JPS60122869A - Heat exchanger for cryogenic refrigerator system - Google Patents

Heat exchanger for cryogenic refrigerator system

Info

Publication number
JPS60122869A
JPS60122869A JP22939983A JP22939983A JPS60122869A JP S60122869 A JPS60122869 A JP S60122869A JP 22939983 A JP22939983 A JP 22939983A JP 22939983 A JP22939983 A JP 22939983A JP S60122869 A JPS60122869 A JP S60122869A
Authority
JP
Japan
Prior art keywords
refrigerator
heat exchanger
working gas
expansion space
flows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22939983A
Other languages
Japanese (ja)
Other versions
JPH0222871B2 (en
Inventor
雄治郎 鵜飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP22939983A priority Critical patent/JPS60122869A/en
Publication of JPS60122869A publication Critical patent/JPS60122869A/en
Publication of JPH0222871B2 publication Critical patent/JPH0222871B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、スターリング、ギフオード・マクマホン等の
20に以下の冷凍を得る超低温冷凍機システムの熱交換
器に関し、超伝導磁石、ジョセフソン素子、あるいはタ
ライオポンプの吸着パネルの冷却用として利用される。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a heat exchanger for an ultra-low temperature refrigerator system that obtains refrigeration as described by Stirling, Gifford-McMahon et al. Used for cooling the adsorption panels of Talio pumps.

〔従来技術〕[Prior art]

圧縮空間、冷却器、蓄冷器および膨張空間を順次連通さ
せている冷凍機を複数個配し、前記蓄冷器と前記膨張空
間との間に前記各冷凍機が相互に共有する熱交換器を設
けて向流型熱交換器を形成させている超低温冷凍機シス
テムを第1図に示す。かかる形式の超低温冷凍機システ
ムは公知であり、特公昭43−10942号および実開
昭56−88059号に記載されている。前記超低温冷
凍機システムについて第1図に基づいて説明する。圧縮
シリンダー1と圧縮ピストン2により形成される圧縮空
間3は、冷却器4.M冷器5を通り第1膨張空間7と熱
交換器6に連通し、さらに前記熱交換器6は、第2膨張
空間8へ連通している。この様にして圧縮空間3.冷却
器4.蓄冷器5、第1膨張空間7.熱交換器6、そして
第2膨張空間8から冷凍回路は構成され、作動ガスとし
て冷凍回路内にはヘリウムガスが封入されている。
A plurality of refrigerators are arranged in which a compression space, a cooler, a regenerator, and an expansion space are sequentially communicated, and a heat exchanger shared by each of the refrigerators is provided between the regenerator and the expansion space. Figure 1 shows an ultra-low temperature refrigerator system in which a countercurrent heat exchanger is formed. Such types of ultra-low temperature refrigerator systems are known and are described in Japanese Patent Publication No. 43-10942 and Utility Model Application No. 56-88059. The ultra-low temperature refrigerator system will be explained based on FIG. 1. The compression space 3 formed by the compression cylinder 1 and the compression piston 2 is connected to a cooler 4. It communicates with the first expansion space 7 and the heat exchanger 6 through the M cooler 5, and the heat exchanger 6 further communicates with the second expansion space 8. In this way, the compressed space 3. Cooler 4. Regenerator 5, first expansion space 7. A refrigeration circuit is comprised of the heat exchanger 6 and the second expansion space 8, and helium gas is sealed in the refrigeration circuit as a working gas.

圧縮ピストン2にはロッド14が連結され、さらに圧縮
ピストン2の外周の一部には、ガス封止のためのシール
9が設けられ、そしてロッド14の外壁上の一部にもガ
ス封止のためのシールエ0が設置されている。
A rod 14 is connected to the compression piston 2, and a seal 9 for gas sealing is provided on a part of the outer circumference of the compression piston 2, and a seal 9 for gas sealing is also provided on a part of the outer wall of the rod 14. Seal E0 is installed for this purpose.

第1膨張空間7.第2膨張空間8は凸型を呈する膨張シ
リンダー17.膨張ピストン16によって形成される。
First expansion space7. The second expansion space 8 has a convex expansion cylinder 17. It is formed by an expansion piston 16.

膨張ピストン16の各段の外周上には、第1,2膨張空
間7,8内のガス封止のためのシール11.12が設置
されている。また、膨張ピストン16にはロッド15が
連絡され、ロッド15の外壁上の一部には、ガス封止の
ためのシール13が設置されている。ロッド14.’L
5は図示されていない往復駆動機構(例えばクランク)
に連結され、破線で示された冷凍機Aと冷凍機Bとは、
はぼ180度の位相差(即ち、冷凍機Aの膨張ピストン
16および圧縮ピストン2に対して、はぼ180度の位
相差をもって運動している。)をもって駆動されている
On the outer periphery of each stage of the expansion piston 16, seals 11, 12 are installed for sealing gas in the first and second expansion spaces 7, 8. Further, a rod 15 is connected to the expansion piston 16, and a seal 13 for gas sealing is installed on a part of the outer wall of the rod 15. Rod 14. 'L
5 is a reciprocating drive mechanism (for example, a crank) not shown.
Refrigerator A and refrigerator B, which are connected to each other and shown by broken lines, are
It is driven with a phase difference of approximately 180 degrees (that is, it moves with a phase difference of approximately 180 degrees with respect to the expansion piston 16 and compression piston 2 of refrigerator A).

冷凍機Aの作用を説明する。The function of refrigerator A will be explained.

