JPS5840454A - Cryogenic refrigerator - Google Patents
Cryogenic refrigeratorInfo
- Publication number
- JPS5840454A JPS5840454A JP13737681A JP13737681A JPS5840454A JP S5840454 A JPS5840454 A JP S5840454A JP 13737681 A JP13737681 A JP 13737681A JP 13737681 A JP13737681 A JP 13737681A JP S5840454 A JPS5840454 A JP S5840454A
- Authority
- JP
- Japan
- Prior art keywords
- space
- heat exchanger
- communication pipe
- regenerator
- regenerative heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は、超低温冷凍機に関し、特に詳述すれば、10
に以下の冷凍を簡単な機構で短かい時間で効率良く発生
−可能にし、逆スターリングサイクル或いは、ギホード
マクマホンサイクル等の利用範囲を拡大させている超低
温冷凍機に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultra-low temperature refrigerator, and more specifically,
The present invention relates to an ultra-low temperature refrigerator which enables the following refrigeration to be efficiently generated in a short period of time with a simple mechanism, and which expands the range of applications such as reverse Stirling cycle or Gifford-McMahon cycle.
本発明によれば、圧縮空間、冷却器、第1蓄冷器、第2
蓄冷器、第8蓄冷器、蓄熱型熱交換器の流路を順次連通
させ、第1蓄冷器と第1膨張空間、第2蓄冷器と第2膨
張空間、蓄熱刑熱交換器の流路と第3膨張空間を連通し
、蓄熱型熱交換器の流路の外壁側を囲んだ空間と、第8
膨張空間とを絞りを介して連通せしめ、前記蓄熱型熱交
換器の空間の作動ガスと、前記蓄熱型熱交換器の流路を
流れる作動ガスとが蓄熱型熱交換器の流路を形成する壁
を介して、熱交換することによって第8膨張空間でIO
K以下の冷凍を効率よく短時間で発生する超低温冷凍樋
管提供するものである。According to the present invention, the compression space, the cooler, the first regenerator, the second
The flow paths of the regenerator, the eighth regenerator, and the regenerative heat exchanger are connected in sequence, and the flow paths of the first regenerator and the first expansion space, the second regenerator and the second expansion space, and the regenerative heat exchanger are connected. A space that communicates the third expansion space and surrounds the outer wall side of the flow path of the regenerative heat exchanger, and an eighth
The expansion space is communicated through a throttle, and the working gas in the space of the regenerative heat exchanger and the working gas flowing through the flow path of the regenerative heat exchanger form a flow path of the regenerative heat exchanger. IO in the eighth expansion space by heat exchange through the wall
To provide an ultra-low temperature refrigeration trough pipe that efficiently generates refrigeration below K in a short time.
本発明の実施例を第1図及び第2図に基づき説明すれば
、圧縮シリンダ1と圧縮ピストン2により形成される圧
縮空間8は、順次冷却器4、第1蓄冷器5を通り、そし
て連通管6・7を介して、それぞれ第1膨張空間8.第
2蓄冷器9の一端側へ連通している。前記第2蓄冷器9
の他端側は、連通管11・12を通り・それぞれ第2膨
張空間】0.第8蓄冷器18の一端側へ連通している。An embodiment of the present invention will be described based on FIGS. 1 and 2. A compression space 8 formed by a compression cylinder 1 and a compression piston 2 sequentially passes through a cooler 4, a first regenerator 5, and communicates with Via the tubes 6 and 7, a first expansion space 8. It communicates with one end of the second regenerator 9. Said second regenerator 9
The other end passes through communication pipes 11 and 12 and second expansion spaces respectively]0. It communicates with one end side of the eighth regenerator 18 .
前記第8蓄冷器18の他端側は、連通管14を通り、蓄
熱型熱交換器15の流路15&の一端側に連通している
。前記流路151の他端側は、連通管16を通り第8膨
張空間17へ連通している。第8膨張空間17は、順次
連通管18.絞り19.連通管20を介し前記蓄熱型熱
交換器15の流路15aの外壁側をとり囲んでいる空間
15bに連通しているこの様にして構成された冷凍回路
内には、ヘリウムガス等の作動ガスの冷媒が充填されて
いる。The other end of the eighth regenerator 18 passes through the communication pipe 14 and communicates with one end of the flow path 15& of the regenerative heat exchanger 15. The other end of the flow path 151 communicates with the eighth expansion space 17 through the communication pipe 16 . The eighth expansion space 17 is sequentially connected to the communication pipe 18 . Aperture 19. A working gas such as helium gas is in the refrigeration circuit configured in this way, which communicates with the space 15b surrounding the outer wall side of the flow path 15a of the regenerative heat exchanger 15 through the communication pipe 20. is filled with refrigerant.
