JPH0147713B2 - - Google Patents

Info

Publication number
JPH0147713B2
JPH0147713B2 JP13737681A JP13737681A JPH0147713B2 JP H0147713 B2 JPH0147713 B2 JP H0147713B2 JP 13737681 A JP13737681 A JP 13737681A JP 13737681 A JP13737681 A JP 13737681A JP H0147713 B2 JPH0147713 B2 JP H0147713B2
Authority
JP
Japan
Prior art keywords
space
heat exchanger
communication pipe
regenerator
expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13737681A
Other languages
Japanese (ja)
Other versions
JPS5840454A (en
Inventor
Hideo Mita
Shintaro Harada
Masabumi Nogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP13737681A priority Critical patent/JPS5840454A/en
Publication of JPS5840454A publication Critical patent/JPS5840454A/en
Publication of JPH0147713B2 publication Critical patent/JPH0147713B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 本発明は、超低温冷凍機に関し、特に詳述すれ
ば、10K以下の冷凍を簡単な機構で短かい時間で
効率良く発生可能にし、逆スターリングサイクル
或いは、ギボードマクマホンサイクル等の利用範
囲を拡大させている超低温冷凍機に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultra-low temperature refrigerator, and more specifically, it is capable of efficiently generating refrigeration of 10 K or less with a simple mechanism in a short time, and is capable of generating freezing at a temperature of 10 K or less using a reverse Stirling cycle or a Gibbard-McMahon cycle. This article relates to ultra-low temperature refrigerators, which are expanding the scope of their use.

本発明は、圧縮空間、冷却器、蓄冷器、蓄熱型
熱交換器および膨張空間を順次連通せしめた冷凍
機において、前記蓄熱型熱交換器の流路の外壁側
をとり囲んでいる空間と、前記圧縮空間、前記蓄
冷器内の空間、前記蓄熱型熱交換器の流路、前記
膨張空間及びバツフア空間のいずれかとを絞りを
介して連通し、前記蓄熱型熱交換器の前記流路の
内壁側を流れる作動ガス(ヘリウムガス)と前記
蓄熱型熱交換器の前記流路の外壁側の作動ガス
(ヘリウムガス)との間で、前記流路を形成する
壁を介して熱交換することによつて、膨張空間で
冷凍を効率良く短時間で発生し得る超低温冷凍機
を提供するものであつて、膨張ピストン及び膨張
シリンダが3段の段付状を呈し、その端部に夫々
第1、第2及び第3膨張空間を形成した冷凍機に
あつてはその第3膨張空間で10K以下の冷凍を効
率よく短時間で発生し得る超低温冷凍機を提供す
るものである。
The present invention provides a refrigerator in which a compression space, a cooler, a regenerator, a regenerative heat exchanger, and an expansion space are sequentially connected to each other, and a space surrounding an outer wall side of a flow path of the regenerative heat exchanger; The compression space, the space in the regenerator, the flow path of the regenerative heat exchanger, the expansion space, and the buffer space communicate with each other via a restriction, and the inner wall of the flow path of the regenerative heat exchanger Heat exchange is performed between the working gas (helium gas) flowing on the side and the working gas (helium gas) on the outer wall side of the flow path of the regenerative heat exchanger through the wall forming the flow path. Therefore, the present invention provides an ultra-low temperature refrigerator capable of efficiently generating refrigeration in an expansion space in a short period of time. In the case of a refrigerator having second and third expansion spaces, the present invention provides an ultra-low temperature refrigerator that can efficiently generate refrigeration of 10 K or less in the third expansion space in a short time.