圧縮空間3内の作動ガス(ヘリウムガス)は圧縮ピスト
ン2により圧縮された後、冷却器4で約20Kに冷却さ
れ、蓄冷器5に流入する。蓄冷器5に流入した作動ガス
はさらに冷却され、第1膨張空間7および熱交換器6へ
と流入する。第1膨張空間7に入った作動ガスは膨張ピ
ストン16により膨張され、約10にの温度の冷凍を発
生する。ところで熱交換器6に流入した作動ガスは、冷
凍機Bの熱交換器6内を蓄冷器5の方向に流れる作動ガ
スによって冷却され、第2膨張空間8へ流入し、膨張ピ
ストン16により膨張され、約4にの温度の冷凍を発生
する。第2膨張空間8で膨張し終った作動ガスは、前記
膨張ピストン16の圧縮により、熱交換器6へ流入する
と、冷凍機Bの熱交換器6内を第2膨張空間8の方向に
流れている作動ガスによって、熱を与えられ温度が高め
られ、蓄冷器5へ流入する。第1膨張空間7で膨張し終
った作動ガスは、膨張ピストン16の圧縮により蓄冷器
5へ流入する。蓄冷器5へ流入した作動ガスは温められ
て冷却器4へ流入し、さらに圧縮空間3へ流入する。こ
の様にして冷凍機Aは、■サイクルを形成する。
After the working gas (helium gas) in the compression space 3 is compressed by the compression piston 2 , it is cooled to about 20 K in the cooler 4 and flows into the regenerator 5 . The working gas that has entered the regenerator 5 is further cooled and flows into the first expansion space 7 and the heat exchanger 6. The working gas entering the first expansion space 7 is expanded by the expansion piston 16 to produce refrigeration at a temperature of approx. By the way, the working gas that has flowed into the heat exchanger 6 is cooled by the working gas flowing in the heat exchanger 6 of the refrigerator B in the direction of the regenerator 5, flows into the second expansion space 8, and is expanded by the expansion piston 16. , producing refrigeration at a temperature of approx. When the working gas that has finished expanding in the second expansion space 8 flows into the heat exchanger 6 due to compression by the expansion piston 16, it flows inside the heat exchanger 6 of the refrigerator B in the direction of the second expansion space 8. The working gas is given heat, the temperature is raised, and the working gas flows into the regenerator 5. The working gas that has finished expanding in the first expansion space 7 flows into the regenerator 5 due to compression by the expansion piston 16 . The working gas that has flowed into the regenerator 5 is warmed and flows into the cooler 4 and then into the compression space 3 . In this way, the refrigerator A forms the (1) cycle.

冷凍機Bの作用は、冷凍機Aよりほぼ180度の位相差
をもって駆動されている点を除いては冷凍機Aと同様で
ある。
The operation of refrigerator B is similar to refrigerator A except that it is driven with a phase difference of approximately 180 degrees from refrigerator A.

第1図に示す超低温冷凍機システムに用いる熱交換器6
について、特公昭43−10942号では具体的な構造
は何も示していないが、実開昭56−88059号では
、第2図、第3図、および第4図に示す構造が記載され
ている。
Heat exchanger 6 used in the ultra-low temperature refrigerator system shown in Figure 1
Regarding this, Japanese Patent Publication No. 43-10942 does not show any specific structure, but Utility Model Application Publication No. 56-88059 describes the structure shown in Figures 2, 3, and 4. .

以下、従来の超低温冷凍機の熱交換器について第2図に
基づいて説明する。プレート101は、連通孔102,
103を有し、連通孔102.、L03はそれぞれ冷凍
機A及びBの蓄冷器5に連通している。プレート101
は、熱伝導率の悪い部材104(第3図参照)が気密に
固着されて部材゛104の上には多数個の孔を有する熱
伝導率の良い部材105(第4図参照)が気密に固着さ
れているーこの様に部材104と部材105を交互に積
み重ね気密に固着せしめ、最後の部材104の上に連通
孔107,108を有するプレート106が気密に固着
されている。連通孔107,108は、それぞれ冷凍機
AおよびBの第2膨張空間8に連通されている。
Hereinafter, a conventional heat exchanger for an ultra-low temperature refrigerator will be explained based on FIG. 2. The plate 101 has communication holes 102,
103, and a communicating hole 102. , L03 are connected to the regenerators 5 of the refrigerators A and B, respectively. Plate 101
A member 104 (see Fig. 3) with poor thermal conductivity is fixed airtightly, and a member 105 (see Fig. 4) with good thermal conductivity having a large number of holes is placed on top of the member 104 in an airtight manner. Fixed - In this way, the members 104 and 105 are alternately stacked and fixed in an airtight manner, and a plate 106 having communication holes 107 and 108 is fixed in an airtight manner on top of the last member 104. The communication holes 107 and 108 communicate with the second expansion spaces 8 of the refrigerators A and B, respectively.

〔従来術技術の問題点およびその技術的分析〕第2図に
示す従来の熱交換器6では、熱伝導の良い部材105の
材料としてアルミニウム、熱伝導の悪い部材104の材
料として、エポキシ・グラスファイバー等のFRPが用
いられ、両者の間をエポキシ系の接着剤で接合していた
[Problems in the prior art and their technical analysis] In the conventional heat exchanger 6 shown in FIG. FRP such as fiber was used, and the two were bonded together with an epoxy adhesive.

