JPH02224283A - Laminated electrostrictive element - Google Patents

Laminated electrostrictive element

Info

Publication number
JPH02224283A
JPH02224283A JP1042929A JP4292989A JPH02224283A JP H02224283 A JPH02224283 A JP H02224283A JP 1042929 A JP1042929 A JP 1042929A JP 4292989 A JP4292989 A JP 4292989A JP H02224283 A JPH02224283 A JP H02224283A
Authority
JP
Japan
Prior art keywords
sintering
metal
internal electrode
title element
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1042929A
Other languages
Japanese (ja)
Inventor
Atsushi Hagimura
厚 萩村
Mutsuo Nakajima
睦男 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP1042929A priority Critical patent/JPH02224283A/en
Publication of JPH02224283A publication Critical patent/JPH02224283A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To sinter a title element using a base metal electrode without controlling oxygen concentration by employing as the title element for a ceramics actuator, which mainly includes Ni-containing metal as an internal electrode. CONSTITUTION:There is employed as a title element one that is a laminated electrostriction element for a ceramics actuator and mainly employs Ni- containing metal as an internal electrode. Ni metal has its melting point higher than a sintering temperature of a porcelain without being melted and volatiled during sintering. Additionally, the electrostriction element is preferably a PbTiO3-PbZrO3 piezoelectric porcelain (but, part of Pb is replaced by one or more of Sr, Ba, and Ca, and the amount of the substitution is 20atomic% or above). Hereby, the title element can be sintered in nitrogen using a base metal electrode material as an internal electrode without the need of controlling oxygen concentration in the sintering atmosphere.

Description

【発明の詳細な説明】 産業上の利用分野 近年、半導体素子などの集積化が進む中で、その製造工
程においてミクロンオーダーの変位量を制御する技術が
切望されるようになってきた。圧電/電歪効果を利用す
るアクチュエータは、こうした次世代のマイクロメカト
ロニクスの中心を担う機械要素になると期待されている
0例えば光学、天文学又は精密加工などの分野において
、サブミクロンのオーダーで光路長や位置を調整する変
位素子が所望されるようになってきた。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application In recent years, as semiconductor devices and the like have become increasingly integrated, there has been a strong desire for technology to control displacement on the order of microns in the manufacturing process. Actuators that utilize piezoelectric/electrostrictive effects are expected to become central mechanical elements in next-generation micromechatronics. Displacement elements that adjust position have become desirable.

従来の技術 積層圧電素子の製造工程の一つに内部電極形成工程があ
る。この内部電極を形成する方法としては、ペーストを
用いたスクリーン印刷法が一般的である。ペーストは金
属微粉末を有機バインダーに分散させスラリー状にした
ものであり、金属微粉末の種類により貴金属ペーストと
卑金属ペーストに大別される。前者は大気中での焼成が
可能であり、後者は窒素雰囲気焼成を行う必要がある。
BACKGROUND OF THE INVENTION One of the manufacturing processes of a conventional multilayer piezoelectric element is a process of forming internal electrodes. A screen printing method using paste is generally used as a method for forming the internal electrodes. Paste is a slurry made by dispersing fine metal powder in an organic binder, and is roughly divided into noble metal paste and base metal paste depending on the type of fine metal powder. The former can be fired in the atmosphere, while the latter requires firing in a nitrogen atmosphere.

積層圧電素子はセラミック(酸化物)と内部電極(金W
A)をセラミクスの焼結温度で同時に焼結して製造する
ため、以下の問題が発生する。セラミックスは、窒素中
で焼結を行うと半導体化してしまうために酸素雰囲気で
の焼結が不可欠であ名。
The laminated piezoelectric element consists of ceramic (oxide) and internal electrode (gold W).
Since A) is manufactured by simultaneously sintering at the sintering temperature of ceramics, the following problems occur. Sintering ceramics in an oxygen atmosphere is essential because sintering them in nitrogen turns them into semiconductors.

また卑金属電極を用いると酸素中での焼結により酸化さ
れてしまい、電極として必要であるところの導電性が失
われてしまう、そこで近年卑金属電極材料を内部電極と
して用いるために種々の検討がなされている0例えば焼
結雰囲気の酸素濃度を厳密に制御することによりこれを
可能としている。
Furthermore, when base metal electrodes are used, they are oxidized by sintering in oxygen and lose their electrical conductivity, which is necessary for an electrode.Therefore, various studies have been conducted in recent years to use base metal electrode materials as internal electrodes. For example, this is made possible by strictly controlling the oxygen concentration in the sintering atmosphere.