本発明の実施例を第1図及び第2図に基づき説
明すれば、圧縮シリンダ1と圧縮ピストン2によ
り形成される圧縮空間3は、順次冷却器4、第1
蓄冷器5を通り、そして連通管6,7を介して、
それぞれ第1膨張空間8、第2蓄冷器9の一端側
へ連通している。前記第2蓄冷器9の他端側は、
連通管11,12を通り、それぞれ第2膨張空間
10、第3蓄冷器13の一端側へ連通している。
前記第3蓄冷器13の他端側は、連通管14を通
り、蓄熱型熱交換器15の流路15aの一端側に
連通している。前記流路15aの他端側は、連通
管16を通り第3膨張空間17へ連通している。
第3膨張空間17は、順次連通管18、絞り1
9、連通管20を介し前記蓄熱型熱交換器15の
流路15aの外壁側をとり囲んでいる空間15b
に連通している。
An embodiment of the present invention will be described based on FIG. 1 and FIG.
Passes through the regenerator 5 and through communication pipes 6 and 7,
They communicate with one end side of the first expansion space 8 and the second regenerator 9, respectively. The other end side of the second regenerator 9 is
It passes through communication pipes 11 and 12 and communicates with one end side of the second expansion space 10 and the third regenerator 13, respectively.
The other end side of the third regenerator 13 passes through a communication pipe 14 and communicates with one end side of a flow path 15a of a regenerative heat exchanger 15. The other end of the flow path 15a communicates with the third expansion space 17 through a communication pipe 16.
The third expansion space 17 sequentially includes a communication pipe 18, an aperture 1
9. A space 15b surrounding the outer wall side of the flow path 15a of the regenerative heat exchanger 15 via the communication pipe 20
is connected to.

この様にして構成された冷凍回路内には、ヘリ
ウムガス等の作動ガスの冷凍が充填されている。
The refrigeration circuit configured in this manner is filled with refrigeration of working gas such as helium gas.

圧縮ピストン2にはロツド22が連結され、さ
らに前記圧縮ピストン2の外周上の一部には、ガ
ス封止のためのピストンリング23が設けられ、
そして前記ロツド22の外壁の一部にもガス封止
のためのシール31が設けられている。
A rod 22 is connected to the compression piston 2, and a piston ring 23 for gas sealing is provided on a part of the outer circumference of the compression piston 2.
A seal 31 for gas sealing is also provided on a part of the outer wall of the rod 22.

第1膨張空間8、第2膨張空間10、第3膨張
空間17は、それぞれ2段の凸型を有する膨張シ
リンダ24、膨張ピストン25によつて形成され
る。膨張ピストン25の各段の外周上には、該第
1、2、3膨張空間8,10,17のガス封止の
ためのピストンリング26,27,28が設置さ
れている。又、膨張ピストン25にはロツド29
が連絡され、該ロツドの外壁上の一部には、ガス
封止のためのシール30が設置されている。ロツ
ド22,29は、図示されていない往復動機構
(例えばクランク機構)に連絡され、膨張ピスト
ン25の方が圧縮ピストン2より約90゜位相が進
む様にせしめてある。
The first expansion space 8, the second expansion space 10, and the third expansion space 17 are each formed by an expansion cylinder 24 and an expansion piston 25, each having a two-stage convex shape. On the outer periphery of each stage of the expansion piston 25, piston rings 26, 27, and 28 are installed to seal the first, second, and third expansion spaces 8, 10, and 17 with gas. Also, the expansion piston 25 has a rod 29.
A seal 30 for gas sealing is installed on a part of the outer wall of the rod. The rods 22 and 29 are connected to a reciprocating mechanism (for example, a crank mechanism), not shown, so that the expansion piston 25 is advanced in phase by about 90 degrees from the compression piston 2.

尚、本発明は切り換弁を使用したギホードサイ
クル、ギホードマクマホンサイクル、ソルベイサ
イクル等の冷凍機にも適用することが出来る。
The present invention can also be applied to refrigerators such as Gifford cycle, Gifford McMahon cycle, Solvay cycle, etc. that use switching valves.