一般に、ヘリウム等の質量数の小さい気体に対して気密
性を得ることはむずかしく、しかも第2図の構造では接
着箇所が通常500〜1ooo程度にものぼり、すべて
の接着箇所に気密性を得ることは極めて困難である。さ
らに、当初気密性が得られていても、冷凍機の運転・休
止のたびに室温から4Kまでの熱サイクルを受けるため
、使用中に気密性を失なうことが頻繁に生ずる。
Generally, it is difficult to obtain airtightness for gases with small mass numbers such as helium, and in the structure shown in Figure 2, there are usually about 500 to 1000 bonding points, and it is difficult to obtain airtightness at all bonding points. is extremely difficult. Further, even if airtightness is initially obtained, the airtightness is frequently lost during use because the refrigerator undergoes a thermal cycle from room temperature to 4K each time the refrigerator is started or stopped.

従って、熱伝導の悪い部材104と熱伝導の良い部材1
05で形成される、冷凍機Aと冷凍機Bの作動ガスの境
界壁が気密性を失ない連通ずる。
Therefore, the member 104 with poor heat conduction and the member 1 with good heat conduction
The working gas boundary walls of refrigerator A and refrigerator B, which are formed by 05, communicate with each other without losing airtightness.

本来、冷凍機Aと冷凍機Bは180度の位相差を持って
いるため、例えば、冷凍機Aの作動ガスの圧力が最大の
とき、冷凍機Bの作動ガスの圧力は最低になっており、
また、冷凍機Aの作動ガスの圧力が最低のとき、冷凍機
Bの作動ガスの圧力は最大になる。このため、冷凍機A
と冷凍機Bの作動ガスの境界壁が連通している場合、冷
凍機Aと冷凍11Bの作動ガスの圧力の差が小さくなり
、各冷凍機A、Bの最大圧力と最低圧力が接近し、従っ
て圧縮比が小さくなり、冷凍出力が低下ることになる。
Normally, refrigerator A and refrigerator B have a phase difference of 180 degrees, so for example, when the pressure of the working gas in refrigerator A is the highest, the pressure of the working gas in refrigerator B is the lowest. ,
Further, when the pressure of the working gas of the refrigerator A is the lowest, the pressure of the working gas of the refrigerator B is the highest. For this reason, refrigerator A
When the boundary wall of the working gas of refrigerator A and refrigerator B is in communication, the difference in the pressure of the working gas of refrigerator A and refrigerator 11B becomes small, and the maximum pressure and minimum pressure of each refrigerator A and B become close, Therefore, the compression ratio becomes smaller and the refrigeration output decreases.

また、熱伝導の良い部材105の孔は適音フォトエツチ
ングで明けられるが、孔の直径は板厚より小さくするこ
とは不可能なため、孔はあまり多く明けられな(、従っ
て伝熱面積が限られてしまう。このため、熱交換器6の
熱交換効率が低下し、この非効率分は冷凍出力によって
補われるので、有効な冷凍出力が低下することになる。
In addition, holes in the member 105 with good thermal conductivity can be made by photo-etching with appropriate sound, but since it is impossible to make the diameter of the holes smaller than the thickness of the plate, it is not possible to make too many holes (therefore, the heat transfer area is As a result, the heat exchange efficiency of the heat exchanger 6 decreases, and this inefficiency is compensated for by the refrigeration output, resulting in a decrease in the effective refrigeration output.

〔技術的課題〕[Technical issues]

そこで本発明は、熱交換器6において冷凍機Aの作動ガ
スと冷凍機Bの作動ガスの境界において信頼性の高い気
密性が容易に得られることを技術的課題とする。
Therefore, the technical object of the present invention is to easily obtain reliable airtightness at the boundary between the working gas of the refrigerator A and the working gas of the refrigerator B in the heat exchanger 6.

また本発明は熱交換器6の伝熱面積を大きくすることを
技術的課題とする。
Moreover, the technical object of the present invention is to increase the heat transfer area of the heat exchanger 6.

〔技術的手段〕[Technical means]

上記の技術的課題を達成するために講じた技術的手段は
、熱交換器6の内部に、作動ガスの流れ方向に貫通する
薄い側壁を設け、この側壁の両面に接して作動ガスの流
れ方向に垂直な姿勢で金網を積層し、側壁と金網を拡散
接合することである〔技術的手段の作用〕 上記技術的手段は次のように作用する。冷凍機Aの作動
ガスが第1蓄冷器5から熱交換器6へ流入すると、冷凍
機Aの作動ガスが冷凍機A側の金網、側壁、そして冷凍
機B側の金網を介して、冷凍機Bの熱交換器6内を蓄冷
器5の方向に流れる作動ガスによって冷却され、第2膨
張空間に流入する。逆に、冷凍機Aの作動ガスが第2膨
張空間から熱交換器6へ流入すると、冷凍機Aの作動ガ
スが冷凍機A側の金網、側壁、そして冷凍機B側の金網
を介して、冷凍機Bの熱交換器6内を第2膨張空間の方
向に流れる作動ガスによって加熱され、蓄冷器5に流入
する。
The technical means taken to achieve the above technical problem is to provide a thin side wall penetrating in the flow direction of the working gas inside the heat exchanger 6, and to contact both sides of this side wall in the flow direction of the working gas. The method is to stack the wire mesh in a vertical position and to diffusion bond the side wall and the wire mesh. [Function of technical means] The above technical means works as follows. When the working gas of the refrigerator A flows from the first regenerator 5 to the heat exchanger 6, the working gas of the refrigerator A flows through the wire mesh on the refrigerator A side, the side wall, and the wire mesh on the refrigerator B side. It is cooled by the working gas flowing in the heat exchanger 6 of B in the direction of the regenerator 5, and flows into the second expansion space. Conversely, when the working gas of the refrigerator A flows into the heat exchanger 6 from the second expansion space, the working gas of the refrigerator A flows through the wire mesh on the refrigerator A side, the side wall, and the wire mesh on the refrigerator B side. It is heated by the working gas flowing in the heat exchanger 6 of the refrigerator B in the direction of the second expansion space, and flows into the regenerator 5.

