温端と低温端の
間に熱接触された被冷却体と、から構成される冷却装置
で、被冷却体を冷却することを特徴とする。
According to the first aspect of the present invention, there is provided a pulse vibration source having a pressure vibration source for compressing and expanding a working medium, a regenerator communicating with the pressure vibration source, and a pulse tube communicating with the regenerator. The object to be cooled is cooled by a cooling device including a tube refrigerator and an object to be cooled that is in thermal contact between a high temperature end and a low temperature end of the pulse tube.

【0010】請求項2の発明は、作動媒体を圧縮、膨張
させる圧力振動源と、該圧力振動源と連通した蓄冷器
と、該蓄冷器と連通したパルス管を有するパルス管冷凍
機と、上記パルス管の高温端と低温端の間に熱接触され
た第1被冷却体と、上記パルス管の低温端部分に熱接触
された第2被冷却体とから構成されたことを特徴とす
る。
According to a second aspect of the present invention, there is provided a pulse tube refrigerator having a pressure vibration source for compressing and expanding a working medium, a regenerator communicating with the pressure vibration source, and a pulse tube communicating with the regenerator. The pulse tube is characterized by comprising a first cooled body thermally contacted between a high temperature end and a low temperature end of the pulse tube, and a second cooled body thermally contacted with a low temperature end portion of the pulse tube.

【0011】請求項3の発明は、上記第1被冷却体は、
上記パルス管の高温端と低温端の間に熱接触されたシー
ルドケースであることを特徴とする。
According to a third aspect of the present invention, the first object to be cooled is:
The pulse tube is a shield case in thermal contact between a high-temperature end and a low-temperature end.

【0012】請求項4の発明は、上記第1被冷却体は、
上記パルス管の高温端と低温端の間に配置された熱交換
器に熱接触されていることを特徴とする。
According to a fourth aspect of the present invention, the first object to be cooled is:
The pulse tube is in thermal contact with a heat exchanger disposed between a high-temperature end and a low-temperature end.

【0013】請求項5の発明は、上記第1被冷却体に熱
接触された冷却用熱交換器と、該冷却用熱交換器と冷媒
流動で連通した寒冷伝達用熱交換器と、該寒冷伝達用熱
交換器は上記パルス管の高温端と低温端の間に熱接触さ
れていることを特徴とする。
According to a fifth aspect of the present invention, there is provided a cooling heat exchanger in thermal contact with the first cooled object, a cold transfer heat exchanger communicating with the cooling heat exchanger by refrigerant flow, The transfer heat exchanger is characterized by being in thermal contact between the hot end and the cold end of the pulse tube.

【0014】請求項6の発明は、上記パルス管の高温端
には、該高温端と連通する放熱器を配置したことを特徴
とする。
The invention according to claim 6 is characterized in that a radiator communicating with the high-temperature end is arranged at the high-temperature end of the pulse tube.

【0015】[0015]

【作用】請求項1の発明によれば、パルス管冷凍機のパ
ルス管の高温端と低温端の間に被冷却体を熱接触させる
ことは、1サイクルで流れる作動媒体が発生する寒冷を
被冷却体の冷却に利用していることになる。
According to the first aspect of the present invention, the object to be cooled is brought into thermal contact between the high-temperature end and the low-temperature end of the pulse tube of the pulse tube refrigerator. It is used for cooling the cooling body.

【0016】上記冷却原理をカルノー効率の観点から検
討すれば、被冷却体を高温端と低温端の間に熱接触させ
ることは、特定の温度を寒冷源とする冷却より効率的に
高い温度からも寒冷を得ることになり、総冷却量として
は、特定の低い温度だけから寒冷を得る場合より大き
く、冷却効率を高めることができる。
Considering the above-mentioned cooling principle from the viewpoint of Carnot efficiency, bringing the object to be cooled into thermal contact between the high-temperature end and the low-temperature end requires a higher temperature than the cooling using a specific temperature as a cold source. Therefore, the total amount of cooling is greater than when cooling is obtained only from a specific low temperature, and the cooling efficiency can be increased.

【0017】請求項2の発明によれば、パルス管の異な
る温度に被冷却体を熱接触させることにより、特定の温
度を寒冷源とする冷却より効率的に高い温度からも寒冷
を得ることになり、総冷却量としては、特定の温度だけ
から寒冷を得る場合より大きく、冷却効率を高めること
ができる。
According to the second aspect of the present invention, the object to be cooled is brought into thermal contact with different temperatures of the pulse tube, so that cold can be obtained even from a higher temperature than cooling using a specific temperature as a cold source. In other words, the total cooling amount is larger than when cooling is obtained only from a specific temperature, and the cooling efficiency can be increased.