但しこの方法で実際に実用化した場合、酸素濃度の制御
が非常に困難であり、生産コストの上昇につながる。ま
た貴金属を用いる方法は以前から広く利用されている。
However, if this method were to be put into practical use, it would be extremely difficult to control the oxygen concentration, leading to an increase in production costs. Furthermore, methods using precious metals have been widely used for some time.

卑金属に比べ焼結雰囲気の制御の必要はないが、金属価
格が卑金属とくらべて格段に高く、積層体素子の価格の
大半がこれらの内部電極の価格で占められているのが現
状である。
Although it is not necessary to control the sintering atmosphere as compared to base metals, the price of metals is much higher than that of base metals, and the cost of these internal electrodes currently accounts for most of the price of a laminate element.

このように従来の技術で安価でかつ簡単に積層体を製造
できる技術はなかった。
As described above, there is no conventional technology that can easily produce a laminate at low cost.

発明が解決しようとする課題 本発明の課題は、卑金属電極を用いて酸素濃度の制御を
行わずに焼結が可能なセラミックスmRW組成物を見い
だすことである。
Problems to be Solved by the Invention An object of the present invention is to find a ceramic mRW composition that can be sintered using a base metal electrode without controlling the oxygen concentration.

課題を解決するための手段 従来圧電素子としてジルコン酸チタン酸鉛等が利用され
ていたが、この圧電材料の積層体の内部電極にはPL、
Pd、Ag等の貴金属が利用されていた。卑金属電極材
料を用いない理由は、窒素中での焼結により磁器自体が
半導体化してしまうためである0本発明者らは上述の欠
点を鋭意検討した結果、セラミックスアクチュエータ用
積層電歪素子であって内部電極として主にNi含有金属
を用いることを特徴とし、また、 PbTi0s−PbZrOs系の圧電磁器(ただしPb
の一部がSr、Ba、Caのうち一種以上により置換さ
れ、そのWtA量が20a t%以上である。)である
ことを特徴とする電歪素子を見いだし発明を完成させる
に至った。
Means to Solve the Problem Conventionally, lead zirconate titanate, etc., have been used as piezoelectric elements, but the internal electrodes of this piezoelectric material laminate include PL,
Precious metals such as Pd and Ag were used. The reason why base metal electrode materials are not used is that porcelain itself becomes a semiconductor when sintered in nitrogen. As a result of intensive study of the above-mentioned drawbacks, the present inventors have developed a multilayer electrostrictive element for ceramic actuators. It is characterized by mainly using Ni-containing metal as the internal electrode, and is also characterized by using a PbTi0s-PbZrOs-based piezoelectric ceramic (however, Pb
is partially substituted with one or more of Sr, Ba, and Ca, and the amount of WtA is 20 at% or more. ) and completed the invention.

本発明でNi金属を主成分と限定した理由は、上記の磁
器の焼結温度は1200−1350°Cであり、Ni以
外の卑金属においては金属の融点が焼結温度よりも低い
ために、焼結中に溶解、揮散してしまう恐れがあるため
である。Ni金属は融点が1450°C程度で本発明で
示す磁器の焼結温度よりも高い、また融点が高い金属と
して貴金属があるが、この場合価格が非常に高いために
コストの上昇につながる。ただし本発明で言うNi含有
金属とはNiと固溶体を作るものでかつ融点が焼結温度
よりも高いものであれば使用できる。またNiを主成分
とする限りにおいては、貴金属を含んでいてもコストダ
ウンになるために本発明の一部となりうる0本発明で言
う電歪素子の組成は基本的にはジルコン酸チタン酸鉛で
あるが、pbの一部にアルカリ土類金属を少なくとも2
0at%置換することにより窒素雰囲気においても半導
体化しない磁器が発見された。
The reason why Ni metal is limited to the main component in the present invention is that the sintering temperature of the above-mentioned porcelain is 1200-1350°C, and the melting point of base metals other than Ni is lower than the sintering temperature. This is because there is a risk that it will dissolve or volatilize during freezing. Ni metal has a melting point of about 1450° C., which is higher than the sintering temperature of the porcelain shown in the present invention.Also, metals with high melting points include noble metals, but in this case, the price is very high, leading to an increase in costs. However, the Ni-containing metal referred to in the present invention can be used as long as it forms a solid solution with Ni and has a melting point higher than the sintering temperature. In addition, as long as Ni is the main component, even if it contains noble metals, it can be a part of the present invention because it reduces costs.The composition of the electrostrictive element according to the present invention is basically lead zirconate titanate. However, a portion of the pb contains at least 2 alkaline earth metals.
A ceramic that does not become a semiconductor even in a nitrogen atmosphere was discovered by substituting 0 at%.

