JP2004241590A - Laminated piezoelectric element - Google Patents

Laminated piezoelectric element Download PDF

Info

Publication number
JP2004241590A
JP2004241590A JP2003028842A JP2003028842A JP2004241590A JP 2004241590 A JP2004241590 A JP 2004241590A JP 2003028842 A JP2003028842 A JP 2003028842A JP 2003028842 A JP2003028842 A JP 2003028842A JP 2004241590 A JP2004241590 A JP 2004241590A
Authority
JP
Japan
Prior art keywords
electrode layer
side electrode
piezoelectric element
pores
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003028842A
Other languages
Japanese (ja)
Other versions
JP4211419B2 (en
Inventor
Rikiya Kamimura
力也 上村
Toshiatsu Nagaya
年厚 長屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003028842A priority Critical patent/JP4211419B2/en
Priority to DE200410005528 priority patent/DE102004005528A1/en
Publication of JP2004241590A publication Critical patent/JP2004241590A/en
Application granted granted Critical
Publication of JP4211419B2 publication Critical patent/JP4211419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/872Connection electrodes of multilayer piezoelectric or electrostrictive devices, e.g. external electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated piezoelectric element excellent in long-term durability. <P>SOLUTION: The laminated piezoelectric element is provided with a laminated body 10 and a pair of side electrode layers 31, 32. The laminated body 10 comprises a plurality of piezoelectric layers 11 that are extensible in response to an applied voltage, and internal electrode layers 21, 22 for the supply of the applied voltage which are alternately stacked, while the pair of the side electrode layers 31, 32 comprises the internal electrodes 21, 22 positioned adjacently via the piezoelectric layer 11 and conducted alternately electrically to the peripheral side 101, 102 of the laminated body so as to form different electrodes from each other. In an arbitrary region of 10,000μm<SP>2</SP>of the side electrode layers 31, 32, porosities of pores each major axis of which is 1 μm to 50 μm in length is 15 to 50%, while in the same region, the number of pores each major axis of which is 1 μm to 50 μm in length is 100 to 6,000. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【技術分野】
本発明は,主として自動車用インジェクタ等の駆動源として使用できると共に一般的な圧電アクチュエータに使用できる積層型圧電体素子に関する。