〔発明によって生じた特有の効果〕[Special effects caused by the invention]

本発明は、次の特有の効果を生ずる。側壁が作動ガスの
流れ方向に貫通して、冷凍機Aの作動ガスと冷凍機Bの
作動ガスを分離しているため、両者の間の気密性が容易
に得られ、しかも運転・休止に伴なう熱サイクルによっ
て気密性を失なうことがない。
The present invention produces the following unique effects. Since the side wall penetrates in the flow direction of the working gas and separates the working gas of refrigerator A and the working gas of refrigerator B, airtightness between the two can be easily achieved, and it is also possible to easily maintain airtightness during operation or stoppage. The airtightness will not be lost due to thermal cycling.

また、金網は通常、熱伝導の良いタフピッチ銅等の材質
が用いられるが、この材質に対して、100メツシユ(
線径0.11m;ピッチ0.25鶴)程度のものが容易
に得られるため、従来の多孔板(第4図、熱伝導の良い
部材105)と比較して数倍の伝熱面積を得ることがで
きる。
In addition, wire mesh is usually made of materials such as tough pitch copper, which has good thermal conductivity.
Since a wire diameter of 0.11 m; pitch of 0.25 mm can be easily obtained, the heat transfer area is several times larger than that of a conventional perforated plate (Fig. 4, member 105 with good heat conduction). be able to.

このような形式の熱交換器6において、従来の熱交換器
6のような、熱絶縁物(第3図、熱伝導の悪い部材10
4)を使用していないため、熱交換器6の高温部から低
温部へ伝導による熱侵入が心配になる。この熱侵入の可
能性として、側壁の伝導によるものと積層金網を貫く伝
導によるものの2つが考えられる。
In this type of heat exchanger 6, unlike the conventional heat exchanger 6, a thermal insulator (Fig. 3, member 10 with poor thermal conductivity) is used.
4) is not used, there is a concern that heat may enter from the high temperature section of the heat exchanger 6 to the low temperature section due to conduction. There are two possibilities for this heat intrusion: conduction through the side walls and conduction through the laminated wire mesh.

まず、側壁の熱伝導による熱侵入については、側壁の肉
厚を極力薄くすることで小さくすることができ、同時に
冷凍機Aの作動ガスと冷凍機Bの作動ガスの熱交換効率
も向上させることができる。しかも、極力薄くした側壁
を用いても、側壁の材質を熱伝導率の高い材料(タフピ
ッチ銅等)とすると、冷凍機Aの作動ガスと冷凍機Bの
作動ガスの間の熱交換効率は良くなるが、熱交換器6の
高温部から低温部への熱侵入量が大きくなり過ぎる。逆
に、側壁の材質を熱伝導率の低い材料(SU S 30
−4等)とすると、熱交換器6の高温部から低温部への
熱侵入量はほぼ完全に抑えることができるが、冷凍機A
の作動ガスと冷凍機Bの作動ガスの熱交換効率がかなり
低下する。そこで、側壁の材質を中程度の熱伝導率を有
する材料(リン脱酸銅・工業用純チタン等)とすれば、
熱交換器6の高温部から低温部への熱侵入量を十分に抑
えながら、かつ冷凍機Aの作動ガスと冷凍機Bの作動ガ
スの熱交換効率も十分に高くすることができる。
First, heat intrusion due to heat conduction through the side walls can be reduced by making the wall thickness of the side walls as thin as possible, and at the same time, the heat exchange efficiency between the working gas of refrigerator A and the working gas of refrigerator B can be improved. I can do it. Moreover, even if the side walls are made as thin as possible, if the side walls are made of a material with high thermal conductivity (such as tough pitch copper), the heat exchange efficiency between the working gas of refrigerator A and the working gas of refrigerator B is good. However, the amount of heat entering from the high temperature section to the low temperature section of the heat exchanger 6 becomes too large. On the contrary, the material of the side wall is a material with low thermal conductivity (SU S 30
-4, etc.), the amount of heat intrusion from the high-temperature section to the low-temperature section of the heat exchanger 6 can be almost completely suppressed;
The heat exchange efficiency between the working gas of the refrigerator B and the working gas of the refrigerator B is considerably reduced. Therefore, if the material of the side wall is a material with medium thermal conductivity (phosphorus-deoxidized copper, industrially pure titanium, etc.),
The heat exchange efficiency between the working gas of the refrigerator A and the working gas of the refrigerator B can be made sufficiently high while sufficiently suppressing the amount of heat intrusion from the high temperature part to the low temperature part of the heat exchanger 6.

次に、積層金網を貫(熱伝導による熱侵入については、
金網を積層した場合の接触面積は非常に小さく、従って
熱侵入量も非常に小さい。
Next, pass through the laminated wire mesh (for heat intrusion due to thermal conduction,
When wire mesh is laminated, the contact area is very small, and therefore the amount of heat penetration is also very small.