実施例 実施例I P b O、B a COz、ZrO,、T i Oz
の各原料を(P bl−xB aa+)  (Z r*
、ssT ie、*s) Osとなるように秤量配合し
、ボールミルで10時間混合した。得られた混合物を8
00〜900°Cで2時間仮焼した。その後、再度ボー
ルミルで微粉砕した。乾燥後、溶媒、バインダーを添加
し、ドクタープレイドにより薄膜を作成した。このTi
1eにNiペーストを印刷塗布し、各薄膜を積み重ね熱
圧着を行い積層化した。これを1200〜1350°C
で3時間窒素中で焼結した。焼結した磁器の形状は電極
間距離が100ミクロンでl100rとした。焼結した
iff器の両端から一層おきに電極を取り出し、これを
外部電極とした。外部電極に電圧を印加し、10kV/
cmでの変位量、絶縁抵抗(DC20V)を測定した。
Examples Example I P b O, B a COz, ZrO,, T i Oz
Each raw material of (P bl-xB aa+) (Z r*
, ssT ie, *s) Os, and mixed in a ball mill for 10 hours. The resulting mixture
Calcining was performed at 00 to 900°C for 2 hours. Thereafter, it was finely ground again using a ball mill. After drying, a solvent and a binder were added, and a thin film was prepared using doctor play. This Ti
Ni paste was printed and coated on 1e, and each thin film was stacked and thermocompression bonded to form a laminate. Heat this to 1200-1350°C
The sample was sintered in nitrogen for 3 hours. The shape of the sintered porcelain was 1100r with an inter-electrode distance of 100 microns. Electrodes were taken out every other layer from both ends of the sintered IF device and used as external electrodes. Apply voltage to the external electrode, 10kV/
The amount of displacement in cm and the insulation resistance (DC20V) were measured.

変位量の測定はポテンシヨメータにより行った。測定結
果の一例を第1表に示す。
The amount of displacement was measured using a potentiometer. An example of the measurement results is shown in Table 1.

第1表 No、   x    変位量   絶縁抵抗(ミクロ
ン)  (オームセンチ) 本2     0 率比較例 5.3 6xlO” 3xlO’ 6xlO” 発明の効果 上述したように、本発明のPZT系にアルカリ土類金属
を添加することにより、窒素中で焼結しても半導体化せ
ず、絶縁抵抗が1013オームセンチ以上もある磁器組
成物を見いだした。これはこれまで−船釣に用いられて
いたジルコン酸チタン酸鉛にアルカリ土類金属を添加す
ることにより達成されるものである。窒素中で焼結が可
能になったことにより、内部電極として雰囲気制御を必
要としないでNi金属を用いるこ、とが可能となった。
Table I By adding , a ceramic composition which does not become a semiconductor even when sintered in nitrogen and has an insulation resistance of 1013 ohm-cm or more has been discovered. This is achieved by adding an alkaline earth metal to lead zirconate titanate, which has been used hitherto for boat fishing. Since sintering in nitrogen has become possible, it has become possible to use Ni metal as the internal electrode without requiring atmosphere control.

また貴金属を用いないために大幅なコストダウンにつな
がる。
Additionally, since no precious metals are used, costs can be significantly reduced.

特許出願人  三井東圧化学株式会社Patent applicant: Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】 1)セラミクスアクチュエータ用積層電歪素子であって
内部電極として主にNi含有金属を用いることを特徴と
する積層電歪素子。 2)電歪素子がPbTiO_3−PbZrO_3系の圧
電磁器(ただしPbの一部がSr、Ba、Caのうち一
種以上によって置換され、その置換量が20at%以上
である。)である請求項1記載の積層電歪素子
[Scope of Claims] 1) A laminated electrostrictive element for a ceramic actuator, characterized in that a Ni-containing metal is mainly used as an internal electrode. 2) Claim 1, wherein the electrostrictive element is a piezoelectric ceramic based on PbTiO_3-PbZrO_3 (however, a portion of Pb is replaced with one or more of Sr, Ba, and Ca, and the amount of the replacement is 20 at% or more). laminated electrostrictive element
JP1042929A 1989-02-27 1989-02-27 Laminated electrostrictive element Pending JPH02224283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1042929A JPH02224283A (en) 1989-02-27 1989-02-27 Laminated electrostrictive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1042929A JPH02224283A (en) 1989-02-27 1989-02-27 Laminated electrostrictive element