【0002】
【従来技術】
自動車用インジェクタの駆動源として圧電アクチュエータを用いることがある。
圧電アクチュエータを構成する積層型圧電体素子は,印加電圧に応じて伸張する複数の圧電層と印加電圧供給用の内部電極層とを交互に積層してなる積層体と,該積層体の外周側面に設けた,圧電層を介して隣接する内部電極層が異なる極となるように交互に電気的に導通した一対の側面電極層とからなる。
近年,低電圧で大きな変位を得るために,圧電層の厚みを20〜200μm,内部電極層を1〜3μmとして,これらを交互に500〜700枚積層した積層型圧電体素子がよく利用されている。
【0003】
上記側面電極層は,積層体にめっきをする,蒸着による薄膜形成の方法などから形成することができるが,製造コストと製造工程の簡便性の観点から,電極材料を含むペースト材料を積層体にスクリーン印刷などによってパターニング形成し,その後積層体ごと焼成する方法が普及している。
【0004】
上記ペースト材料における電極材料は,多くの内部電極層が銀パラジウムからなる現状を踏まえて,内部電極層との接合性向上を狙って銀を主体とする材料が広く利用されている。
銀主体の材料以外を用いた場合は,側面電極層と内部電極層の銀パラジウムとの間に銀の拡散による高抵抗層が形成され,側面電極層と内部電極層との間の絶縁抵抗が高くなり,両者間の電気的導通が悪化するおそれがある。
【0005】
【特許文献1】
特開2000−331866号公報
【0006】
【解決しようとする課題】
ところで,積層型圧電体素子を自動車インジェクタの駆動源として利用する場合,高温高印加電圧という厳しい環境下における長期の信頼性を上記積層型圧電体素子に対して保証する必要がある。
しかしながら,積層型圧電体素子作動時の変位から生じる応力により,長期にわたって積層型圧電体素子の作動を繰り返した場合,側面電極層に亀裂や剥離が発生して断線し,積層型圧電体素子が動作不能となることがあった。
特に銀を主体とした材料により形成した側面電極層は高硬度であるため,非銀主体材料よりも亀裂や剥離が生じやすかった。
【0007】
本発明は,かかる従来の問題点に鑑みてなされたもので,長期耐久性に優れた積層型圧電体素子を提供しようとするものである。
【0008】
【課題の解決手段】
第1の発明は,印加電圧に応じて伸張する複数の圧電層と印加電圧供給用の内部電極層とを交互に積層してなる積層体と,該積層体の外周側面に,圧電層を介して隣接する内部電極層が異なる極となるように交互に電気的に導通した一対の側面電極層を設けてなる積層型圧電体素子において,
上記側面電極層の面積10000平方μmの任意の領域において,長径が1μm〜50μmである気孔による気孔率が15〜50%であり,
かつ上記側面電極層の10000平方μmの任意の領域において,長径が1μm〜50μmである気孔の数は100〜6000個であることを特徴とする積層型圧電体素子にある(請求項1)。
【0009】
本発明の作用効果につき説明する。
本発明にかかる側面電極層は気孔率や気孔の数が上述した範囲内にある。
このような側面電極層は,硬度が小さく,柔らかい。そのため,積層型圧電体素子作動時の圧電層の伸張に側面電極層が追随できるため,側面電極層に無理な力が加わり難くなる。すなわち,圧電層の伸張に伴う側面電極層に生じる応力が小さくなる。従って,長期使用時に側面電極層に剥離,割れ,ひび,クラックなどが生じ難い。
【0010】
以上,本発明によれば,長期耐久性に優れた積層型圧電体素子を提供することができる。
【0011】
【発明の実施の形態】
本発明にかかる側面電極層の10000平方μmの任意の領域とは,側面電極層の表面や任意の角度において切断して得た断面上で確保できる領域である。
たとえば走査型電子顕微鏡による撮影画像において,気孔の部分は黒く,側面電極層を構成する銀やパラジウム粒子などの電極材料の部分は白粒が観察できる。コンピューターによる画像処理などを利用すれば,上記黒い領域を測定し,気孔率や所定の長径を有する気孔を数えることができる。
【0012】
また,本発明にかかる気孔は長径1〜50μmを有する。
この長径は,『上記領域に露出する気孔の輪郭線で囲まれた図形における長径』である。後述する図6に記載した気孔314の輪郭線3140によって囲まれた図形においてもっとも径の長い部分を気孔の長径とする。
仮にこの長径が1μm未満である気孔は微小すぎて側面電極層の強度に影響を与え難く,50μmより大きな気孔が存在すると10000平方μmの領域で気孔率が50%越えてしまい,局所的に側面電極層の強度が大幅に低下するおそれがあり,そこを起点にクラックなどが発生するそれがある。
【0013】
また,気孔率が10%未満である場合,気孔の数が100個未満である場合は側面電極層の硬度が高すぎて,圧電層の伸張に側面電極層が追随し難く,長期使用時の耐久性が低下するおそれがある。気孔率が50%が越えた場合,気孔の数が6000個を越えた場合は,局所的に側面電極層の強度が大幅に低下するおそれがあり,そこを起点にクラックなどが発生するそれがある。
【0014】
また,本発明にかかる積層型圧電体素子における圧電層はPZT(ジルコン酸チタン酸鉛)などからなる誘電体,内部電極層は銀パラジウムを含む電極より構成することが好ましい。