〔第1の実施例〕 以下、上記技術的手段の一具体例を示す第1の実施例に
ついて、第5図および第6図を参照して説明する。連通
孔107は冷凍機A側の第2膨張空間8に接続し、連通
孔102は冷凍機A側の蓄冷器5に接続する。連通孔1
08は冷凍機B側の第2膨張空間8に接続し、連通孔1
03は冷凍機B側の蓄冷器5に接続する。側壁202は
薄肉円管の形状を有し、熱交換器6の上下を貫通してい
る。側壁202の内外両面に接して、金網204.2伊
5が積層され、側壁202と金網204゜205は拡散
接合される。ハウジング203によって熱交換器6の外
壁が形成される。キャップ201は冷凍機への作動ガス
の流路を形成する。
[First Example] Hereinafter, a first example showing a specific example of the above technical means will be described with reference to FIGS. 5 and 6. The communication hole 107 is connected to the second expansion space 8 on the refrigerator A side, and the communication hole 102 is connected to the regenerator 5 on the refrigerator A side. Communication hole 1
08 is connected to the second expansion space 8 on the side of the refrigerator B, and is connected to the communication hole 1
03 is connected to the regenerator 5 on the refrigerator B side. The side wall 202 has the shape of a thin circular tube and passes through the top and bottom of the heat exchanger 6 . Wire meshes 204, 2 and 5 are laminated in contact with both the inner and outer surfaces of the side wall 202, and the side wall 202 and the wire meshes 204 and 205 are diffusion bonded. The housing 203 forms an outer wall of the heat exchanger 6. Cap 201 forms a flow path for working gas to the refrigerator.

第5図および第6図に示す実施例の作用について説明す
る。冷凍機への作動ガスが蓄冷器5から連通孔102お
よびキャップ201を通って金網204の積層部に流入
する。同時に、冷凍機Bの作動ガスが第2膨張空間8か
ら連通孔108を通り金網205の積層部分に流入する
。このとき、冷凍機Aの作動ガスの温度はIOK程度、
冷凍機Bの作動ガスの温度は4に程度であるため、金網
204.205と側壁202を介して、効率良く熱交換
が行われる。冷凍機Aの作動ガスは冷却されて、キャッ
プ201および連通孔107を通って第2膨張空間8に
流入する。冷凍機Bの作動ガスは加熱されて、連通孔1
03を通って蓄冷器5に流入する。
The operation of the embodiment shown in FIGS. 5 and 6 will be explained. Working gas for the refrigerator flows from the regenerator 5 through the communication hole 102 and the cap 201 into the laminated portion of the wire mesh 204. At the same time, the working gas of the refrigerator B flows from the second expansion space 8 through the communication hole 108 into the laminated portion of the wire mesh 205. At this time, the temperature of the working gas of refrigerator A is about IOK,
Since the temperature of the working gas of the refrigerator B is about 4°C, heat exchange is performed efficiently through the wire meshes 204 and 205 and the side wall 202. The working gas of the refrigerator A is cooled and flows into the second expansion space 8 through the cap 201 and the communication hole 107. The working gas of refrigerator B is heated and passes through communication hole 1.
03 and flows into the regenerator 5.

冷凍機Aの作動ガスが第2膨張空間8から連通孔107
.キャップ201を通り、金網204の積層部分に流入
する。同時に、冷凍機Bの作動ガスが蓄冷器5から連通
孔103を通り、金網205の積層部分に流入する。こ
のとき、冷凍機Aの作動ガスの温度は4に程度、冷凍機
Bの作動ガスの温度はIOK程度であるため、金網20
4,205と側壁202を介して、効率良く熱交換が行
なわれる。冷凍機Aの作動ガスは加熱されて、キャップ
201および連通孔102を通り、蓄冷器5に流入する
。冷凍機Bの作動ガスは冷却されて、連通孔108を通
って第2膨張空間8に流入する。
The working gas of the refrigerator A flows from the second expansion space 8 to the communication hole 107.
.. It passes through the cap 201 and flows into the laminated portion of the wire mesh 204. At the same time, working gas from refrigerator B flows from regenerator 5 through communication hole 103 into the laminated portion of wire mesh 205 . At this time, the temperature of the working gas of refrigerator A is about 4, and the temperature of the working gas of refrigerator B is about IOK, so the wire mesh 2
4, 205 and the side wall 202, heat exchange is performed efficiently. The working gas of refrigerator A is heated and flows into regenerator 5 through cap 201 and communication hole 102 . The working gas of the refrigerator B is cooled and flows into the second expansion space 8 through the communication hole 108.

〔第2の実施例〕 次に、本発明の技術的手段の一具体例を示す第2の実施
例ついて第7図、第8図を参照して説明する。連通孔1
07は冷凍機A側の第2膨張空間8に接続し、連通孔1
02は冷凍機A側の蓄冷器5に接続する。連通孔108
は冷凍機B側の第2膨張空間8に接続し、連通孔103
は冷凍機B側の蓄冷器5に接続する。側壁302は4本
の薄肉円管の形状を有し、熱交換器6の上下を貫通して
いる。側壁302の内外両面に接して、金網304.3
05が積層され、側壁302と金網304.305は拡
散接合される。ハウジング303にって熱交換器6の外
壁が形成される。キャップ301は冷凍機Aの作動ガス
の流路を形成する。
[Second Embodiment] Next, a second embodiment showing a specific example of the technical means of the present invention will be described with reference to FIGS. 7 and 8. Communication hole 1
07 is connected to the second expansion space 8 on the side of the refrigerator A, and is connected to the communication hole 1
02 is connected to the regenerator 5 on the refrigerator A side. Communication hole 108
is connected to the second expansion space 8 on the side of the refrigerator B, and the communication hole 103
is connected to the regenerator 5 on the refrigerator B side. The side wall 302 has the shape of four thin-walled circular tubes and passes through the top and bottom of the heat exchanger 6. In contact with both the inner and outer surfaces of the side wall 302, a wire mesh 304.3
05 are laminated, and the side wall 302 and wire mesh 304 and 305 are diffusion bonded. The housing 303 forms the outer wall of the heat exchanger 6. The cap 301 forms a flow path for the working gas of the refrigerator A.