【0018】請求項3の発明によれば、パルス管の高温
端と低温端の間に熱接触されたシールドケースにより、
寒冷源からの輻射による損失を低減することができ、ま
たシールドケースも寒冷を得ることから、総冷却量とし
ては、特定の温度だけから寒冷を得る場合より大きく、
冷却効率を高めることができる。
According to the third aspect of the present invention, the shield case is in thermal contact between the high-temperature end and the low-temperature end of the pulse tube.
Since the loss due to radiation from the cold source can be reduced, and the shield case also obtains cold, the total cooling amount is larger than when cold is obtained only from a specific temperature,
Cooling efficiency can be increased.

【0019】請求項4の発明によれば、熱交換器をパル
ス管の中に配置することによって、パルス管から取り出
せる寒冷を効率的に取得でき、冷却効率を更に向上する
ことができる。
According to the fourth aspect of the present invention, by arranging the heat exchanger in the pulse tube, it is possible to efficiently obtain the cold that can be taken out from the pulse tube, and to further improve the cooling efficiency.

【0020】請求項5の発明によれば、パルス管の高温
端と低温端の間に熱接触された寒冷伝達用熱交換器を設
置することにより、被冷却体を連続して冷却できるた
め、前記請求項1、前記請求項2と同様の理由により冷
却効率を高めることができる。
According to the fifth aspect of the present invention, the object to be cooled can be continuously cooled by installing the cold transfer heat exchanger in thermal contact between the high temperature end and the low temperature end of the pulse tube. The cooling efficiency can be increased for the same reason as in the first and second aspects.

【0021】請求項6の発明によれば、パルス管の高温
端に連通した放熱器を配置したことにより、積極的に放
熱が行われるため、上記請求項1〜5の冷却効率をさら
に高めることができる。又、パルス管の高温端の温度が
下がるため、パルス管の高温端から低温端へのパルス管
の管壁を伝わる熱伝導損失を低減することができる。
According to the sixth aspect of the present invention, since the radiator communicating with the high-temperature end of the pulse tube is disposed, heat is radiated positively, so that the cooling efficiency of the first to fifth aspects is further improved. Can be. Further, since the temperature at the high-temperature end of the pulse tube decreases, the heat conduction loss transmitted from the high-temperature end to the low-temperature end of the pulse tube through the wall of the pulse tube can be reduced.

【0022】[0022]

【発明の実施の形態】以下、本発明に係わる冷却装置を
各具体的な実施例により詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a cooling device according to the present invention will be described in detail with reference to specific examples.

【0023】第1実施例 図1は本発明の第1実施例で、パルス管冷凍機A1と該
パルス管冷凍機A1のパルス管18の寒冷を発生する部
分の高温端18aと低温端18bの間に連続して熱接触
された被冷却体20と、該パルス管18の低温端18b
と連通した蓄冷器16の低温端16bに熱接触された第
3被冷却体32から構成されている。
First Embodiment FIG. 1 shows a first embodiment of the present invention, in which a high-temperature end 18a and a low-temperature end 18b of a portion of a pulse tube refrigerator A1 and a part of the pulse tube 18 of the pulse tube refrigerator A1 that generate cold are generated. The object to be cooled 20 that has been continuously in thermal contact with the low temperature end 18b of the pulse tube 18
And a third cooled body 32 that is in thermal contact with the low-temperature end 16b of the regenerator 16 that communicates with the cooling unit 16.

【0024】圧力振動源の圧縮手段1の吐出側は、高圧
配管6、7を介し高圧切換弁2、3に連通しており、圧
縮手段1の吸込側は低圧配管8、9を介し、それぞれ低
圧切換弁4、5に連通している。
The discharge side of the compression means 1 of the pressure vibration source communicates with the high-pressure switching valves 2 and 3 through high-pressure pipes 6 and 7, and the suction side of the compression means 1 through low-pressure pipes 8 and 9, respectively. It communicates with the low pressure switching valves 4 and 5.

【0025】高圧切換弁2、3、低圧切換弁4、5はパ
ルスモータ等の駆動部19に接続され、各々の高圧切換
弁2、3、低圧切換弁4、5があるタイミングで開閉す
るようになっている。高圧切換弁2、低圧切換弁4はそ
れぞれ配管10、12を介し、蓄冷器16の高温端16
aに連通している。高圧切換弁3、低圧切換弁5もそれ
ぞれ配管11、13を介し流量を調整する絞り14の一
端に連通し、絞り14の他端は放熱器31に連通し、放
熱器31の他端はパルス管18の高温端18aに連通し
ている。
The high-pressure switching valves 2 and 3 and the low-pressure switching valves 4 and 5 are connected to a drive unit 19 such as a pulse motor so that the high-pressure switching valves 2 and 3 and the low-pressure switching valves 4 and 5 open and close at a certain timing. It has become. The high-pressure switching valve 2 and the low-pressure switching valve 4 are connected to the high-temperature end 16 of the regenerator 16 via pipes 10 and 12, respectively.
a. The high-pressure switching valve 3 and the low-pressure switching valve 5 also communicate with one end of a throttle 14 that adjusts the flow rate through pipes 11 and 13, respectively. It communicates with the hot end 18a of the tube 18.