また,内部電極層は,圧電層に対し全面に設けることができる他,部分電極構成を採ることもできる(実施例1,図3,図4)。
【0015】
また,上記側面電極層は,電極材料,バインダー,結晶化ガラスを含有するペースト材料を焼結して形成してなり,
かつ上記ペースト材料において,上記電極材料100重量部に対し上記結晶化ガラスは2〜20重量部添加することが好ましい(請求項2)。
非晶質ガラスは軟化点以上の温度において粘度が著しく低下し,軟化してしまうが,結晶化ガラスの粘度低下はそれほど大きくない。そのため,分散した金属粒子の焼結緻密化を阻害して,気孔の多いポーラスな側面電極層を得ることができる。従って,上述した範囲で結晶化ガラスを含んだペースト材料を用いることで,本発明にかかる大きさの気孔や気孔率,個数を備えた側面電極層を得ることができる。
【0016】
上記結晶化ガラスについて説明する。
結晶化ガラスとは,ガラスに含まれる成分のうち一部が結晶として析出した状態にあるガラス材料である。結晶化した割合を結晶率という。
本発明では結晶化率が10〜60%の結晶化ガラスを使用することが好ましい。
結晶化率が10%未満である結晶化ガラスは軟化点以上での粘度の低下があまり大きくなくて本発明にかかる効果を得られないおそれがある。結晶化率が60%を越えた場合は,焼結が阻害されすぎて,側面電極層の強度低下が大きくなるおそれがある。また,側面電極層全体に気孔が増えすぎた結果,導電性が低下して,内部電極層への電気的導通に支障をきたすおそれがある。
【0017】
また,上記ペースト材料は,結晶化ガラスと電極材料である銀やパラジウム等の導電性粉末の他に,有機溶媒や有機バインダー,共材としての各種セラミック材料,圧電材料等を含むことができる。
【0018】
次に,上記結晶化ガラスはSiO−Bi−CuO−MnO,PbO−ZnO−B,PbO−BaO−SiOより選ばれるいずれか1種以上を含有する材料からなることが好ましい(請求項3)。
これらの材料は,軟化温度が650℃〜850℃の範囲にあり,かつ軟化温度以上の温度においても急激な粘度低下がおこらないため,約850℃で側面電極層を焼成して形成する際に分散した金属粒子の焼結緻密化を効率よく阻害することができ,本発明にかかる気孔を備えた側面電極層を容易に得ることができる。
【0019】
【実施例】
以下に,図面を用いて本発明の実施例について説明する。
(実施例1)
本発明にかかる積層型圧電体素子について,図1〜図6を用いて説明する。
本例の積層型圧電体素子1は,図1に示すごとく,印加電圧に応じて伸張する複数の圧電層11と印加電圧供給用の内部電極層21,22とを交互に積層してなる積層体10と,該積層体10の外周側面に,圧電層11を介して隣接する内部電極層21,22が異なる極となるように交互に電気的に導通した一対の側面電極層31,32を設けてなる。
【0020】
そして,上記側面電極層31,32の面積10000平方μmの任意の領域において,長径が1μm〜50μmである気孔による気孔率が15〜50%であり,かつ上記側面電極層の10000平方μmの任意の領域において,長径が1μm〜50μmである気孔の数は100〜6000個である。
【0021】
以下,詳細に説明する。
本例の積層型圧電体素子1において,図1,図2に示すごとく,圧電層11の層間に内部電極層21,22が交互に存在し,一方の内部電極層21は積層体10の側面101に露出して,他方の内部電極層22は他方の側面102に露出する。そして,上記側面101,102に露出した内部電極層21,22の端部をそれぞれ導通させるように側面電極層31,32が設けてある。
すなわち,側面電極層31は内部電極層21が露出している位置に形成し,各内部電極層21間の導通をとる。側面電極層32は,他の内部電極層22が露出している位置に形成し,各内部電極層22間の導通をとる。
【0022】
また,図2に示すごとく,積層方向の中央部分が駆動部111,これを挟持する両端がバッファ部112,該バッファ部112の両端がダミー部113である。さらに,ダミー部113の両端が絶縁板315,325である。駆動部111は電圧を印加することで圧電層11,12が伸張する箇所,バッファ部112は駆動部111より伸張が少なく,動かない積層型圧電体素子1の両端のダミー部113に対する応力を緩和する箇所,ダミー部113は電圧を印加しても動かない箇所,絶縁板315,325において積層型圧電体素子1と外部との間の絶縁を確保する。
図示は省略したが,側面電極層31,32に外部電源接続用のリード線が,また側面電極層31,32を含んだ積層型圧電体素子1の外周側面全体に絶縁皮膜を設ける。
【0023】
また,本例にかかる積層型圧電体素子1は部分電極構成である。
すなわち,ある圧電層11に内部電極層21が図3に示すよう設けてあり,図面右側において内部電極層21の端部は外部に露出し,図面左側は内部電極層21に覆われていない控え部119が形成される。図4に示すように,右側に控え部109,左側において内部電極層22の端部が外部に露出する圧電層11もある。上記内部電極層21を設けた圧電層11と内部電極層22を設けた圧電層11を,図5に示すように交互に積層することで,本例にかかる積層型圧電体素子1となる。
【0024】