本発明の作用について説明すれば、圧縮空間3
の作動ガス(ヘリウムガス等)は、圧縮ピストン
2により圧縮された後、冷却器4で冷却され、第
1蓄冷器5を通り、さらに冷却され、連通管6,
7を通り、それぞれ第1膨張空間8及び第2蓄冷
器9へと流入する。第1膨張空間8に入つた作動
ガスは膨張ピストン25により膨張され、温度が
下り冷凍を発生する。ところで第2蓄冷器9に流
入した作動ガスは、さらに冷却されて連通管11
を通り第2膨張空間10と連通管12を通り第3
蓄冷器13へと流入する。第2膨張空間10へ流
入した作動ガスが膨張ピストン25の膨張により
膨張され、第1膨張空間8よりさらに温度の低い
冷凍を発生する。第3蓄冷器13に流入した作動
ガスは、さらに冷却されて順次連通管14、蓄熱
型熱交換器15の流路15aへ流入する。流路1
5aに流入した作動ガスは、流路15aを形成す
る壁を介し熱交換器15の空間15bのヘリウム
ガスを冷却しながら、連通管16を通り、第3膨
張空間17に流入する。第3膨張空間17へ流入
した作動ガスは膨張ピストン25により膨張さ
れ、第2膨張空間よりさらに温度の低い冷凍を発
生する。第3膨張空間17で膨張し終つた作動ガ
スは、膨張ピストン25の圧縮によつて連通管1
6を通り、蓄熱型熱交換器15の流路15aに流
入すると流路15aを形成する壁を介し、蓄熱型
熱交換器15の空間15b内のヘリウムガスを冷
却しながら、連通管14を通つて第3蓄冷器13
に流入する。第3蓄冷器13に流入した作動ガス
は温められて連通管12を通つて第2蓄冷器9に
流入する。又、第2膨張空間10で膨張し終つた
作動ガスも、膨張ピストン25の圧縮により連通
管11を通り第2蓄冷器9へ流入する。第2蓄冷
器9へ流入した作動ガスはさらに温められて連通
管7を通つて第1蓄冷器5へ流入する。第1膨張
空間8へ膨張し終つた作動ガスも、膨張ピストン
25の圧縮により、連通管6を通つて第1蓄冷器
5へ流入する。第1蓄冷器5へ流入した作動ガス
は、さらに温められて冷却器4を流入し、さらに
圧縮空間3へ流入する。
To explain the operation of the present invention, the compressed space 3
The working gas (helium gas, etc.) is compressed by the compression piston 2, cooled by the cooler 4, passed through the first regenerator 5, further cooled, and then passed through the communication pipe 6,
7 and flow into the first expansion space 8 and the second regenerator 9, respectively. The working gas that has entered the first expansion space 8 is expanded by the expansion piston 25, and its temperature drops and refrigeration occurs. By the way, the working gas that has flowed into the second regenerator 9 is further cooled and passes through the communication pipe 11.
through the second expansion space 10 and the third through the communication pipe 12.
It flows into the regenerator 13. The working gas that has flowed into the second expansion space 10 is expanded by the expansion of the expansion piston 25, and refrigeration occurs at a temperature lower than that of the first expansion space 8. The working gas flowing into the third regenerator 13 is further cooled and sequentially flows into the communication pipe 14 and the flow path 15a of the regenerative heat exchanger 15. Channel 1
The working gas flowing into the third expansion space 17 passes through the communication pipe 16 while cooling the helium gas in the space 15b of the heat exchanger 15 through the wall forming the flow path 15a. The working gas that has flowed into the third expansion space 17 is expanded by the expansion piston 25 to generate refrigeration at a lower temperature than the second expansion space. The working gas that has finished expanding in the third expansion space 17 is compressed by the expansion piston 25 and is transferred to the communication pipe 1.
6 and flows into the flow path 15a of the regenerative heat exchanger 15, the helium gas in the space 15b of the regenerative heat exchanger 15 is cooled through the wall forming the flow path 15a, while passing through the communication pipe 14. Third regenerator 13
flows into. The working gas that has flowed into the third regenerator 13 is heated and flows into the second regenerator 9 through the communication pipe 12 . Furthermore, the working gas that has finished expanding in the second expansion space 10 also flows into the second regenerator 9 through the communication pipe 11 due to compression by the expansion piston 25. The working gas that has flowed into the second regenerator 9 is further warmed and flows into the first regenerator 5 through the communication pipe 7 . The working gas that has expanded into the first expansion space 8 also flows into the first regenerator 5 through the communication pipe 6 due to compression by the expansion piston 25 . The working gas that has flowed into the first regenerator 5 is further warmed, flows into the cooler 4, and further flows into the compression space 3.

ところで蓄熱型熱交換器15の温度が低下する
と蓄熱型熱交換器15の空間15bのヘリウムガ
スの温度が低下し、空間15bの圧力が低下す
る。空間15bの圧力が低下すると第3膨張空間
17の作動ガスは、連通管18、絞り19、連通
管20を通つて、空間15bに流入し、そして空
間15bの圧力は冷凍サイクルの平均圧力にほぼ
等しくなる。
By the way, when the temperature of the regenerative heat exchanger 15 decreases, the temperature of the helium gas in the space 15b of the regenerative heat exchanger 15 decreases, and the pressure in the space 15b decreases. When the pressure in the space 15b decreases, the working gas in the third expansion space 17 flows into the space 15b through the communication pipe 18, the throttle 19, and the communication pipe 20, and the pressure in the space 15b becomes approximately equal to the average pressure of the refrigeration cycle. be equal.