圧縮ピストン2にはロッド22が連結され、ざらに前記
圧縮ピストン2の外周上の一部には、ガス封止のための
ピストンリング23が設けられハそして前記ロッド22
の外壁の一部にも第1膨張空間8.第2膨張空間10.
第8膨張空間1.7は、それぞれ2段の凸型を有する膨
張シリンダ24.膨張ピストン25によって形成ざ4れ
る。膨張ピストンz5の各段の外周上には、該第1.2
.3膨張空間8・10・17のガス封止のためのピスト
ンリング26・27゜28が設Wされている。又、膨張
ピストン25にはロッド29が連絡され、該ロッドの外
壁上の一部には、ガス封止のためのシール80が設置さ
れている。ロッド22・29は、図示されティない往復
動機構(例えばクランク機構)に連絡され、膨張ピスト
ン25の方が圧縮ピストン2より約90°位相が進む様
にせしめである。A rod 22 is connected to the compression piston 2, and a piston ring 23 for gas sealing is provided roughly on a part of the outer circumference of the compression piston 2.
A part of the outer wall of the first expansion space 8. Second expansion space 10.
The eighth expansion spaces 1.7 each have two convex expansion cylinders 24.7. A gap is formed by the expansion piston 25. On the outer periphery of each stage of the expansion piston z5, the 1.2
.. Piston rings 26, 27° 28 are provided for gas sealing of the three expansion spaces 8, 10, and 17. Further, a rod 29 is connected to the expansion piston 25, and a seal 80 for gas sealing is installed on a part of the outer wall of the rod. The rods 22 and 29 are connected to a reciprocating mechanism (for example, a crank mechanism), not shown, so that the expansion piston 25 is about 90 degrees ahead of the compression piston 2 in phase.
尚、本発明は切り換弁を使用したギホードサイクル、ギ
ホードマクマホンサイクル、ツルベイサイクル等の冷凍
機にも適用することが出来る。The present invention can also be applied to refrigerators such as the Gifford cycle, Gifford-McMahon cycle, and Tsurubay cycle that use switching valves.
本発明の作用について説明すれば、圧縮空間8の作動ガ
ス(ヘリウムガス等)は、圧縮ピストン2により圧縮さ
れた後、冷却器4で冷却され、第1蓄冷器5を通り、さ
らに冷却され、連通管6・7を通り、それぞれ第1膨張
空間8及び第2蓄冷器9へと流入する。第1膨張空開8
に入った作動ガスは膨張ピストン25により膨張され、
温度が下り冷凍を発生する。ところで第2蓄冷器9に流
入した作動ガスは、ざらに冷却されて連通管11を通り
第2膨張空間10と連通管12を通り第8蓄冷器18へ
と流入する度の低い冷凍を発生する。第8蓄冷器13に
流入した作動ガスは、ざらに冷却されて順次連通管14
.蓄熱型熱交換器15の流路158へ流入する。流路1
5mに流入した作動ガスは、流路151を形成する壁を
介し熱交換器15唆間15bのヘリウムガスを冷却しな
がら、連通管16を通り、第8膨張空間17に流入する
。To explain the operation of the present invention, the working gas (helium gas, etc.) in the compression space 8 is compressed by the compression piston 2, cooled by the cooler 4, passed through the first regenerator 5, and further cooled. It passes through the communication pipes 6 and 7 and flows into the first expansion space 8 and the second regenerator 9, respectively. 1st expansion air opening 8
The working gas that has entered is expanded by the expansion piston 25,
The temperature drops and freezing occurs. By the way, the working gas that has flowed into the second regenerator 9 is roughly cooled, passes through the communication pipe 11, passes through the second expansion space 10 and the communication pipe 12, and flows into the eighth regenerator 18, generating a low degree of refrigeration. . The working gas that has flowed into the eighth regenerator 13 is roughly cooled and then sequentially passed through the communication pipe 14.