本例の積層型圧電体素子1の製造方法と詳細構造について説明する。
本例の積層型圧電体素子1は広く用いられているグリーンシート法を用いて製造する。まず,圧電材料の主原料となる酸化鉛,酸化ジルコニウム,酸化チタン,酸化ニオブ,炭酸ストロンチウム等の粉末を所望の組成となるように秤量する。これを混合機にて乾式混合し,その後仮焼する。
【0025】
次いで,仮焼粉に純水,分散剤を加えてスラリーとし,パールミルにより湿式粉砕する。この粉砕物を乾燥,粉脱脂した後,溶剤,バインダー,可塑剤,分散剤等を加えてボールミルにより混合する。その後,このスラリーを真空装置内で攪拌機により攪拌しながら真空脱泡,粘度調整をする。
次いで,スラリーをドクターブレード装置により一定厚みのグリーンシートに成形し,該グリーンシートはプレス機で打ち抜くか,切断機により切断し,所定の大きさの矩形体に成形する。グリーンシートは駆動部,バッファ部およびダミー部で共通のものを使用する。
【0026】
次いで,銀/パラジウム=7/3の重量比からなる銀・パラジウムを含んだペースト材料により,矩形体の一方の表面に内部電極層用のパターンをスクリーン印刷成形する。スクリーン印刷時のパターンは図3,図4に示すごとく,部分電極構成となるように控え部を残して形成する。
このような矩形体を,駆動部111,バッファ部112の変位量要求仕様に基づいて所定の積層枚数分用意する。また,バッファ部112,ダミー部113用の内部電極層31,32を印刷していない矩形体も必要枚数準備する。
【0027】
次いで,これらの矩形体を積層する。図5は,実質的に積層型圧電体素子1の駆動部111の状態を示しているが,矩形体の積層もこのような状態となる。
そして,中央の駆動部111となる部分は,上記内部電極層21となるパターンを形成した矩形体のみを積層し,バッファ部112においてパターンを形成した矩形体にパターンを形成していない矩形体を介在させて積層し,ダミー部113においてはパターンを形成していない矩形体のみを積層する。これにより,図1に示す構造の未焼積層体を得ることができる。
次いで,温水ラバープレス等による熱圧着後,電気炉により400〜700℃のもとで脱脂し,900〜1200℃のもとで焼成し,積層体10とした。
【0028】
次いで,積層体10の側面に側面電極層31,32を形成する過程について説明する。
電極材料,結晶化ガラス,有機溶剤及び樹脂バインダーを加え,3本ロールミルにより混練して,側面電極層用のペースト材料を作製した。
上記電極材料としては粒径0.1〜10μmの銀粉末,粒径0.01〜10μmのパラジウム粉末との混合粉を使用した。
混合粉の他に,予め銀とパラジウムとを合金化した合金粉末や銀とパラジウムを同時に液層析出させ,混合分散を良好な状態にした共沈粉末などがあるが,いずれの粉末を用いても差し支えない。
なお,側面電極層の焼成の際に,銀とパラジウムは合金化する。
【0029】
そして,上記電極材料100重量部に対し,結晶化ガラスであるPbO−ZnO−B,PbO−BaO−Si,SiO−Bi−CuO−MnO等を2〜20重量部添加し,有機溶剤である(ブチルカルビトール,ブチルカルビトールアセテート,ターピネオール),樹脂バインダーである(エチルセルロース)をそれぞれ5〜30重量部,1〜10重量部添加してペースト材料を得た。このペースト材料を上記積層体にスクリーン印刷法を用いてパターン形成,乾燥した後,大気雰囲気中で最高温度600〜850℃で焼成した。
なお,上記有機溶剤,樹脂バインダーは圧膜印刷特性および積層時の密着性を維持するために添加しており,印刷性,密着性が確保される材料構成,添加量であればよく,従って,上記実施例は本特許を限定するものではない。
【0030】
焼成を終えた後は,絶縁油中に浸漬し側面電極層31,32から内部電極層21,22間に直流電圧を印加して圧電層11を分極し,両端面に絶縁板315,325を設けて,積層型圧電体素子1とした。
【0031】
以上の製造方法から作製した積層型圧電体素子1において,内部電極層21の端部が露出した側面101と側面電極層31との接合部分について,図6を用いて説明する。
側面電極層31と積層体10の側面101との間にペースト材料に含まれた結晶化ガラスが溶融して移動して薄層310を形成する。
また,側面電極層31は,銀パラジウムの合金の結晶粒子312の間に,薄層310を形成した残りの結晶化ガラスによるガラス相313と気孔314とが存在する。なお,気孔314の輪郭が符号3140である。
このような組織の状態は,走査型電子顕微鏡等で,積層型圧電体素子1の断面を撮影した写真等より観察することができる。
【0032】
そして,本例の製造方法において,電極材料を上述した銀とパラジウムの混合粉,結晶化ガラスをPbO−ZnO−Bとして,電極材料100重量部に対し結晶化ガラスを10重量部添加して作製したペースト材料により側面電極層31を形成した。
この側面電極層31の走査型顕微鏡による断面写真を撮影し,コンピューターによる画像処理から調べた結果,面積10000平方μmの任意の領域において長径が1μm〜50μmである気孔による気孔率は21%,気孔数は225個であった(後述する実施例2における試料3)。
【0033】