第7図および第8図に示す実施例の作用について説明す
る。冷凍機Aの作動ガスが蓄冷器5から連通孔102お
よびキャップ301を通って金網304の積層部に流入
する。同時に、冷凍機Bの作動ガスが第2膨張空間8か
ら連通孔108を通り金網305の積層部分に流入する
。このとき、冷凍機Aの作動ガスの温度はIOK程度、
冷凍機Bの作動ガスの温度は4に程度であるため、金網
304.305と側壁302を介して、効率良く熱交換
が行なわれる。冷凍機Aの作動ガスは冷却されて、キャ
ップ301および連通孔107を通って第2膨張空間8
に流入する。冷凍機Bの作動ガスは加熱されて、連通孔
103を通って蓄冷器5に流入する。
The operation of the embodiment shown in FIGS. 7 and 8 will be explained. Working gas from the refrigerator A flows from the regenerator 5 through the communication hole 102 and the cap 301 into the laminated portion of the wire mesh 304 . At the same time, the working gas of the refrigerator B flows from the second expansion space 8 through the communication hole 108 into the laminated portion of the wire mesh 305. At this time, the temperature of the working gas of refrigerator A is about IOK,
Since the temperature of the working gas of the refrigerator B is about 4°C, heat exchange is performed efficiently through the wire meshes 304 and 305 and the side wall 302. The working gas of the refrigerator A is cooled and passes through the cap 301 and the communication hole 107 to the second expansion space 8.
flows into. The working gas of the refrigerator B is heated and flows into the regenerator 5 through the communication hole 103.

冷凍機Aの作動ガスが第2膨張空間8がら連通孔107
.キャップ301を通り、金網304の積層部分に流入
する。同時に、冷凍機Bの作動ガスが蓄冷器5から連通
孔103を通り、金網3゜5の積層部分に流入する。こ
のとき、冷凍機への作動ガスの温度は4に程度、冷凍機
Bの作動ガスの温度はIOK程度であるため、金網30
4,305と側壁302を介して、効率良く熱交換が行
なわれる。冷凍機A・の作動ガスは加熱されて、キャッ
プ301および連通孔102を通り、蓄冷器5に流入す
る。冷凍機Bの作動ガスは冷却されて、連通孔108を
通って第2膨張空間8に流入する。
The working gas of the refrigerator A flows from the second expansion space 8 to the communication hole 107.
.. It passes through the cap 301 and flows into the laminated portion of the wire mesh 304. At the same time, working gas from the refrigerator B passes through the communication hole 103 from the regenerator 5 and flows into the laminated portion of the wire mesh 3.degree.5. At this time, the temperature of the working gas to the refrigerator is about 4, and the temperature of the working gas of the refrigerator B is about IOK, so the wire mesh 30
4, 305 and the side wall 302, heat exchange is performed efficiently. The working gas of the refrigerator A is heated and flows into the regenerator 5 through the cap 301 and the communication hole 102 . The working gas of the refrigerator B is cooled and flows into the second expansion space 8 through the communication hole 108.

〔第3の実施例〕 次に、本発明の技術的手段の一興体例を示す第3の実施
例について第9図を参照して説明する。
[Third Embodiment] Next, a third embodiment illustrating an example of the technical means of the present invention will be described with reference to FIG. 9.

圧縮シリンダー1と圧縮ピストン2により形成される圧
縮空間3は、冷却器4、熱交換器6および膨張空間8に
連通している。この様にして圧縮空間3.冷却器4.熱
交換器6、そして膨張空間8から冷凍回路は構成され、
作動ガスとして冷凍回路内にはヘリウムガスが封入され
ている。圧縮ピストン2にはロッド14が連結され、さ
らに圧縮ピストン2の外凋の一部には、ガス封止のため
のシール9が設けられ、そしてロッド14の外壁上の一
部にもガス封止のためのシール10が設置されている。
A compression space 3 formed by the compression cylinder 1 and the compression piston 2 communicates with a cooler 4, a heat exchanger 6, and an expansion space 8. In this way, the compressed space 3. Cooler 4. A refrigeration circuit is composed of a heat exchanger 6 and an expansion space 8,
Helium gas is sealed in the refrigeration circuit as a working gas. A rod 14 is connected to the compression piston 2, and a seal 9 for gas sealing is provided on a part of the outer wall of the compression piston 2, and a gas seal is also provided on a part of the outer wall of the rod 14. A seal 10 is installed for this purpose.