【0026】パルス管18の低温端18bは配管17を
介し、蓄冷器16の低温端16bと連通している。圧縮
手段1、高圧切換弁2、3、低圧切換弁4、5と、放熱
器31と、パルスモータ等の駆動部19は、常温の雰囲
気に配設してある。このようにしてパルス管冷凍機A1
が構成されている。
The low-temperature end 18b of the pulse tube 18 communicates with the low-temperature end 16b of the regenerator 16 via a pipe 17. The compression means 1, the high-pressure switching valves 2, 3, the low-pressure switching valves 4, 5, the radiator 31, and the drive unit 19 such as a pulse motor are arranged in a normal temperature atmosphere. Thus, the pulse tube refrigerator A1
Is configured.

【0027】上記パルス管冷凍機A1の作動状態は、パ
ルスモータ等の駆動部で駆動される高圧切換弁2、3、
低圧切換弁4、5により、図2に示すような開閉を繰り
返す。その操作に伴う内部の作動媒体の状態は、時間的
に次のa〜dの4つの過程に区分される。各過程毎に詳
述すると、 過程a 高圧切換弁2が開、低圧切換弁4が閉の時、圧縮手段1
よって圧縮された作動媒体は、順次高圧配管6、高圧切
換弁2、配管10を通過して蓄冷器16に流入する。蓄
冷器16に流入した作動媒体は、蓄冷器16内の冷えた
蓄冷材で冷却され、配管17を通りパルス管18に流入
する。
The operation state of the pulse tube refrigerator A1 is determined by the high pressure switching valves 2, 3, which are driven by a drive unit such as a pulse motor.
Opening and closing as shown in FIG. 2 is repeated by the low pressure switching valves 4 and 5. The state of the internal working medium accompanying the operation is temporally divided into the following four processes a to d. Each step will be described in detail. Step a When the high-pressure switching valve 2 is open and the low-pressure switching valve 4 is closed, the compression means 1
Therefore, the compressed working medium flows into the regenerator 16 sequentially through the high-pressure pipe 6, the high-pressure switching valve 2, and the pipe 10. The working medium flowing into the regenerator 16 is cooled by the cold regenerative material in the regenerator 16 and flows into the pulse tube 18 through the pipe 17.

【0028】過程b 低圧切換弁5が開、高圧切換弁3が閉の時、パルス管1
8に流入した作動媒体は、パルス管18の軸方向の連続
した温度の作動媒体を押しのけて略等温的な膨張仕事を
し、パルス管18内の寒冷発生部の高温側の作動媒体
は、順次放熱器31、配管15、絞り14、低圧切換弁
5、低圧配管9を通過して圧縮手段1の吸込側に流入
し、パルス管の寒冷発生部の中温側と低温側の作動媒体
は、パルス管の高温側に移動する。この時、パルス管1
8の軸方向に連続した温度の寒冷が生成される。
Step b When the low pressure switching valve 5 is open and the high pressure switching valve 3 is closed, the pulse tube 1
The working medium that has flowed into 8 performs a substantially isothermal expansion work by displacing the working medium having a continuous temperature in the axial direction of the pulse tube 18, and the working medium on the high-temperature side of the cold generating part in the pulse tube 18 sequentially After passing through the radiator 31, the pipe 15, the throttle 14, the low-pressure switching valve 5, and the low-pressure pipe 9, it flows into the suction side of the compression means 1. Move to hot side of tube. At this time, the pulse tube 1
Eight axially continuous refrigerations are produced.

【0029】過程c 低圧切換弁4が開、高圧切換弁2が閉の時、パルス管1
8内の寒冷発生部の低温側の作動媒体は、順次配管1
7、蓄冷器16、配管12、低圧切換弁4、低圧配管8
を通過して圧縮手段1の吸込側にもどる。
Step c When the low pressure switching valve 4 is open and the high pressure switching valve 2 is closed, the pulse tube 1
The working medium on the low-temperature side of the cold generation section in
7, regenerator 16, pipe 12, low-pressure switching valve 4, low-pressure pipe 8
And returns to the suction side of the compression means 1.