.. It flows into the flow path 158 of the regenerative heat exchanger 15. Channel 1
The working gas that has flowed into the space 5m passes through the communication pipe 16 and flows into the eighth expansion space 17 while cooling the helium gas in the heat exchanger 15 chamber 15b through the wall forming the flow path 151.
第8膨張空間17へ流入した作動ガスは膨張ピストン2
5により膨張され、第2膨張空間よりさらに温度の低い
冷凍を発生する。第8膨張空間17で膨張し終った作動
ガスは、膨張ピストン25の、圧縮によって連通管16
を通り、蓄熱型熱交換器15の流路15mに流入すると
流路15mを形成する壁を介し、蓄熱型熱交換器15の
空間15b内のヘリウムガスを冷却しながら・連通管1
4を通って第8蓄冷器18に流入する。第8蓄冷器18
に流入した作動ガスは温められて連通管12を通って第
2蓄冷器9に流入する。又、第2膨張空間10で膨張し
終った作動ガスも、膨張ピストン25の圧縮により連通
管11を通り第2蓄冷器9へ流入する。第2蓄冷器9へ
流入した作動ガスはさらに温められて連通管7を通って
第1蓄冷器5へ流入する。第1膨張空間8で膨張し終っ
た作動ガスも、膨張ピストン25の圧縮により、連通管
6を通って第1蓄冷器5へ流入する。第1蓄冷器5へ流
入した作動ガスは、さらに温められて冷却器4へ流入し
、さらに圧縮空間8へ流入する。The working gas that has flowed into the eighth expansion space 17 is transferred to the expansion piston 2.
5 to generate refrigeration at a lower temperature than the second expansion space. The working gas that has finished expanding in the eighth expansion space 17 is compressed by the expansion piston 25 into the communication pipe 16.
When it flows into the flow path 15m of the regenerative heat exchanger 15, the helium gas in the space 15b of the regenerative heat exchanger 15 is cooled through the wall forming the flow path 15m.
4 and flows into the eighth regenerator 18. 8th regenerator 18
The working gas that has flowed into the second regenerator 9 is heated and flows through the communication pipe 12 into the second regenerator 9 . Further, the working gas that has finished expanding in the second expansion space 10 also flows into the second regenerator 9 through the communication pipe 11 due to compression by the expansion piston 25. The working gas that has flowed into the second regenerator 9 is further warmed and flows into the first regenerator 5 through the communication pipe 7 . The working gas that has finished expanding in the first expansion space 8 also flows into the first regenerator 5 through the communication pipe 6 due to compression by the expansion piston 25. The working gas that has flowed into the first regenerator 5 is further warmed and flows into the cooler 4 and then into the compression space 8 .
ところで蓄熱型熱交換器15の温度が低下すると蓄熱型
熱交換器15の空間15bのヘリウムガスの温度が低下
し、空間15bの圧力が低下する。空間15bの圧力が
低下すると第8膨張空間17の作動ガスは、連通管18
.絞り19、連通管20を通って、空間15bに流入し
、そして空間15bの圧力は冷啼サイクルの平均圧力に
ほぼ等しくなる。By the way, when the temperature of the regenerative heat exchanger 15 decreases, the temperature of the helium gas in the space 15b of the regenerative heat exchanger 15 decreases, and the pressure in the space 15b decreases. When the pressure in the space 15b decreases, the working gas in the eighth expansion space 17 flows through the communication pipe 18.
.. It flows into the space 15b through the throttle 19 and the communication pipe 20, and the pressure in the space 15b becomes approximately equal to the average pressure of the refrigeration cycle.
第2図(b)はこの状況の圧力の変化を示したものでP
lは第8膨張空間17の圧力の変化を示し圧縮ピストン
2と膨張ピストン25の作用により大きく変化するが蓄
熱型熱交換器の空間15bの圧力は絞り19によりP2
に示す如く圧力の変化が非常に少くなる。Figure 2 (b) shows the change in pressure in this situation.
l indicates a change in the pressure in the eighth expansion space 17, which changes greatly due to the action of the compression piston 2 and the expansion piston 25, but the pressure in the space 15b of the regenerative heat exchanger is changed to P2 by the throttle 19.
As shown in the figure, the change in pressure becomes very small.