膨張空間8は膨張シリンダー17.膨張ピストン16に
よって形成される。膨張ピストン16の外周上には、膨
張空間8内のガス封止のためのシール12が設置されて
いる。また、膨張ピストン16にはロッド15が連結さ
れ、ロッド15の外壁上の一部には、ガス封止のための
シール13が設置されている。ロッド14,15は図示
されていない往復駆動機構(例えばクランク)に連結さ
れ、破線で示された冷凍機Aと冷凍機Bとは、はぼ18
0度の位相差(即ち、冷凍機Aの膨張ピストンI6およ
び圧縮ピストン2に対して、はぼ180度位相差をもっ
て運動している。)をもって駆動されている。
The expansion space 8 is an expansion cylinder 17. It is formed by an expansion piston 16. A seal 12 is installed on the outer periphery of the expansion piston 16 for sealing gas in the expansion space 8 . Further, a rod 15 is connected to the expansion piston 16, and a seal 13 for gas sealing is installed on a part of the outer wall of the rod 15. The rods 14 and 15 are connected to a reciprocating drive mechanism (for example, a crank) not shown, and the refrigerators A and B shown in broken lines are
It is driven with a phase difference of 0 degrees (that is, it moves with a phase difference of approximately 180 degrees with respect to the expansion piston I6 and compression piston 2 of refrigerator A).

冷凍機Aの作用を説明する。The function of refrigerator A will be explained.

圧縮空間3内の作用ガス(ヘリウムガス)は圧縮ピスト
ン2により圧縮された後、冷却器4で約20Kに冷却さ
れ、熱交換器6に流入する。熱交換器6に流入した作動
ガスは、冷凍機Bの熱交換器6内を冷却a4の方向に流
れる作動ガスによって冷却され、膨張空間8へ流入し、
膨張ピストンエ6により膨張され、約4にの温度の冷凍
を発生する。膨張空間8で膨張し終った作動ガスは、前
記膨張ピストン16の圧縮により、熱交換器6へ流入す
ると、冷凍機Bの熱交換器6内を膨張空間8の方向に流
れている作動ガスによって、熱を与えられ温度が高めら
れ、冷却器4へ流入し、さらに圧縮空間3へ流入する。
After the working gas (helium gas) in the compression space 3 is compressed by the compression piston 2 , it is cooled to about 20 K in the cooler 4 and flows into the heat exchanger 6 . The working gas that has flowed into the heat exchanger 6 is cooled by the working gas flowing in the direction of cooling a4 within the heat exchanger 6 of the refrigerator B, and flows into the expansion space 8.
It is expanded by the expansion piston 6 to produce refrigeration at a temperature of approx. When the working gas that has finished expanding in the expansion space 8 flows into the heat exchanger 6 due to the compression of the expansion piston 16, the working gas flowing in the heat exchanger 6 of the refrigerator B in the direction of the expansion space 8 causes , is given heat and its temperature is increased, and flows into the cooler 4 and further into the compression space 3.

この様にして冷凍機Aは1サイクルを形成する。In this way, refrigerator A forms one cycle.

冷凍機Bの作用は、冷凍機Aよりほぼ180度の位相差
をもって駆動されている点を除いては冷凍機Aと同様で
ある。
The operation of refrigerator B is similar to refrigerator A except that it is driven with a phase difference of approximately 180 degrees from refrigerator A.

この様な超低温冷凍機システムに対しても、本発明の熱
交換器6 (例えば、第5図に示す第1の実施例、第7
図に示す第2の実施例)を使用できる。
The heat exchanger 6 of the present invention (for example, the first embodiment shown in FIG. 5, the seventh embodiment shown in FIG.
The second embodiment shown in the figure) can be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は超低温冷凍機システム示す説明図、第2図は従
来の熱交換器を示す説明用断面図、第3図は第2図にお
ける部材104の説明用平面図、第4図は第2図におけ
る部材105の説明用平面図、第5図は本発明の熱交換
器の一具体例を示す第1の実施例の説明用断面図、第6
図は第5図のVl−Vl横断面図、第7図は本発明の熱
交換器の一興体例を示す第2の実施例の説明用断面図、
第8図は第7図の■−■横断面図、そして第9図は本発
明の熱交換器を用いることができる、第1図とは別の超
低温冷凍機システムを示す説明図である3・・・圧縮空
間、4・・・冷却器、5・・・蓄冷器、8・・・膨張空
間、A、B・・・冷凍機、6・・・熱交換器、202,
302・・・側壁、204,205,304,305・
・・金網特許出願人 1イレンl#1湛株式官社 代表者中井令夫 第21!l 第31 @4−
FIG. 1 is an explanatory diagram showing an ultra-low temperature refrigerator system, FIG. 2 is an explanatory sectional view showing a conventional heat exchanger, FIG. 3 is an explanatory plan view of the member 104 in FIG. FIG. 5 is an explanatory plan view of the member 105 in the figure; FIG. 5 is an explanatory cross-sectional view of the first embodiment showing one specific example of the heat exchanger of the present invention;
The figure is a Vl-Vl cross-sectional view of FIG. 5, and FIG. 7 is an explanatory cross-sectional view of a second embodiment showing an integrated example of the heat exchanger of the present invention.
FIG. 8 is a cross-sectional view taken along the line ■-■ of FIG. 7, and FIG. 9 is an explanatory diagram showing an ultra-low temperature refrigerator system different from that shown in FIG. 1, in which the heat exchanger of the present invention can be used. ... Compression space, 4... Cooler, 5... Regenerator, 8... Expansion space, A, B... Refrigerator, 6... Heat exchanger, 202,
302... side wall, 204, 205, 304, 305.
... Wire mesh patent applicant 1 Iren #1 Tan stock government company representative Reio Nakai 21st! l No. 31 @4-

Claims (2)