【0030】過程d 高圧切換弁3が開、低圧切換弁5が閉の時、圧縮手段1
よって圧縮された作動媒体は、順次高圧配管7、高圧切
換弁3、配管11、絞り14、配管15、放熱器31を
通過して、パルス管18内に存在する作動媒体を低温端
18b側に移動させる。
Step d When the high-pressure switching valve 3 is open and the low-pressure switching valve 5 is closed,
Accordingly, the compressed working medium sequentially passes through the high-pressure pipe 7, the high-pressure switching valve 3, the pipe 11, the throttle 14, the pipe 15, and the radiator 31, and moves the working medium present in the pulse tube 18 toward the low-temperature end 18b. Move.

【0031】以上の過程a〜dを1サイクルとし、これ
を繰り返すことにより寒冷を発生する。
The above steps a to d are defined as one cycle, and by repeating this, cold is generated.

【0032】ここでカルノーの冷凍サイクルの効率η
は、吸熱部の熱量をQeとし、放熱部の熱量をQcとす
ると次式で表せる。
Here, the efficiency η of the Carnot refrigeration cycle
Can be expressed by the following equation, where Qe is the heat amount of the heat absorbing portion and Qc is the heat amount of the heat radiating portion.

【0033】[0033]

【数式1】η=Qe/(Qc−Qe) 吸熱部の質量をMe、比熱をCpeとすると、吸熱部の
熱量Qeと温度Teの関係は次式となる。
Η = Qe / (Qc−Qe) Assuming that the mass of the heat absorbing portion is Me and the specific heat is Cpe, the relationship between the heat quantity Qe of the heat absorbing portion and the temperature Te is as follows.

【0034】[0034]

【数式2】Qe=Me・Cpe・Te 放熱部の質量をMc、比熱をCpcとすると、放熱部の
熱量Qcと温度Tcの関係は次式となる。
## EQU2 ## Assuming that the mass of the radiator is Mc and the specific heat is Cpc, the relationship between the heat quantity Qc of the radiator and the temperature Tc is as follows.

【0035】[0035]

【数式3】Qc=Mc・Cpc・Tc ここで Me=Mc、Cpe=Cpc とすると、効率
ηは次式で表せる。
[Formula 3] Qc = Mc · Cpc · Tc Here, if Me = Mc and Cpe = Cpc, the efficiency η can be expressed by the following equation.

【0036】[0036]

【数式4】η=Te/(Tc−Te) このことから吸熱部での冷却量が多くなると、吸熱部の
温度Teが高くなり、効率ηが向上することがわかる。
Η = Te / (Tc−Te) From this, it can be seen that when the cooling amount in the heat absorbing portion increases, the temperature Te of the heat absorbing portion increases, and the efficiency η improves.

【0037】第1実施例では、図3の詳細図に示すよう
に、パルス管18の高温端18aと低温端18bの間の
連続した広い範囲で被冷却体20が吸熱することがで
き、総冷却量が多くなり、それに伴い冷却効率が向上す
る。
In the first embodiment, as shown in the detailed view of FIG. 3, the object to be cooled 20 can absorb heat over a continuous wide range between the high-temperature end 18a and the low-temperature end 18b of the pulse tube 18. The cooling amount increases, and the cooling efficiency improves accordingly.

【0038】図4は第1実施例の変形例で、パルス管1
8の円周上の一部分に被冷却体20が熱接触された具体
例である。
FIG. 4 shows a modification of the first embodiment, in which a pulse tube 1 is shown.
8 is a specific example in which a body to be cooled 20 is in thermal contact with a part of the circumference of FIG.

【0039】図5は第1実施例の変形例で、パルス管1
8の内側に被冷却体20が取り付けられた具体例であ
る。
FIG. 5 shows a modification of the first embodiment, in which a pulse tube 1 is used.
This is a specific example in which a cooled body 20 is attached to the inside of an inner portion 8.

【0040】第2実施例 図6の第2実施例は、前記第1実施例のパルス管冷凍機
A1と、パルス管18の高温端18aと低温端18bの
間に熱接触された第1被冷却体21と、パルス管18の
低温端18bに熱接触された第2被冷却体22と、蓄冷
器16の低温端16bに熱接触された第3被冷却体32
から構成される。即ちパルス管18の低温端18bと、
パルス管18の高温端18aと低温端18bの途中に、
それぞれ第1被冷却体21と、第2被冷却体22を熱接
触させることにより、第1実施例の場合と同様の理由
で、冷却効率を高めることができる。
Second Embodiment FIG. 6 shows a second embodiment in which the pulse tube refrigerator A1 according to the first embodiment is connected to the first tube which is in thermal contact between the high temperature end 18a and the low temperature end 18b of the pulse tube 18. The cooling body 21, the second cooled body 22 that is in thermal contact with the low temperature end 18 b of the pulse tube 18, and the third cooled body 32 that is in thermal contact with the low temperature end 16 b of the regenerator 16.
Consists of That is, the low temperature end 18b of the pulse tube 18;
In the middle of the high temperature end 18a and the low temperature end 18b of the pulse tube 18,
By bringing the first cooled object 21 and the second cooled object 22 into thermal contact with each other, the cooling efficiency can be increased for the same reason as in the first embodiment.