第2図bはこの状況の圧力の変化を示したもの
でP1は第3膨張空間17の圧力の変化を示し圧
縮ピストン2と膨張ピストン25の作用により大
きく変化するが蓄熱型熱交換器の空間15bの圧
力は絞り19によりP2に示す如く圧力の変化が
非常に少くなる。
Figure 2b shows the change in pressure in this situation, where P1 shows the change in pressure in the third expansion space 17, which changes greatly due to the action of the compression piston 2 and expansion piston 25, but in a regenerative heat exchanger. Due to the restriction 19, the pressure in the space 15b changes very little as shown at P2 .

この様にして1サイクルを形成する。この冷凍
サイクルを何回も繰り返すと、第1膨張空間8、
第2膨張空間10、第3膨張空間17の各々の作
動ガスの温度は除々に下り、第1膨張空間8は約
100K、第2膨張空間は約30K、第3膨張空間は
約15K、蓄熱型熱交換器15も約15Kとなる。
In this way, one cycle is formed. When this refrigeration cycle is repeated many times, the first expansion space 8,
The temperature of the working gas in each of the second expansion space 10 and the third expansion space 17 gradually decreases, and the temperature of the working gas in each of the second expansion space 10 and the third expansion space 17 gradually decreases.
100K, the second expansion space is approximately 30K, the third expansion space is approximately 15K, and the regenerative heat exchanger 15 is also approximately 15K.

ところで蓄熱型熱交換器15の温度が約15Kに
なると第2蓄冷器9、連通管12を通つて第3蓄
冷器13に流入した作動ガスはさらに冷却され連
通管14を通り蓄熱型熱交換器15の流路15a
に流入する。流路15aに流入した作動ガスは流
路15aを形成している壁を通して熱交換器15
の空間15bのヘリウムガスによつて、さらに冷
却され連通管16を通り第3膨張空間17に流入
する。第3膨張空間17に流入した作動ガスは膨
張ピストン25の膨張によつて、15Kよりさらに
温度の低い冷凍を発生する。第3膨張空間17で
膨張し終つた作動ガスは前記膨張ピストン25の
圧縮により連通管16を通つて蓄熱型熱交換器1
5の流路15aに流入する。流路15aに流入し
た作動ガスは流路15を形成する壁を介して蓄熱
型熱交換器15の空間15bのヘリウムガスによ
つて温められ、連通管14を通つて第3蓄冷器1
3へ流入する。第3蓄冷器13へ流入した作動ガ
スは、さらに温められて連通管12を通つて第2
蓄冷器9に流入する。第2膨張空間10と第1膨
張空間8で膨張し終つた作動ガスは、前述した同
様の作用によつて圧縮空間3にもどり1サイクル
を終える。この様に蓄熱型熱交換器15の温度が
約15Kに達した後、この冷凍サイクルを何回も繰
り返すと、第1膨張空間8は、約70Kの冷凍を発
生し、第2膨張空間10は約25Kの冷凍を発生す
る。そして連通管14の作動ガスは約15K、そし
て第3膨張空間17は約4Kの冷凍を発生する。
By the way, when the temperature of the regenerative heat exchanger 15 reaches about 15K, the working gas that flows into the third regenerator 13 through the second regenerator 9 and the communication pipe 12 is further cooled and passes through the communication pipe 14 to the regenerative heat exchanger. 15 channels 15a
flows into. The working gas flowing into the flow path 15a passes through the wall forming the flow path 15a and passes through the heat exchanger 15.
It is further cooled by the helium gas in the space 15b and flows into the third expansion space 17 through the communication pipe 16. The working gas flowing into the third expansion space 17 is frozen at a temperature lower than 15K by the expansion of the expansion piston 25. The working gas that has finished expanding in the third expansion space 17 is compressed by the expansion piston 25 and passes through the communication pipe 16 to the regenerative heat exchanger 1.
5 flows into the flow path 15a. The working gas that has flowed into the flow path 15a is heated by the helium gas in the space 15b of the regenerative heat exchanger 15 through the wall forming the flow path 15, and passes through the communication pipe 14 to the third regenerator 1.
Flows into 3. The working gas that has flowed into the third regenerator 13 is further warmed and passes through the communication pipe 12 to the second regenerator 13.
It flows into the regenerator 9. The working gas that has finished expanding in the second expansion space 10 and the first expansion space 8 returns to the compression space 3 by the same action as described above and completes one cycle. After the temperature of the regenerative heat exchanger 15 reaches approximately 15K in this manner, by repeating this refrigeration cycle many times, the first expansion space 8 generates refrigeration of approximately 70K, and the second expansion space 10 generates refrigeration of approximately 70K. Generates approximately 25K of refrigeration. The working gas in the communication pipe 14 is about 15K, and the third expansion space 17 generates refrigeration at about 4K.