このように,本例にかかる積層型圧電体素子1における側面電極層31は,面積10000平方μmの任意の領域において,長径が1μm〜50μmである気孔による気孔率が15〜50%であり,気孔の数は100〜6000個である。
上記側面電極層31は,硬度が小さく,柔らかい(実施例2参照)。そのため,積層型圧電体素子1の作動時の圧電層11の伸張に側面電極層31,32が追随できるため,側面電極層31,32に無理な力が加わり難くなる。すなわち,側面電極層31,32に圧電層11の伸張に伴う発生応力が小さくなる。従って,側面電極層31,32に剥離,割れ,ひびなどが生じ難く,長期使用時の耐久性に優れている(実施例2参照)。
以上,本例によれば,長期耐久性に優れた積層型圧電体素子1を提供することができる。
【0034】
(実施例2)
本発明にかかる積層型圧電体素子の性能について比較例と共に説明する。
本発明及び比較例にかかる表1に記載した試料1〜11の積層型圧電体素子1は実施例1に示した構成で,本発明にかかる試料はガラス成分として結晶化ガラスを使用して側面電極層用のペースト材料を作製する。比較例にかかる試料では非晶質ガラスを使用する。
表1に示すごとく,電極材料は銀とパラジウムの粉末を混合したものであるが,試料10や11は銀粉末のみとした。
また,ガラス成分(すなわち非晶質ガラスや結晶化ガラス)の電極材料に対する添加量も試料によって変更した。ガラス成分の種類も変更した。詳細は表1に記載した。
【0035】
なお,PbO−ZnO−B系結晶化ガラス,PbO−BaO−Si系結晶化ガラス,SiO−Bi−CuO−MnO系結晶化ガラスにおける結晶化率は,X線回折法により,結晶化した成分の析出ピークの強度を純粋な結晶のピークと相対比較して測定することができ,本例で使用したものはそれぞれ30%,20%,43%であった。
【0036】
このような各試料1〜11を側面電極層を横断する方向で切断し,切断面を走査型電子顕微鏡で撮影し,撮影画像を画像処理して気孔率を測定した。また,気孔の数を測定した。
さらに,側面電極層の硬度を薄膜用超微少硬度計を用いて圧子加重10gで測定した。測定結果を側面電極層硬度とした。
また,各試料について最大印加電圧190V,周波数60Hzの正弦波形の電圧を印加して,常温で圧電層を伸張させた。
その後,側面電極層に2mm四方の金属チップを接着剤で接着し,該金属チップを側面電極層の表面から垂直方向に10mm/分の速度で引っ張った。側面電極層が剥離した際の力を耐久後密着強度とした。また耐久後に側面電極層におけるクラックの有無を肉眼観察で確認した。以上の測定結果をまとめたものが表1である。
【0037】
同表より明らかであるが,結晶化ガラスを含んだペースト材料から作製した側面電極層であっても,結晶化ガラスの添加量が少ない試料1は気孔率が小さく,気孔数も少なく,そしてクラックが発生した。また,ペースト材料として非晶質ガラスを含んだものを用いた試料8,9,10も,同様に,気孔率が小さく,気孔数も少なく,そしてクラックが発生した。これらの試料にかかる側面電極層は,表より明らかであるが,側面電極層の硬度が大きく(つまり硬くて柔軟性に欠ける),耐久後の密着強度がいずれも小さかった。
【0038】
反対に,結晶化ガラスを2〜30重量部の範囲で含んだ試料2〜7,11は結晶化ガラスの種類にかかわらず,いずれも気孔率が大きく,気孔数も多く,そしてクラックが発生しなかった。側面電極層の硬度が大きく,耐久後の密着強度がいずれも大きかった。
【0039】
このように本例によれば,側面電極層の面積10000平方μmの任意の領域において,長径が1μm〜50μmである気孔による気孔率が15〜50%であり,気孔の数は100〜6000個であることで,耐久後にクラックが生じ難い,長期耐久性に優れた積層型圧電体素子となることが分かった。
さらに,上述した積層型圧電体素子を作製するには,側面電極層を作製する際にペースト材料に結晶化ガラスを混ぜることで,実現できることが分かった。
【0040】
【表1】

Figure 2004241590

【図面の簡単な説明】
【図1】実施例1における,積層型圧電体素子の斜視図。
【図2】実施例1における,積層型圧電体素子の側面説明図。
【図3】実施例1における,圧電層と内部電極層との位置関係を示す説明図。
【図4】実施例1における,図3にかかる圧電層と隣接する他の圧電層と内部電極層との位置関係を示す説明図。
【図5】実施例1における,圧電層の積層状態に関する説明図。
【図6】実施例1における,内部電極層の端部が露出した側面と側面電極層との接合部分の組織を示す説明図。
【符号の説明】
1...積層型圧電体素子,
11...圧電層,
21,22...内部電極層,
31,32...側面電極層,[0001]
【Technical field】
The present invention relates to a laminated piezoelectric element which can be mainly used as a drive source of an injector for an automobile or the like and which can be used for a general piezoelectric actuator.
[0002]
[Prior art]