【0041】図7は第2実施例の変形で、パルス管18
の低温端18bは第2被冷却体22が熱接触しており、
パルス管18の高温端18aと低温端18bの途中は、
シールドケース21aが熱接触してある。このシールド
ケース21aにより第2被冷却体22と第3被冷却体3
2の輻射損失を防ぐことができ、またシールドケース2
1aもパルス管18から吸熱を行うため、第2実施例と
同様に冷却効率を高めることができる。
FIG. 7 shows a modification of the second embodiment.
The low temperature end 18b of the second cooling object 22 is in thermal contact with the
In the middle of the high temperature end 18a and the low temperature end 18b of the pulse tube 18,
The shield case 21a is in thermal contact. With this shield case 21a, the second cooled object 22 and the third cooled object 3
2 can prevent radiation loss.
Since 1a also absorbs heat from the pulse tube 18, the cooling efficiency can be increased as in the second embodiment.

【0042】第3実施例 図8は第3実施例で、パルス管冷凍機A1のパルス管1
8の高温端18aと低温端18bの途中の作動媒体が往
復流動するところに、図9に示すように第1被冷却体2
1に熱接触された熱交換器23を設け、往復流動する作
動媒体との伝熱を積極的に良くしている。したがって第
2実施例の場合より、冷却効率を高めることができる。
Third Embodiment FIG. 8 shows a third embodiment, in which a pulse tube 1 of a pulse tube refrigerator A1 is used.
As shown in FIG. 9, the first cooling member 2 is moved to a position where the working medium in the middle of the high-temperature end 18a and the low-temperature end 18b reciprocates.
1 is provided with a heat exchanger 23 which is in thermal contact with the heat exchanger 1 so as to positively improve the heat transfer with the reciprocating working medium. Therefore, the cooling efficiency can be increased as compared with the case of the second embodiment.

【0043】図10は第3実施例の熱交換器23の断面
図で、パルス管18の作動媒体の流路に、多数の穴29
が開いた熱交換器23を使用し、第1被冷却体21を熱
接触した具体例である。
FIG. 10 is a cross-sectional view of the heat exchanger 23 according to the third embodiment.
This is a specific example in which the first cooled object 21 is brought into thermal contact with the heat exchanger 23 in which the heat exchanger 23 is opened.

【0044】図11は第3実施例の変形例で、作動媒体
が流動する穴29に、伝熱を促進するための金網30が
熱接触された熱交換器23aに、第1被冷却体21が熱
接触された具体例である。
FIG. 11 shows a modification of the third embodiment, in which a heat exchanger 23a in which a wire mesh 30 for promoting heat transfer is in thermal contact with a hole 29 through which the working medium flows, Are specific examples of thermal contact.

【0045】第4実施例 図12は第4実施例で、作動媒体を圧縮する圧縮手段2
5の吐出口には、順次寒冷伝達用熱交換器26、冷却用
熱交換器28が接続され、冷却用熱交換器28に冷却体
20が熱接触してある。寒冷伝達用熱交換器26は、図
13に示すように、パルス管冷凍機A1のパルス管18
の高温端18aと低温端18bの間に熱接触されて、寒
冷伝達用熱交換器26内は冷媒が流動する。この冷媒を
常温から低温までパルス管18内を往復流動する作動媒
体で冷却し、冷却用熱交換器28を介し、被冷却体20
を冷却する。冷媒は、寒冷伝達用熱交換器26を介し、
常温から低温まで連続してパルス管18を往復流動する
作動媒体で冷却されるので、第1実施例の場合と同様に
冷却効率が向上する。
Fourth Embodiment FIG. 12 shows a fourth embodiment in which the compression means 2 for compressing the working medium is used.
A cooling heat exchanger 26 and a cooling heat exchanger 28 are sequentially connected to the discharge port 5, and the cooling body 20 is in thermal contact with the cooling heat exchanger 28. As shown in FIG. 13, the cold transfer heat exchanger 26 is connected to the pulse tube 18 of the pulse tube refrigerator A1.
Is in thermal contact between the high-temperature end 18a and the low-temperature end 18b, and the refrigerant flows in the cold transfer heat exchanger 26. The refrigerant is cooled by a working medium that reciprocates in the pulse tube 18 from room temperature to low temperature, and is cooled through the cooling heat exchanger 28.
To cool. The refrigerant passes through the cold transfer heat exchanger 26,
Since cooling is performed by the working medium that reciprocates in the pulse tube 18 continuously from normal temperature to low temperature, the cooling efficiency is improved as in the case of the first embodiment.