次に、冷凍機の運転を止めると蓄熱型熱交換器
15の空間15bの温度が上昇し、空間15bの
圧力は冷凍サイクルを形成する空間である、圧縮
空間3、各蓄冷器5,9,13内の空間、蓄熱型
熱交換器15の流路15a、各膨張空間8,1
0,17の圧力より高くなる。その結果、空間1
5bのヘリウムガスは、連通管20、絞り19、
連通管18を通つて第3膨張空間17へ流入し、
空間15bの圧力は冷凍サイクルを形成する空間
の圧力にほぼ等しくなる。
Next, when the operation of the refrigerator is stopped, the temperature in the space 15b of the regenerative heat exchanger 15 rises, and the pressure in the space 15b increases. 13, the flow path 15a of the regenerative heat exchanger 15, each expansion space 8, 1
It becomes higher than the pressure of 0.17. As a result, space 1
The helium gas in 5b is supplied through the communication pipe 20, the aperture 19,
flows into the third expansion space 17 through the communication pipe 18,
The pressure in the space 15b becomes approximately equal to the pressure in the space forming the refrigeration cycle.

尚、第3図は10atのヘリウムガスと鉛球の単位
体積当りの熱容量を示したもので、明らかに15K
以下ではヘリウムガスの熱容量が大きく、15K以
上では鉛球の単位の体積当りの熱容量の方がヘリ
ウムガスの熱容量より大きいことを表わしてい
る。
In addition, Figure 3 shows the heat capacity per unit volume of 10at helium gas and a lead ball, which is clearly 15K.
The following shows that helium gas has a large heat capacity, and above 15K, the heat capacity per unit volume of a lead ball is larger than the heat capacity of helium gas.

以上より本発明によれば蓄熱型熱交換器15の
空間15bは絞りを介して冷凍サイクルを形成し
ている空間に接続されているので蓄熱型熱交換器
15の温度が下がつても蓄熱型熱交換器15の空
間15bの圧力は第3膨張空間3の圧力の中間圧
を保つ様に絞り19を通つてヘリウムガスが供給
される。
As described above, according to the present invention, the space 15b of the regenerative heat exchanger 15 is connected to the space forming the refrigeration cycle through the throttle, so even if the temperature of the regenerative heat exchanger 15 drops, Helium gas is supplied through the throttle 19 so that the pressure in the space 15b of the heat exchanger 15 is maintained at an intermediate pressure between the pressure in the third expansion space 3.

その結果、蓄熱型熱交換器15の空間15bの
ヘリウムガスと流路15aを形成する壁を介して
流路15aのヘリウムガスどうしが前述したヘリ
ウムガス(約15K以下)の熱容量の大きい性質を
利用して、熱交換しているので第3膨張空間17
において10K以下の冷凍を効率良く、簡単な機構
で発生する。
As a result, the helium gas in the space 15b of the regenerative heat exchanger 15 and the helium gas in the flow path 15a are connected to each other through the wall forming the flow path 15a, utilizing the above-mentioned property of high heat capacity of helium gas (approximately 15 K or less). Since the heat is exchanged, the third expansion space 17
Freezing at temperatures below 10K is achieved efficiently and with a simple mechanism.

蓄熱型熱交換器15と第2蓄冷器の間に第3蓄
冷器を設けてあるので第3膨張空間17が常温よ
り約15Kまで温度が下がる過程においては、第3
蓄冷器13内にある鉛等の蓄冷材と第3蓄冷器1
3内を流れる作動ガス(ヘリウムガス)とが、第
3図に示すグラフの如く鉛の熱容量の大きい性質
(約15K以上)の熱交換を利用し、そして第3膨
張空間17において冷凍を発生した作動ガスで蓄
熱型熱交換器15を約15Kまで短かい時間で冷却
することが出来、その結果10K以下の冷凍を短時
間で得る事が出来る。
Since the third regenerator is provided between the regenerative heat exchanger 15 and the second regenerator, during the process in which the temperature of the third expansion space 17 decreases from room temperature to about 15K, the third regenerator
Cold storage material such as lead in the cold storage device 13 and the third cold storage device 1
As shown in the graph shown in Figure 3, the working gas (helium gas) flowing in the third expansion space 17 utilized heat exchange due to the large heat capacity of lead (approximately 15 K or more), and refrigeration occurred in the third expansion space 17. The regenerative heat exchanger 15 can be cooled down to about 15K in a short time using the working gas, and as a result, refrigeration of 10K or less can be achieved in a short time.