In some cases, a piezoelectric actuator is used as a driving source of an automobile injector.
A laminated piezoelectric element constituting a piezoelectric actuator includes a laminated body in which a plurality of piezoelectric layers that expand in response to an applied voltage and internal electrode layers for supplying an applied voltage are alternately laminated, and an outer peripheral side surface of the laminated body. And a pair of side electrode layers which are electrically connected alternately so that adjacent internal electrode layers via the piezoelectric layer have different poles.
In recent years, in order to obtain a large displacement at a low voltage, a laminated piezoelectric element in which the thickness of the piezoelectric layer is set to 20 to 200 μm and the internal electrode layer is set to 1 to 3 μm and 500 to 700 of these are alternately stacked has been often used. I have.
[0003]
The side electrode layer can be formed by plating the laminate, forming a thin film by vapor deposition, or the like. However, from the viewpoint of manufacturing cost and the simplicity of the manufacturing process, the paste material containing the electrode material is applied to the laminate. A method in which patterning is performed by screen printing or the like, followed by baking the entire laminated body has been widespread.
[0004]
As the electrode material in the paste material, a silver-based material is widely used for the purpose of improving the bondability with the internal electrode layer in view of the current situation in which many internal electrode layers are made of silver palladium.
When a material other than silver is used, a high resistance layer is formed between the side electrode layer and the silver palladium of the internal electrode layer due to the diffusion of silver, and the insulation resistance between the side electrode layer and the internal electrode layer is reduced. And the electrical conduction between the two may deteriorate.
[0005]
[Patent Document 1]
JP 2000-331866 A
[Problem to be solved]
When a multilayer piezoelectric element is used as a driving source of an automobile injector, it is necessary to guarantee long-term reliability of the multilayer piezoelectric element in a severe environment of high temperature and high applied voltage.