【0046】図14は第4実施例の変形例で、寒冷伝達
用熱交換器26の内に多数のパルス管18が設置された
具体例である。
FIG. 14 shows a modification of the fourth embodiment, which is a specific example in which a number of pulse tubes 18 are provided in a cold transfer heat exchanger 26.

【0047】図15は第4実施例の変形例で、パルス管
18の中に寒冷伝達用熱交換器26が設置された具体例
である。
FIG. 15 shows a modification of the fourth embodiment, which is a specific example in which a cold transfer heat exchanger 26 is provided in a pulse tube 18.

【0048】本実施例は、全てパルス管冷凍機A1が2
段以上の場合でも良い。本実施例では、パルス管冷凍機
A1の作動媒体の圧縮手段はGM型であるが、スターリ
ング型でも良い。
In this embodiment, all the pulse tube refrigerators A1
More than two steps may be used. In this embodiment, the compression means of the working medium of the pulse tube refrigerator A1 is of the GM type, but may be of the Stirling type.

【0049】また、上記実施例ではパルス管18の常温
側の圧力振動源はダブルインレットの4バルブ方式であ
るが、図16のバッファタンク33を用いたオリフィス
方式、図17のダブルインレットの4バルブ方式とオリ
フィス方式を組み合わせたもの、ベイシック方式、フェ
イズシフタ一方式等のいずれの場合でも良い。
In the above embodiment, the pressure vibration source on the room temperature side of the pulse tube 18 is a double-inlet four-valve system, but the orifice system using the buffer tank 33 in FIG. 16 and the double-inlet four-valve system in FIG. Any of a combination of a system and an orifice system, a basic system, and a phase shifter system may be used.

【0050】尚、第1実施例では、被冷却体20はパル
ス管18の寒冷を発生する部分の高温端18aと低温端
18bの間に連続して熱接触されているが、図18に示
すように被冷却体20は不連続でも良く、パルス管18
の任意の温度から寒冷を得ることができる。
In the first embodiment, the object to be cooled 20 is continuously in thermal contact between the high-temperature end 18a and the low-temperature end 18b of the portion of the pulse tube 18 where cold is generated, as shown in FIG. As described above, the object to be cooled 20 may be discontinuous, and the pulse
Refrigeration can be obtained from any temperature.

【0051】[0051]

【発明の効果】本発明では、パルス管冷凍機のパルス管
内では、パルス管の方向に連続した温度で作動媒体が略
等温的な膨張仕事をし、連続した温度の寒冷を生成して
いる。カルノー効率の観点から、温度が高いほど冷却効
率は高くなる。従って本発明では、連続した温度の寒冷
を生成し、その寒冷を使い被冷却体を冷却するので、従
来のこの種の冷凍機にくらべ冷却効率が向上する。
According to the present invention, in the pulse tube of the pulse tube refrigerator, the working medium performs substantially isothermal expansion work at a continuous temperature in the direction of the pulse tube, thereby producing a continuous temperature of cold. From the viewpoint of Carnot efficiency, the higher the temperature, the higher the cooling efficiency. Therefore, according to the present invention, since cold of a continuous temperature is generated and the object to be cooled is cooled using the cold, the cooling efficiency is improved as compared with a conventional refrigerator of this type.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施例を具現した、冷却装置の概念図であ
る。
FIG. 1 is a conceptual diagram of a cooling device embodying a first embodiment.

【図2】第1実施例を具現した、パルス管冷凍機の切換
弁の1サイクルの開閉状態を示した図である。
FIG. 2 is a diagram showing the open / closed state of the switching valve of the pulse tube refrigerator in one cycle, which embodies the first embodiment.

【図3】第1実施例の、パルス管部の詳細図である。FIG. 3 is a detailed view of a pulse tube section of the first embodiment.

【図4】第1実施例の変形例を具現した、パルス管部の
詳細図である。
FIG. 4 is a detailed view of a pulse tube unit embodying a modification of the first embodiment.

【図5】第1実施例の変形例を具現した、パルス管部の
詳細図である。
FIG. 5 is a detailed view of a pulse tube unit embodying a modification of the first embodiment.