低温部に一方向弁、あるいは安全弁等の可動部
で有する弁類がないので、故障の恐れが少ない。
第3膨張空間17と蓄熱型熱交換器の空間15b
とは絞りだけを介して連通しているので空間15
bは冷凍サイクルを形成する空間の死体積にはな
らないのである。その結果、冷凍サイクルを形成
する空間の死体積を小さくする事が出来、冷凍機
の効率が良くなる。蓄熱型熱交換器15の空間1
5bは絞りを介して冷凍サイクルを形成している
ので、冷凍機の運転を止めた場合、蓄熱型熱交換
器15の空間のヘリウムガスは温度が上昇するに
つれ絞り19を通つて冷凍サイクルを形成する空
間に流れる。この結果蓄熱型熱交換器15の空間
15bの圧力は異常に上昇せず、蓄熱型熱交換器
に安全弁等を設ける必要がまつたく無い。
Since there are no moving parts such as one-way valves or safety valves in the low-temperature part, there is less risk of failure.
Third expansion space 17 and storage type heat exchanger space 15b
Since it communicates with only through the aperture, the space 15
b does not become the dead volume of the space forming the refrigeration cycle. As a result, the dead volume of the space forming the refrigeration cycle can be reduced, improving the efficiency of the refrigerator. Space 1 of regenerative heat exchanger 15
5b forms a refrigeration cycle through the throttle, so when the operation of the refrigerator is stopped, the helium gas in the space of the regenerative heat exchanger 15 passes through the throttle 19 as the temperature rises to form the refrigeration cycle. Flow into the space where you want to be. As a result, the pressure in the space 15b of the regenerative heat exchanger 15 does not rise abnormally, and there is no need to provide a safety valve or the like in the regenerative heat exchanger.

第4図は、本発明の他の実施例である。第3蓄
冷器13の蓄熱型熱交換器15の空間15bの間
を順次連通管46、絞り32、連通管33で連通
せしめ、他の構成は第1図と同様である。
FIG. 4 shows another embodiment of the invention. The spaces 15b of the regenerative heat exchanger 15 of the third regenerator 13 are communicated with each other through a communication pipe 46, an aperture 32, and a communication pipe 33, and the other configurations are the same as in FIG. 1.

第5図は、本発明の他の実施例である。蓄熱型
熱交換器15の流路15aの途中と、空間15b
を順次連通管34、絞り35、連通管36で連通
せしめ、他の構成は、第1図と同様である。
FIG. 5 shows another embodiment of the invention. In the middle of the flow path 15a of the regenerative heat exchanger 15 and the space 15b
are communicated sequentially through a communication pipe 34, an aperture 35, and a communication pipe 36, and the other configurations are the same as those shown in FIG.

第4図、第5図の作用は第1図の作用と同様で
ある。
The operations in FIGS. 4 and 5 are similar to those in FIG. 1.

第6図は、本発明の他の実施例である。バフア
空間47と蓄熱型熱交換器15の空間15bの間
を順次連通管37、第1蓄冷器5の外壁に巻き付
けた連通管38、連通管39、第2蓄冷器9の外
壁に巻き付けた連通管40、連通管41、第3蓄
冷器13の外壁に巻き付けた連通管42、連通管
43、絞り44、そして連通管45を連通せし
め、他の構成は、第1図と同様である。
FIG. 6 shows another embodiment of the invention. Between the buffer space 47 and the space 15b of the regenerative heat exchanger 15, there is a communication pipe 37, a communication pipe 38 wrapped around the outer wall of the first regenerator 5, a communication pipe 39, and a communication wrapped around the outer wall of the second regenerator 9. The pipe 40, the communication pipe 41, the communication pipe 42 wrapped around the outer wall of the third regenerator 13, the communication pipe 43, the throttle 44, and the communication pipe 45 are made to communicate with each other, and the other configurations are the same as those in FIG.