However, when the operation of the multilayer piezoelectric element is repeated for a long period of time due to the stress generated by the displacement during the operation of the multilayer piezoelectric element, cracks and peeling occur in the side electrode layers, and the multilayer piezoelectric element breaks. It sometimes became inoperable.
In particular, since the side electrode layer formed of a material mainly containing silver has high hardness, cracks and peeling are more likely to occur than a non-silver-based material.
[0007]
The present invention has been made in view of such conventional problems, and has as its object to provide a laminated piezoelectric element having excellent long-term durability.
[0008]
[Means for solving the problem]
According to a first aspect of the present invention, there is provided a laminated body in which a plurality of piezoelectric layers extending in accordance with an applied voltage and internal electrode layers for supplying an applied voltage are alternately laminated, and an outer peripheral side surface of the laminated body having a piezoelectric layer interposed therebetween. And a pair of side-electrode layers electrically connected alternately so that adjacent internal electrode layers have different poles.
The porosity of pores having a major axis of 1 μm to 50 μm in an arbitrary region having an area of 10,000 square μm of the side electrode layer is 15 to 50%,
In addition, the number of pores having a major axis of 1 μm to 50 μm is 100 to 6000 in an arbitrary area of 10,000 square μm of the side electrode layer, and the stacked piezoelectric element is characterized in that it is 100%.
[0009]
The operation and effect of the present invention will be described.
The porosity and the number of porosity of the side electrode layer according to the present invention are within the ranges described above.
Such side electrode layers have low hardness and softness. For this reason, the side electrode layer can follow the expansion of the piezoelectric layer during operation of the stacked piezoelectric element, so that an excessive force is less likely to be applied to the side electrode layer. That is, the stress generated in the side electrode layer due to the extension of the piezoelectric layer is reduced. Therefore, peeling, cracking, cracking, cracking, etc. are less likely to occur in the side electrode layer during long-term use.
[0010]
As described above, according to the present invention, a laminated piezoelectric element having excellent long-term durability can be provided.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The arbitrary area of 10000 square μm of the side electrode layer according to the present invention is an area that can be secured on the surface of the side electrode layer or a cross section obtained by cutting at an arbitrary angle.
For example, in an image taken by a scanning electron microscope, pores are black, and white particles can be observed in the electrode material such as silver and palladium particles constituting the side electrode layer. If image processing by a computer or the like is used, the black area can be measured, and the porosity and pores having a predetermined long diameter can be counted.
[0012]
The pores according to the present invention have a major axis of 1 to 50 μm.
This major axis is "the major axis in the figure surrounded by the outline of the pores exposed in the region." A portion having the longest diameter in a figure surrounded by a contour line 3140 of the pore 314 described later with reference to FIG.
The pores having a major axis of less than 1 μm are so small that they hardly affect the strength of the side electrode layer. If pores larger than 50 μm exist, the porosity exceeds 50% in the area of 10,000 square μm, and the pores are locally formed. There is a possibility that the strength of the electrode layer is greatly reduced, and cracks or the like may occur from the starting point.
[0013]
When the porosity is less than 10%, and when the number of pores is less than 100, the hardness of the side electrode layer is too high and the side electrode layer hardly follows the extension of the piezoelectric layer. Durability may be reduced. If the porosity exceeds 50%, or if the number of pores exceeds 6000, the strength of the side electrode layer may be locally reduced significantly, and cracks or the like may occur from that point. is there.
[0014]
Further, it is preferable that the piezoelectric layer in the laminated piezoelectric element according to the present invention is constituted by a dielectric made of PZT (lead zirconate titanate) or the like, and the internal electrode layer is constituted by an electrode containing silver palladium.
In addition, the internal electrode layer can be provided on the entire surface of the piezoelectric layer, and can also have a partial electrode configuration (Examples 1, 3, and 4).
[0015]
The side electrode layer is formed by sintering a paste material containing an electrode material, a binder, and crystallized glass.
In the paste material, 2 to 20 parts by weight of the crystallized glass is preferably added to 100 parts by weight of the electrode material.