【図6】第2実施例を具現した、冷却装置の概念図であ
る。
FIG. 6 is a conceptual diagram of a cooling device embodying the second embodiment.

【図7】第2実施例の変形例を具現した、冷却装置の概
念図である。
FIG. 7 is a conceptual diagram of a cooling device embodying a modification of the second embodiment.

【図8】第3実施例を具現した、冷却装置の概念図であ
る。
FIG. 8 is a conceptual diagram of a cooling device embodying a third embodiment.

【図9】第3実施例の、パルス管部の詳細図である。FIG. 9 is a detailed view of a pulse tube unit according to the third embodiment.

【図10】第3実施例の、熱交換器部の詳細図である。FIG. 10 is a detailed view of a heat exchanger section of the third embodiment.

【図11】第3実施例の変形例を具現した、熱交換器部
の詳細図である。
FIG. 11 is a detailed view of a heat exchanger unit embodying a modification of the third embodiment.

【図12】第4実施例を具現した、冷却装置の概念図で
ある。
FIG. 12 is a conceptual diagram of a cooling device embodying a fourth embodiment.

【図13】第4実施例の、パルス管部の詳細図である。FIG. 13 is a detailed view of a pulse tube unit according to a fourth embodiment.

【図14】第4実施例の変形例を具現した、寒冷伝達熱
交換器部の詳細図である。
FIG. 14 is a detailed view of a cold transfer heat exchanger embodying a modification of the fourth embodiment.

【図15】第4実施例の変形例を具現した、寒冷伝達熱
交換器部の詳細図である。
FIG. 15 is a detailed view of a cold transfer heat exchanger embodying a modification of the fourth embodiment.

【図16】本実施例の変形例を具現した、パルス管冷凍
機の圧力振動源の概念図である。
FIG. 16 is a conceptual diagram of a pressure vibration source of a pulse tube refrigerator embodying a modification of the present embodiment.

【図17】本実施例の変形例を具現した、パルス管冷凍
機の圧力振動源の概念図である。
FIG. 17 is a conceptual diagram of a pressure vibration source of a pulse tube refrigerator embodying a modification of the present embodiment.

【図18】第1実施例の変形例を具現した、被冷却体の
詳細図である。
FIG. 18 is a detailed view of an object to be cooled, embodying a modification of the first embodiment.

【図19】従来の冷却装置を示す説明図である。FIG. 19 is an explanatory view showing a conventional cooling device.

【符号の説明】[Explanation of symbols]

1…圧縮手段 16…蓄冷器 18…パルス管 20…被冷却体 21…第1被冷却体 22…第2被冷却体 23…熱交換器 26…寒冷伝達用熱交換器 28…冷却用熱交換器 31…放熱器 DESCRIPTION OF SYMBOLS 1 ... Compression means 16 ... Regenerator 18 ... Pulse tube 20 ... Cooled body 21 ... First cooled body 22 ... Second cooled body 23 ... Heat exchanger 26 ... Cold transfer heat exchanger 28 ... Cooling heat exchange Vessel 31 ... radiator