第6図の作用について説明すれば、バツフア空
間47の圧力より蓄熱型熱交換器15の空間15
bの圧力が低いと、バツフア空間47の作動ガス
は連通管37を通り、連通管38に流入する。連
通管38に流入し作動ガスは、第1蓄冷器5によ
つて冷却され、連通管39を通り、連通管40へ
流入する。連通管40へ流入した作動ガスは第2
蓄冷器9によつて冷却され、連通管41を通つて
連通管42に流入する。連通管42に流入した作
動ガスは第3蓄冷器42によつて冷却され、順次
連通管43、絞り44、連通管45を通つて蓄熱
型熱交換器15の空間15bに流入する。
To explain the operation shown in FIG. 6, the pressure in the buffer space 47 causes the space 15 of the regenerative heat exchanger 15 to
When the pressure b is low, the working gas in the buffer space 47 passes through the communication pipe 37 and flows into the communication pipe 38. The working gas flowing into the communication pipe 38 is cooled by the first regenerator 5, passes through the communication pipe 39, and flows into the communication pipe 40. The working gas that has flowed into the communication pipe 40 is
It is cooled by the regenerator 9 and flows into the communication pipe 42 through the communication pipe 41 . The working gas flowing into the communication pipe 42 is cooled by the third regenerator 42, and sequentially flows into the space 15b of the regenerative heat exchanger 15 through the communication pipe 43, the throttle 44, and the communication pipe 45.

蓄熱型熱交換器15の空間15bの圧力よりバ
ツフア空間47の圧力の方が低い場合、蓄熱型熱
交換器15の空間15bのヘリウムガスは、順次
連通管45、絞り44、連通管43を通つて連通
管42に流入する。連通管42に流入した作動ガ
スは、第3蓄冷器13によつて温められ、連通管
41を通つて連通管40へ流入する。連通管40
へ流入した作動ガスは第2蓄冷器によつてさらに
温められ連通管39を通り連通管38へと流入す
る。連通管38へ流入した作動ガスは第1蓄冷器
によつて、さらに温められ連通管37を通りバツ
フア空間47へ流入する。他の作用は第1図に示
す実施とまつたく同様である。
When the pressure in the buffer space 47 is lower than the pressure in the space 15b of the regenerative heat exchanger 15, the helium gas in the space 15b of the regenerative heat exchanger 15 passes through the communication pipe 45, the throttle 44, and the communication pipe 43 in sequence. Then, it flows into the communication pipe 42. The working gas that has flowed into the communication pipe 42 is heated by the third regenerator 13 and flows into the communication pipe 40 through the communication pipe 41 . Communication pipe 40
The working gas that has flowed into the second regenerator is further warmed by the second regenerator and flows into the communication pipe 38 through the communication pipe 39 . The working gas flowing into the communication pipe 38 is further warmed by the first regenerator and flows into the buffer space 47 through the communication pipe 37 . Other operations are exactly similar to the implementation shown in FIG.