この様にしてlサイクルを形成する。この冷凍サイクル
を何回も繰り返すと、第1膨張空間8、第2膨張空間1
0.第8膨張空間17の各々の作動ガスの温度は除々に
下り、第1膨張空間8は約100 K、第2膨張空間は
約80に、第8膨張空間は約15に、蓄熱型熱交換器1
5・もところで蓄熱型熱交換器15の温度が約15Kに
なると第2蓄冷器9.連通管12′ft−通って第3蓄
冷器13に流入した作動ガスはさらに冷却され連通管1
4を通り蓄熱型熱交換器15の流路15mに流入する。In this way, one cycle is formed. When this refrigeration cycle is repeated many times, the first expansion space 8, the second expansion space 1
0. The temperature of the working gas in each of the eighth expansion spaces 17 gradually decreases to about 100 K in the first expansion space 8, about 80 K in the second expansion space, and about 15 K in the eighth expansion space. 1
5. By the way, when the temperature of the regenerator type heat exchanger 15 reaches about 15K, the second regenerator 9. The working gas that has flowed into the third regenerator 13 through the communication pipe 12'ft is further cooled and passes through the communication pipe 1.
4 and flows into the flow path 15m of the regenerative heat exchanger 15.
流路15轟に流入した作動ガスは流路15m1形成して
いる壁を通して熱交換器15の空間15bのヘリウムガ
スによって、さらに冷却され連通管16を通り第8膨張
空間17に流入する。第3膨張空間17に流入した作動
ガスは膨張ピストン25の膨張によって、15によりさ
らに温度の低い冷凍を発生する。第8膨張空間17で膨
張し終った作動ガスは前記膨張ピストン25の圧縮によ
り連通管16を通って蓄熱型熱交換器15の流路15a
に流入する。流路15mに流入した作動ガスは流路15
t−形成する壁を介して蓄熱型熱交換器15の空間15
bのヘリウムガスによって温められ、連通管14を通っ
て第3蓄冷器18へ流入する。第8蓄冷器18へ流入し
た作動ガスは、さらに温められて連通管12を通って第
2蓄冷器9に流入する。第2膨張空間10と第1膨張空
間8で膨張し終った作動ガスは、前述した同様の作用に
よって圧縮空間8にもどりlサイクルを終える。この様
に蓄熱型熱交換器15の温度が約15Kに達した後・こ
の冷凍サイクルを何′回も繰り返すと、第1膨張空間8
は、約70にの冷凍を発生し・第2膨張空間IOは約2
5にの冷凍を発生する。そして連通管14の作動ガスは
約15に1そして第8膨張空間17は約4にの冷凍全発
生する。The working gas flowing into the flow path 15 is further cooled by the helium gas in the space 15b of the heat exchanger 15 through the wall forming the flow path 15m1, and flows into the eighth expansion space 17 through the communication pipe 16. The working gas flowing into the third expansion space 17 is frozen at a lower temperature by the expansion piston 25 . The working gas that has finished expanding in the eighth expansion space 17 is compressed by the expansion piston 25 and passes through the communication pipe 16 into the flow path 15a of the regenerative heat exchanger 15.
flows into. The working gas that has flowed into the flow path 15m is
t - the space 15 of the regenerative heat exchanger 15 through the forming walls;
It is heated by the helium gas of b, and flows into the third regenerator 18 through the communication pipe 14. The working gas that has flowed into the eighth regenerator 18 is further warmed and flows into the second regenerator 9 through the communication pipe 12 . The working gas that has finished expanding in the second expansion space 10 and the first expansion space 8 returns to the compression space 8 by the same action as described above and completes one cycle. After the temperature of the regenerative heat exchanger 15 reaches approximately 15K in this way and if this refrigeration cycle is repeated many times, the first expansion space 8
generates refrigeration of about 70° and the second expansion space IO is about 2
5. Freezing occurs. The working gas in the communication pipe 14 is about 1:15, and the eighth expansion space 17 is about 4:1 frozen.