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 作動媒体を圧縮、膨張させる圧力振動源
と、該圧力振動源と連通した蓄冷器と、該蓄冷器と連通
したパルス管を有するパルス管冷凍機と、 上記パルス管の高温端と低温端の間に熱接触された被冷
却体とから構成されたことを特徴とする冷却装置。
1. A pressure vibration source for compressing and expanding a working medium, a regenerator communicating with the pressure vibration source, a pulse tube refrigerator having a pulse tube communicating with the regenerator, and a high-temperature end of the pulse tube. And a cooled object thermally contacted between the low-temperature end.
【請求項2】 作動媒体を圧縮、膨張させる圧力振動源
と、該圧力振動源と連通した蓄冷器と、該蓄冷器と連通
したパルス管を有するパルス管冷凍機と、 上記パルス管の高温端と低温端の間に熱接触された第1
被冷却体と、上記パルス管の低温端部分に熱接触された
第2被冷却体と、 から構成されたことを特徴とする冷却装置。
2. A pressure vibration source for compressing and expanding a working medium, a regenerator communicating with the pressure vibration source, a pulse tube refrigerator having a pulse tube communicating with the regenerator, and a high-temperature end of the pulse tube. And the first in thermal contact between the cold end
A cooling device comprising: a cooled object; and a second cooled object that is in thermal contact with a low-temperature end portion of the pulse tube.
【請求項3】 上記第1被冷却体は、上記パルス管の高
温端と低温端の間に熱接触されたシールドケースである
ことを特徴とする、請求項2記載の冷却装置。
3. The cooling device according to claim 2, wherein the first cooled object is a shield case that is in thermal contact between a high-temperature end and a low-temperature end of the pulse tube.
【請求項4】 上記第1被冷却体は、上記パルス管の高
温端と低温端の間に配置された熱交換器に熱接触されて
いることを特徴とする、請求項2記載の冷却装置。
4. The cooling device according to claim 2, wherein said first cooled object is in thermal contact with a heat exchanger disposed between a high temperature end and a low temperature end of said pulse tube. .
【請求項5】 上記第1被冷却体に熱接触された冷却用
熱交換器と、該冷却用熱交換器と冷媒流動で連通した寒
冷伝達用熱交換器と、該寒冷伝達用熱交換器は上記パル
ス管の高温端と低温端の間に熱接触されていることを特
徴とする、請求項1及び2記載の冷却装置。
5. A cooling heat exchanger in thermal contact with the first cooled object, a cold transfer heat exchanger communicating with the cooling heat exchanger by refrigerant flow, and the cold transfer heat exchanger. 3. The cooling device according to claim 1, wherein said pulse tube is in thermal contact between a high-temperature end and a low-temperature end of said pulse tube.
【請求項6】 上記パルス管の高温端には、該高温端と
連通する放熱器を配置したことを特徴とする、請求項1
〜5いずれか1項記載の冷却装置。
6. A radiator communicating with the high-temperature end of the pulse tube is arranged at a high-temperature end of the pulse tube.
The cooling device according to any one of claims 1 to 5.
JP10183799A 1998-06-30 1998-06-30 Cooling device Pending JP2000018742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10183799A JP2000018742A (en) 1998-06-30 1998-06-30 Cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10183799A JP2000018742A (en) 1998-06-30 1998-06-30 Cooling device

Publications (1)

Publication Number Publication Date
JP2000018742A true JP2000018742A (en) 2000-01-18

Family

ID=16142121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10183799A Pending JP2000018742A (en) 1998-06-30 1998-06-30 Cooling device

Country Status (1)

Country Link
JP (1) JP2000018742A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1431682A1 (en) * 2001-08-30 2004-06-23 Aisin Seiki Kabushiki Kaisha Pulse tube refrigerating machine
US7665510B2 (en) 2003-02-28 2010-02-23 Denso Corporation Fluid drive unit and heat transport system
JP2011012925A (en) * 2009-07-03 2011-01-20 Sumitomo Heavy Ind Ltd Four-valve type pulse tube refrigerator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1431682A1 (en) * 2001-08-30 2004-06-23 Aisin Seiki Kabushiki Kaisha Pulse tube refrigerating machine
EP1431682A4 (en) * 2001-08-30 2009-02-25 Aisin Seiki Pulse tube refrigerating machine
US7665510B2 (en) 2003-02-28 2010-02-23 Denso Corporation Fluid drive unit and heat transport system
JP2011012925A (en) * 2009-07-03 2011-01-20 Sumitomo Heavy Ind Ltd Four-valve type pulse tube refrigerator
US8516833B2 (en) 2009-07-03 2013-08-27 Sumitomo Heavy Industries, Ltd. 4-valve pulse tube cryocooler

Similar Documents

Publication Publication Date Title
KR100551663B1 (en) Stirling device using heat exchanger having fin structure
KR20000035136A (en) Stirring device
KR100348619B1 (en) Aftercooler and its manufacturing mathod for pulse tube refrigerator
KR100348618B1 (en) Aftercooler and its manufacturing mathod for pulse tube refrigerator
US20070234719A1 (en) Energy conversion device and operation method thereof
US5609034A (en) Cooling system
CN109556318B (en) Thermoacoustic refrigerator
KR100454271B1 (en) Heat-Driving Acoustic Orifice Pulse Tube Cryocooling Device
JPS61256158A (en) Refrigeration system
JP2000018742A (en) Cooling device
JP2000035253A (en) Cooler
JPH0336468A (en) Cooling warehouse
JP6087168B2 (en) Cryogenic refrigerator
JP2000136753A (en) V-arranged stirling equipment
JPH10122683A (en) Cold storage type refrigerator
US7047750B2 (en) Pulse tube refrigerating machine
JPH1194382A (en) Pulse tube refrigerator
CN112611122B (en) Steam backheating combined cycle refrigerator and refrigerator adopting same
JP3363697B2 (en) Refrigeration equipment
JPH11223398A (en) Heat exchanger for heat engine
JP3643761B2 (en) Stirling refrigerator
JPS6256420B2 (en)
JPH11230629A (en) Stirling cooling and heating device
JP3635904B2 (en) Gas cycle engine refrigerator
JP3634650B2 (en) Cylinder block for heat engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061003