第4図〜第6図に示す実施例についても第1図
に示す実施例と同様その効果として第3膨張空間
には10K以下の冷凍が極めて短時間に発生すると
共に、蓄熱型熱交換器においても安全弁等の設置
が不必要となり極めて効率的な超低温冷凍機を提
供することが出来る。
Similar to the embodiment shown in Fig. 1, the embodiment shown in Figs. 4 to 6 also has the effect that refrigeration of 10K or less occurs in the third expansion space in an extremely short time, and in the regenerative heat exchanger. Also, it is not necessary to install a safety valve, etc., and it is possible to provide an extremely efficient ultra-low temperature refrigerator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る超低温冷凍機
の概略断面図、第2図aは絞り部の拡大断面図、
第2図bは第3膨張空間16に於ける作動ガスの
圧力(P1)と蓄熱型熱交換器内の空間15bに
於ける作動ガスの圧力(P2)の変化の状況を示
すグラフ、第3図はヘリウムガス(作動ガス)と
鉛の熱容量の比較を示すグラフ、そして第4図〜
第6図は本発明の他の変形実施例を示す概略断面
図である。 15:蓄熱型熱交換器、15a:流路、15
b:熱交換器内の空間、19:絞り。
FIG. 1 is a schematic sectional view of an ultra-low temperature refrigerator according to an embodiment of the present invention, FIG. 2a is an enlarged sectional view of a constriction part,
FIG. 2b is a graph showing changes in the working gas pressure (P 1 ) in the third expansion space 16 and the working gas pressure (P 2 ) in the space 15b in the regenerative heat exchanger, Figure 3 is a graph showing a comparison of the heat capacities of helium gas (working gas) and lead, and Figures 4~
FIG. 6 is a schematic sectional view showing another modified embodiment of the present invention. 15: Regenerative heat exchanger, 15a: Flow path, 15
b: Space inside the heat exchanger, 19: Aperture.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮空間、冷却器、蓄冷器、蓄熱型熱交換器
および膨張空間を順次連通せしめた冷凍機におい
て、前記蓄熱型熱交換器の流路の外壁側をとり囲
んでいる空間と、前記圧縮空間、前記蓄冷器内の
空間、前記蓄熱型熱交換器の流路、前記膨張空間
及びバツフア空間のいずれかとを絞りを介して連
通し、前記蓄熱型熱交換器の前記流路の内壁側を
流れる作動ガス(ヘリウムガス)と前記蓄熱型熱
交換器の前記流路の外壁側の作動ガス(ヘリウム
ガス)との間で、前記流路を形成する壁を介して
熱交換することを特長とする超低温冷凍機。
1. In a refrigerator in which a compression space, a cooler, a regenerator, a regenerative heat exchanger, and an expansion space are connected in sequence, the space surrounding the outer wall side of the flow path of the regenerative heat exchanger and the compression space , which communicates with any one of the space in the regenerator, the flow path of the regenerative heat exchanger, the expansion space, and the buffer space through a restriction, and flows on the inner wall side of the flow path of the regenerative heat exchanger. The heat exchanger is characterized in that heat is exchanged between the working gas (helium gas) and the working gas (helium gas) on the outer wall side of the flow path of the regenerative heat exchanger through the wall forming the flow path. Ultra-low temperature refrigerator.
JP13737681A 1981-09-01 1981-09-01 Cryogenic refrigerator Granted JPS5840454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13737681A JPS5840454A (en) 1981-09-01 1981-09-01 Cryogenic refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13737681A JPS5840454A (en) 1981-09-01 1981-09-01 Cryogenic refrigerator

Publications (2)

Publication Number Publication Date
JPS5840454A JPS5840454A (en) 1983-03-09
JPH0147713B2 true JPH0147713B2 (en) 1989-10-16

Family

ID=15197233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13737681A Granted JPS5840454A (en) 1981-09-01 1981-09-01 Cryogenic refrigerator

Country Status (1)

Country Link
JP (1) JPS5840454A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60102125A (en) * 1983-11-08 1985-06-06 セイレイ工業株式会社 Chainsaw posture altering apparatus of pruning machine
JPS60102126A (en) * 1983-11-08 1985-06-06 セイレイ工業株式会社 Chainsaw posture altering apparatus of pruning machine
JPS60153726A (en) * 1984-01-18 1985-08-13 岡田 成人 Pruning machine

Also Published As

Publication number Publication date
JPS5840454A (en) 1983-03-09

Similar Documents

Publication Publication Date Title
US3218815A (en) Cryogenic refrigeration apparatus operating on an expansible fluid and embodying a regenerator
US3148512A (en) Refrigeration apparatus
JPH10132404A (en) Pulse pipe freezer
US5181383A (en) Refrigerator
JP2511604B2 (en) Cryogen freezer
JP2783112B2 (en) Cryogenic refrigerator
JP2551000B2 (en) Cryogenic generator
JPH0350957B2 (en)
JP2650437B2 (en) Cold storage cryogenic refrigerator
US3310954A (en) Arrangement for converting mechanical energy into caloric energy or conversely
JP2609327B2 (en) refrigerator
CN106091463A (en) 4K thermal coupling regenerating type low-temperature refrigerator based on controlled heat pipe and refrigerating method thereof
JPH0147713B2 (en)
US4281517A (en) Single stage twin piston cryogenic refrigerator
JPS6256420B2 (en)
JPH0452468A (en) Cryogenic refrigerator
JPH0215787B2 (en)
JP2698477B2 (en) Cryogenic refrigerator
JPS6353465B2 (en)
JPH0399162A (en) Cryogenic refrigerator
JP2000146332A (en) Cold storage type refrigerating machine
JPH0120699B2 (en)
JPS5816159A (en) Cryogenic refrigerator with heat accumulation type heat exchanger
JP2771721B2 (en) Cryogenic refrigerator
JP2000018742A (en) Cooling device