次に、冷凍機の運転を止めると蓄熱型熱交換器15の空
間15bの温度が上昇し、空間15bの圧力は冷凍サイ
クルを形成する空間の圧力より高くなる。その結果、空
間15bのヘリウムガスは、連通管20.絞り19.連
通管18を通って第8膨張空間17へ流入し、空間15
bの圧力は冷凍サイクルを形成する空間の圧力にほぼ等
しくなる。Next, when the operation of the refrigerator is stopped, the temperature in the space 15b of the regenerative heat exchanger 15 rises, and the pressure in the space 15b becomes higher than the pressure in the space forming the refrigeration cycle. As a result, the helium gas in the space 15b is transferred to the communication pipe 20. Aperture 19. It flows into the eighth expansion space 17 through the communication pipe 18 and enters the space 15.
The pressure at b is approximately equal to the pressure in the space forming the refrigeration cycle.
尚、第3図は1Qatのヘリウムガスと鉛球の単位体積
当りの熱容量を示したもので、明らかに15に以下では
ヘリウムガスの熱容量が大きく、15に以上では鉛球の
単位の体積当りの熱容量の方、がヘリウムガスの熱容量
より大きいことを表わしている。Figure 3 shows the heat capacity per unit volume of 1 Qat helium gas and a lead ball.It is clear that below 15, the heat capacity of helium gas is large, and above 15, the heat capacity per unit volume of the lead ball is large. This means that the heat capacity of helium gas is larger than that of helium gas.
以上より本発明によれば蓄熱型熱交換器15の空間15
bは絞りを介して冷凍サイクルを形成している空間に接
続されているので蓄熱型熱交換器15の温度が下がって
も蓄熱型熱交換器15の空間15bの圧力は第8膨張空
間8の圧力の中間圧を保つ様に絞り19を通ってヘリウ
ムガスが供給される。From the above, according to the present invention, the space 15 of the regenerative heat exchanger 15
b is connected to the space forming the refrigeration cycle through the throttle, so even if the temperature of the regenerative heat exchanger 15 falls, the pressure in the space 15b of the regenerative heat exchanger 15 will remain the same as that of the eighth expansion space 8. Helium gas is supplied through a throttle 19 so as to maintain an intermediate pressure.
その結果、蓄熱型熱交換器15の空間15bのヘリウム
ガスと流路15ali形成する壁を介L7て流路15m
のヘリウムガスどうしが前述シたヘリウムガス(約15
に以下)の熱容量の大きい性質を利用して、熱交換して
いるので第8膨張空間17においてIOK以下の冷凍を
効率良く、簡単な機構で発生する。As a result, the helium gas in the space 15b of the regenerative heat exchanger 15 passes through the wall L7 forming the flow path 15ali to the flow path 15m.
The helium gas mentioned above (approximately 15
Since heat exchange is performed by utilizing the property of large heat capacity of (hereinafter referred to as), refrigeration below IOK can be efficiently generated in the eighth expansion space 17 with a simple mechanism.
蓄熱型熱交換器15と第2蓄冷器の間に第8蓄冷器を設
けであるので第8膨張空間17が常温より約15Kまで
温度が下がる過程においては、第8蓄冷器18内にある
鉛等の蓄冷材と第8蓄冷器18内を流れる作動ガス(ヘ
リウムガス)とが、第8図に示すグラフの如く鉛の熱容
量の大きい性質(約15に以上)の熱交換を利用し、そ
して第3膨張空間17において冷凍を発生した作動ガス
で蓄熱型熱交換器15を約15Kまで短かい時間で冷却
することが出来、その結果10に以下の冷凍を短時間で
得る事が出来る。Since the eighth regenerator is provided between the regenerative heat exchanger 15 and the second regenerator, the lead in the eighth regenerator 18 is removed during the process in which the temperature of the eighth expansion space 17 decreases from room temperature to about 15K. etc. and the working gas (helium gas) flowing in the eighth regenerator 18, as shown in the graph shown in FIG. The regenerative heat exchanger 15 can be cooled down to about 15K in a short time using the working gas that generated refrigeration in the third expansion space 17, and as a result, the following refrigeration can be achieved in a short time.