Publications (1)

Publication Number Publication Date
JPH02224283A true JPH02224283A (en) 1990-09-06

Family

ID=12649709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1042929A Pending JPH02224283A (en) 1989-02-27 1989-02-27 Laminated electrostrictive element

Country Status (1)

Country Link
JP (1) JPH02224283A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001024287A2 (en) * 1999-09-30 2001-04-05 Robert Bosch Gmbh Internal electrodes for a stacked piezoactuator and method for producing the same
WO2002004379A3 (en) * 2000-07-11 2002-06-27 Bosch Gmbh Robert Sintered, electrically conductive material, ceramic multilayer component comprising this material, and method for the production thereof
JP2004349688A (en) * 2003-04-28 2004-12-09 Kyocera Corp Ceramic substrate, piezo-electric actuator substrate, piezo-electric actuator, and manufacturing method for them

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001024287A2 (en) * 1999-09-30 2001-04-05 Robert Bosch Gmbh Internal electrodes for a stacked piezoactuator and method for producing the same
WO2001024287A3 (en) * 1999-09-30 2002-04-04 Bosch Gmbh Robert Internal electrodes for a stacked piezoactuator and method for producing the same
WO2002004379A3 (en) * 2000-07-11 2002-06-27 Bosch Gmbh Robert Sintered, electrically conductive material, ceramic multilayer component comprising this material, and method for the production thereof
JP2004349688A (en) * 2003-04-28 2004-12-09 Kyocera Corp Ceramic substrate, piezo-electric actuator substrate, piezo-electric actuator, and manufacturing method for them

Similar Documents

Publication Publication Date Title
US20090243439A1 (en) Piezoelectric ceramic and piezoelectric element employing it
US20050006618A1 (en) Piezoelectric porcelain and method for preparation thereof
US20070216264A1 (en) Multilayer piezoelectric element
JP4988451B2 (en) Sintering aid for lead-free piezoelectric ceramics, lead-free piezoelectric ceramics, and method for producing lead-free piezoelectric ceramics
JP4727458B2 (en) Sintering aid for piezoelectric ceramics, BNT-BT piezoelectric ceramics, multilayer piezoelectric device, and method for producing BNT-BT piezoelectric ceramics
US7507347B2 (en) Piezoelectric ceramic composition and laminated piezoelectric element
JP2008156220A (en) Piezoelectric ceramic composition and laminated piezoelectric element
JP2004517024A (en) Piezoelectric ceramic material, method for producing the same, and electric ceramic multilayer structural member
JPWO2002081404A1 (en) Piezoelectric ceramic, method of manufacturing the same, and piezoelectric element
JP4001362B2 (en) Piezoelectric ceramic and manufacturing method thereof
JP3970588B2 (en) Low-temperature fired dielectric ceramic, multilayer dielectric element, dielectric ceramic manufacturing method and auxiliary oxide
US20120112607A1 (en) Ceramic composition for piezoelectric actuator and piezoelectric actuator including the same
JPH02224283A (en) Laminated electrostrictive element
JP2006265059A (en) Manufacturing method of piezoelectric material and laminated piezoelectric element
JP2007258301A (en) Laminated piezoelectric element, and its manufacturing method
JP2001250994A (en) Laminated piezoelectric element
JP2007230839A (en) Piezoelectric ceramic composition, multilayer piezoelectric element and method of manufacturing the same
JP4355665B2 (en) Piezoelectric ceramic and piezoelectric element
JP4462438B2 (en) Piezoelectric ceramic composition, multilayer piezoelectric element, and method for producing multilayer piezoelectric element
JP2003238248A (en) Piezoelectric porcelain composition and piezoelectric device
JP2006193414A (en) Method for producing piezoelectric ceramic and method for producing piezoelectric element
JP2001253772A (en) Piezoelectric porcelain composition and method for manufacture the same
JP4998668B2 (en) Piezoelectric ceramic manufacturing method and piezoelectric element manufacturing method
JP4231653B2 (en) Manufacturing method of laminated piezoelectric actuator
JP2004241590A (en) Laminated piezoelectric element