【特許請求の範囲】[Claims] (1)圧縮空間、冷却層、蓄冷器および膨張空間を順次
連通させている冷凍機を複数個配−し、前記蓄冷器と前
記膨張空間との間に前記冷凍機が相互に共有する熱交換
器を設けてI抹型熱交換器を形成させている超低温冷凍
機システムにおいて、前記熱交換器を、側壁が前記各冷
凍機の作動ガスの流れ方向に貫通し、前記・側壁の両面
に接して作動ガスの流れ方向に垂直な姿勢で金網を積層
し、前記側壁と金網を蝉合することによって構成した超
低温冷凍機システムの熱交換器。
(1) A plurality of refrigerators are arranged in which a compression space, a cooling layer, a regenerator, and an expansion space are sequentially communicated, and the refrigerators mutually share heat exchange between the regenerator and the expansion space. In an ultra-low temperature refrigerator system in which a heat exchanger is provided to form an I-type heat exchanger, a side wall of the heat exchanger penetrates in the flow direction of the working gas of each of the refrigerators, and is in contact with both sides of the side wall. A heat exchanger for an ultra-low temperature refrigerator system, which is constructed by stacking wire meshes in a position perpendicular to the flow direction of working gas and joining the side walls and the wire meshes together.
(2)圧縮空間、冷却器および膨張空間を順次連通させ
ている冷凍機を複数個配し、前記冷却器と前記膨張空間
との間に前記冷凍機が相互に共有する熱交換器を設けて
向流型熱交換器を形成させている超低温冷凍機システム
において、前記熱交換器を、側壁が前記各冷凍機の作動
ガスの流れ方向に貫通し、前記側壁の両面に接して作動
ガスの流れ方向に垂直な姿勢で金網を積層し、前記側壁
と金網を接合することによって構成した超低温冷凍機シ
ステムの熱交換器。
(2) A plurality of refrigerators are arranged in which a compression space, a cooler, and an expansion space are sequentially communicated, and a heat exchanger shared by the refrigerators is provided between the cooler and the expansion space. In an ultra-low temperature refrigerator system in which a countercurrent heat exchanger is formed, the heat exchanger has a side wall that penetrates in the flow direction of the working gas of each of the refrigerators, and is in contact with both sides of the side wall to control the flow of the working gas. A heat exchanger for an ultra-low temperature refrigerator system constructed by stacking wire meshes in a position perpendicular to the direction and joining the side walls and the wire meshes.
JP22939983A 1983-12-05 1983-12-05 Heat exchanger for cryogenic refrigerator system Granted JPS60122869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22939983A JPS60122869A (en) 1983-12-05 1983-12-05 Heat exchanger for cryogenic refrigerator system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22939983A JPS60122869A (en) 1983-12-05 1983-12-05 Heat exchanger for cryogenic refrigerator system

Publications (2)

Publication Number Publication Date
JPS60122869A true JPS60122869A (en) 1985-07-01
JPH0222871B2 JPH0222871B2 (en) 1990-05-22

Family

ID=16891595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22939983A Granted JPS60122869A (en) 1983-12-05 1983-12-05 Heat exchanger for cryogenic refrigerator system

Country Status (1)

Country Link
JP (1) JPS60122869A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149601A (en) * 2010-01-20 2011-08-04 Sumitomo Heavy Ind Ltd Pulse tube refrigerator
JP2011149600A (en) * 2010-01-20 2011-08-04 Sumitomo Heavy Ind Ltd Pulse tube refrigerator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2685969B1 (en) * 1992-01-03 1994-03-04 Isocel Sarl LABEL FOR MARKING A PRODUCT.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149601A (en) * 2010-01-20 2011-08-04 Sumitomo Heavy Ind Ltd Pulse tube refrigerator
JP2011149600A (en) * 2010-01-20 2011-08-04 Sumitomo Heavy Ind Ltd Pulse tube refrigerator

Also Published As

Publication number Publication date
JPH0222871B2 (en) 1990-05-22

Similar Documents

Publication Publication Date Title
US4259844A (en) Stacked disc heat exchanger for refrigerator cold finger
KR100348619B1 (en) Aftercooler and its manufacturing mathod for pulse tube refrigerator
JPS60122869A (en) Heat exchanger for cryogenic refrigerator system
JP2551000B2 (en) Cryogenic generator
US20190323737A1 (en) Regenerator For A Cryo-Cooler That Uses Helium As A Working Gas
CN114877552A (en) Miniature throttling refrigerator, application method thereof and infrared detector
JP2889221B1 (en) Regenerator
JPH0528438Y2 (en)
JP7146543B2 (en) Pulse tube refrigerator and method for manufacturing pulse tube refrigerator
JP3354364B2 (en) External combustion engine regenerator
KR20060045109A (en) Regenerator of cryocooler and its applicable refrigerator and manufacturing method thereof
JPH047492Y2 (en)
JPS6019950A (en) Reciprocating engine
JP2005030704A (en) Bonded heat exchanger and pulse tube refrigerator
CN108413641B (en) Frame and pulse tube type free piston Stirling refrigerator
JPS6287766A (en) Heat accumulation type heat exchanger
JP2009052818A (en) Regenerative refrigerator
JP3366521B2 (en) Heat exchanger and method of manufacturing the same
JPH02630B2 (en)
JPS6349677Y2 (en)
JPH11223398A (en) Heat exchanger for heat engine
JPS5840455A (en) Cryogenic refrigerator
JPH0125256Y2 (en)
JPH0311270A (en) Cryogenic cold accumulator
JPS5840454A (en) Cryogenic refrigerator