低温部に一方向弁、あるいは安全弁等の可動部で有する
弁類がないので、故障の恐れが少ない。第8膨張空間1
7と蓄熱型熱交換器の空間15bとは絞りだけを介して
連通しているので空間15bは冷凍サイクルを形成する
空間の死体積にはならないのである。その結果、冷凍サ
イクルを形成する空間の死体積を小さくする事が出来、
冷凍機の効率が良くなる。蓄熱型熱交換器15の空間1
5bは絞りを介して冷凍サイクルを形成しているので、
冷凍機の運転を止めた場合、蓄熱型熱交換器15の空間
のヘリウムガスは温度が上昇するにつれ絞り19を通っ
て冷凍サイクルを形成する空間に流れる。この結果蓄熱
型熱交換器15の空間15bの圧力は異常に上昇せず、
蓄熱型熱交換器に安全弁等を設ける必要がまったく無い
。Since there are no moving parts such as one-way valves or safety valves in the low-temperature part, there is less risk of failure. 8th expansion space 1
7 and the space 15b of the regenerative heat exchanger are communicated only through the throttle, so the space 15b does not become a dead volume of the space forming the refrigeration cycle. As a result, the dead volume of the space forming the refrigeration cycle can be reduced,
Refrigerator efficiency improves. Space 1 of regenerative heat exchanger 15
5b forms a refrigeration cycle through the aperture, so
When the operation of the refrigerator is stopped, the helium gas in the space of the regenerative heat exchanger 15 flows through the throttle 19 into the space forming the refrigeration cycle as the temperature rises. As a result, the pressure in the space 15b of the regenerative heat exchanger 15 does not rise abnormally,
There is no need to provide a safety valve or the like to the regenerative heat exchanger.
第4図は、本発明の他の、実施例である。第3蓄冷器1
8と蓄熱型熱交換器15の空間15bの間を順次連通管
46.絞り32.連通管83で連通せしめ、他の構成は
第1図と同様である第5図は、本発明の他の実施例であ
る。蓄熱型熱交換器15の流路15mの途中と、空間1
5bを順次連通管84.絞り85.連通管36で連通せ
しめ、他の構成は、第1図と同様である。FIG. 4 shows another embodiment of the invention. Third regenerator 1
8 and the space 15b of the regenerative heat exchanger 15 through a communication pipe 46. Aperture 32. FIG. 5 shows another embodiment of the present invention, in which communication is provided through a communication tube 83 and the other configurations are the same as in FIG. 1. In the middle of the flow path 15m of the regenerative heat exchanger 15 and the space 1
5b is sequentially connected to the communication pipe 84. Aperture 85. They are communicated through a communication tube 36, and the other configurations are the same as in FIG.
第4図、第5図の作用は第1図の作用と同様である。The operations in FIGS. 4 and 5 are similar to those in FIG. 1.
第6図は、本発明の他の実施例である。パフア空間45
と蓄熱型熱交換器15の空間15bの間を順次連通管8
7.第111冷器5の外壁に巻き付けた連通管38.連
通管89.第2蓄冷器9の外壁に巻き付けた連通管40
.連通管441、第3蓄冷器13の外壁に巻き付けた連
通管42.連通管48.絞り44.そして連通管45を
連通せしめ、他の構成は、第1図と同様である。FIG. 6 shows another embodiment of the invention. Pahua space 45
The communication pipe 8 is sequentially connected between the space 15b of the regenerative heat exchanger 15 and
7. Communication pipe 38 wrapped around the outer wall of the 111th cooler 5. Communication pipe 89. Communication pipe 40 wrapped around the outer wall of the second regenerator 9
.. A communication pipe 441, a communication pipe 42 wrapped around the outer wall of the third regenerator 13. Communication pipe 48. Aperture 44. The communication pipe 45 is then brought into communication, and the other configurations are the same as in FIG. 1.
第6図の作用について説明すれば、バッファ空間45の
圧力より蓄熱型熱交換器15の空間15bの圧力が低い
と、バッファ空間45の作動ガスは連通管87を通り、
連通管88に流入する。連通管88に流入し作動ガスは
、第1蓄冷器5によって冷却され、連通管89を通り、
連通管40へ流入する。連通管40へ流入した作動ガス
は第2蓄冷器9によって冷却され、連通管41を通って
連通管42に流入する。連通管42に流入した作動ガス
は第8蓄冷器42によって冷却され、順次連通管43.
絞り44゜連通管45を通って蓄熱型熱交換器15の空
間15bに流入する。To explain the effect shown in FIG. 6, when the pressure in the space 15b of the regenerative heat exchanger 15 is lower than the pressure in the buffer space 45, the working gas in the buffer space 45 passes through the communication pipe 87.
It flows into the communication pipe 88. The working gas flowing into the communication pipe 88 is cooled by the first regenerator 5, passes through the communication pipe 89,
It flows into the communication pipe 40. The working gas that has flowed into the communication pipe 40 is cooled by the second regenerator 9 and flows into the communication pipe 42 through the communication pipe 41 . The working gas that has flowed into the communication pipe 42 is cooled by the eighth regenerator 42, and is sequentially transferred to the communication pipe 43.
It flows into the space 15b of the regenerative heat exchanger 15 through the 44° throttle communication pipe 45.
蓄熱型熱交換器15の空間15bの圧力よりバッファ空
間45の圧力の方が低い場合、蓄熱型熱交換−g%15
の空間15bのヘリウムガスは、順次連通管45.絞り
44.連通管48を通って連通管42に流入する・。連
通管42に流入した作動ガスは、第3蓄冷器13によっ
て温められ、連通管41を通って連通管40へ流入する
0連通管40へ庸大した作動ガスは第2蓄冷器によって
さらに温められ連通管39を通り連通管38へと流入す
る。連通管38へ流入した作動ガスは第1蓄冷器によっ
て、さらに温められ連通管87を通りバッファ空間45
へ流入する0他の作用は第1図に示す実施とまったく同
様である。When the pressure in the buffer space 45 is lower than the pressure in the space 15b of the regenerative heat exchanger 15, the regenerative heat exchanger-g%15
The helium gas in the space 15b is sequentially transferred to the communication pipe 45. Aperture 44. It flows into the communication pipe 42 through the communication pipe 48. The working gas that has flowed into the communication pipe 42 is warmed by the third regenerator 13, and the working gas that has expanded into the 0 communication pipe 40, which flows into the communication pipe 40 through the communication pipe 41, is further warmed by the second regenerator. It passes through the communication pipe 39 and flows into the communication pipe 38 . The working gas flowing into the communication pipe 38 is further warmed by the first regenerator and passes through the communication pipe 87 to the buffer space 45.
The other effects are exactly similar to the implementation shown in FIG.
第4図〜第6図に示す実施例についても第1図に示す実
施例と同様その効果として第8膨張空間にはIOK以下
の冷凍が極めて短時間に発生すると共に、蓄熱型熱交換
器においても安全弁等の投雪が不必要となり極めて効率
的な超低温冷凍機を提供することが出来る。Similar to the embodiment shown in Fig. 1, the embodiments shown in Figs. 4 to 6 have the same effect that freezing of less than IOK occurs in the 8th expansion space in an extremely short period of time, and in the regenerative heat exchanger. It is also possible to provide an extremely efficient ultra-low temperature refrigerator, since there is no need to use a safety valve to throw snow.
第1図は本発明の一実施例に係る超低温冷凍機の概略断
面図、第2図(a)は絞り部の拡大断面図、第2図Φ)
は第8膨張空間16に於ける作動ガスの圧力(Pl)と
蓄熱型熱交換器内の空間15bに於ける作動ガスの圧力
(P2)の変化の状況を示すグラフ・第8図はヘリウム
ガス(作動ガス)と鉛の熱容量の比較を示すグラフ、そ
して第4図〜第6図は本発明の他の変形実施例を示す概
略断面図である。
15:蓄熱型熱交換器、 15a:流路、15b:熱
交換器内の空間、19:絞り。
特許出願人
アイシン精機株式会社
代表者 中 井 令 夫
ll
と
@3@
241−Fig. 1 is a schematic sectional view of an ultra-low temperature refrigerator according to an embodiment of the present invention, Fig. 2(a) is an enlarged sectional view of the constriction part, Fig. 2(Φ)
is a graph showing changes in the working gas pressure (Pl) in the eighth expansion space 16 and the working gas pressure (P2) in the space 15b in the regenerative heat exchanger. A graph showing a comparison of the heat capacities of (working gas) and lead, and FIGS. 4 to 6 are schematic sectional views showing other modified embodiments of the present invention. 15: Regenerative heat exchanger, 15a: Flow path, 15b: Space inside the heat exchanger, 19: Aperture. Patent applicant Aisin Seiki Co., Ltd. Representative Reio Nakai and @3@241-
Claims (1)
空間を順次連通せしめ、前記蓄熱型熱交換器の流路の外
壁側をとり囲んでいる空間と、冷、凍サイクルを形成す
る空間の間を絞りを介して連通し、前記蓄熱型熱交換器
の空間と前記冷凍サイクルを形成している空間との間で
前記絞りを介して、作動ガス(ヘリウムガス)を流入、
流出せしめ、前記蓄熱型熱交換器の前記流路を流れる作
動ガスと前記蓄熱型熱交換器の空間のヘリウムガスとの
間で、前記流路を形成する壁を介して熱交換することを
特長とする超低温冷凍機。A space in which a compression space, a cooler, a regenerator, a regenerative heat exchanger, and an expansion space are sequentially communicated, and a space surrounding the outer wall side of the flow path of the regenerative heat exchanger forms a refrigeration cycle. communicating through a throttle, and flowing working gas (helium gas) between the space of the regenerative heat exchanger and the space forming the refrigeration cycle through the throttle;
heat exchange between the working gas flowing through the flow path of the regenerative heat exchanger and the helium gas in the space of the regenerative heat exchanger through a wall forming the flow path. An ultra-low temperature refrigerator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13737681A JPS5840454A (en) | 1981-09-01 | 1981-09-01 | Cryogenic refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13737681A JPS5840454A (en) | 1981-09-01 | 1981-09-01 | Cryogenic refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5840454A true JPS5840454A (en) | 1983-03-09 |
JPH0147713B2 JPH0147713B2 (en) | 1989-10-16 |
Family
ID=15197233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13737681A Granted JPS5840454A (en) | 1981-09-01 | 1981-09-01 | Cryogenic refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5840454A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60102125A (en) * | 1983-11-08 | 1985-06-06 | セイレイ工業株式会社 | Chainsaw posture altering apparatus of pruning machine |
JPS60102126A (en) * | 1983-11-08 | 1985-06-06 | セイレイ工業株式会社 | Chainsaw posture altering apparatus of pruning machine |
JPS60153726A (en) * | 1984-01-18 | 1985-08-13 | 岡田 成人 | Pruning machine |
-
1981
- 1981-09-01 JP JP13737681A patent/JPS5840454A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60102125A (en) * | 1983-11-08 | 1985-06-06 | セイレイ工業株式会社 | Chainsaw posture altering apparatus of pruning machine |
JPS60102126A (en) * | 1983-11-08 | 1985-06-06 | セイレイ工業株式会社 | Chainsaw posture altering apparatus of pruning machine |
JPS60153726A (en) * | 1984-01-18 | 1985-08-13 | 岡田 成人 | Pruning machine |
Also Published As
Publication number | Publication date |
---|---|
JPH0147713B2 (en) | 1989-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3218815A (en) | Cryogenic refrigeration apparatus operating on an expansible fluid and embodying a regenerator | |
JP4942897B2 (en) | Hybrid two-stage pulse tube refrigerator | |
US4873831A (en) | Cryogenic refrigerator employing counterflow passageways | |
US3413815A (en) | Heat-actuated regenerative compressor for refrigerating systems | |
JPH10132404A (en) | Pulse pipe freezer | |
CN105783319B (en) | The low temperature J T j-t refrigerators of philip refrigerator precooling | |
JPH0460351A (en) | Freezer | |
JP5882110B2 (en) | Regenerator type refrigerator, regenerator | |
US5609034A (en) | Cooling system | |
CN109556318B (en) | Thermoacoustic refrigerator | |
CN113803905A (en) | Efficient precooling and liquefying system of clearance type refrigerating machine | |
JP2551000B2 (en) | Cryogenic generator | |
JP5908324B2 (en) | Regenerative refrigerator | |
JPS61256158A (en) | Refrigeration system | |
JPS5840454A (en) | Cryogenic refrigerator | |
US20150168026A1 (en) | Regenerative refrigerator | |
JP2609327B2 (en) | refrigerator | |
US4455841A (en) | Heat-actuated heat pumping apparatus and process | |
JPS6256420B2 (en) | ||
JPS5840456A (en) | Cryogenic refrigerator | |
JPS5816159A (en) | Cryogenic refrigerator with heat accumulation type heat exchanger | |
JPS6353465B2 (en) | ||
CN201637218U (en) | Object-oriented cooling device based on pulse tube refrigerator | |
Jeong et al. | Magnetically augmented regeneration in Stirling Cryocooler | |
JPS61225556A (en) | Cryogenic cooling device |