At a temperature higher than the softening point, the viscosity of the amorphous glass significantly lowers and softens, but the decrease in the viscosity of the crystallized glass is not so large. For this reason, sintering and densification of the dispersed metal particles are inhibited, and a porous side electrode layer having many pores can be obtained. Therefore, by using a paste material containing crystallized glass in the above-described range, it is possible to obtain a side electrode layer having pores, porosity, and number of pores according to the present invention.
[0016]
The crystallized glass will be described.
Crystallized glass is a glass material in which some of the components contained in the glass are precipitated as crystals. The rate of crystallization is called the crystallization ratio.
In the present invention, it is preferable to use crystallized glass having a crystallization ratio of 10 to 60%.
Crystallized glass having a crystallization ratio of less than 10% may not have a significant decrease in viscosity above the softening point, and may not be able to obtain the effects of the present invention. If the crystallization ratio exceeds 60%, sintering may be excessively inhibited, and the strength of the side electrode layer may be greatly reduced. In addition, as a result of excessively increasing pores in the entire side electrode layer, the conductivity may be reduced, which may hinder electrical conduction to the internal electrode layer.
[0017]
The paste material may include an organic solvent, an organic binder, various ceramic materials as a common material, a piezoelectric material, and the like, in addition to the crystallized glass and conductive powders such as silver and palladium as electrode materials.
[0018]
Next, the crystallized glass is made of a material containing at least one selected from SiO 2 —Bi 2 O 3 —CuO—MnO 2 , PbO—ZnO—B 2 O 3 , and PbO—BaO—SiO 3. (Claim 3).
Since these materials have a softening temperature in the range of 650 ° C. to 850 ° C. and do not cause a sharp decrease in viscosity even at a temperature higher than the softening temperature, when the side electrode layer is formed by firing at about 850 ° C. The sintering and densification of the dispersed metal particles can be efficiently inhibited, and the side electrode layer having pores according to the present invention can be easily obtained.
[0019]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Example 1)
A laminated piezoelectric element according to the present invention will be described with reference to FIGS.
As shown in FIG. 1, the laminated piezoelectric element 1 of the present embodiment has a laminated structure in which a plurality of piezoelectric layers 11 that expand according to an applied voltage and internal electrode layers 21 and 22 for supplying an applied voltage are alternately laminated. A body 10 and a pair of side electrode layers 31 and 32 which are electrically connected alternately so that adjacent internal electrode layers 21 and 22 have different poles via the piezoelectric layer 11 on the outer peripheral side surface of the laminate 10. Provided.
[0020]
Then, in an arbitrary area having an area of 10000 square μm of the side electrode layers 31 and 32, a porosity of a pore having a major axis of 1 μm to 50 μm is 15 to 50%, and an arbitrary area of 10000 square μm of the side electrode layer is 32 μm. In the region (1), the number of pores having a major axis of 1 μm to 50 μm is 100 to 6000.
[0021]
The details are described below.
In the laminated piezoelectric element 1 of the present embodiment, as shown in FIGS. 1 and 2, internal electrode layers 21 and 22 are alternately provided between the piezoelectric layers 11, and one of the internal electrode layers 21 is a side surface of the laminated body 10. The other internal electrode layer 22 is exposed on the other side surface 102 while being exposed on 101. Side electrode layers 31 and 32 are provided so as to conduct the end portions of the internal electrode layers 21 and 22 exposed on the side faces 101 and 102, respectively.
That is, the side electrode layer 31 is formed at a position where the internal electrode layer 21 is exposed, and the conduction between the internal electrode layers 21 is established. The side electrode layer 32 is formed at a position where the other internal electrode layers 22 are exposed, and establishes conduction between the internal electrode layers 22.
[0022]
As shown in FIG. 2, the center part in the laminating direction is a driving part 111, both ends of which are sandwiched by a buffer part 112, and both ends of the buffer part 112 are a dummy part 113. Furthermore, both ends of the dummy portion 113 are insulating plates 315 and 325. The drive section 111 relaxes stress on the dummy sections 113 at both ends of the laminated piezoelectric element 1 where the piezoelectric layers 11 and 12 expand by applying a voltage, and the buffer section 112 expands less than the drive section 111 and does not move. And the dummy portion 113 does not move even when a voltage is applied, and the insulating plates 315 and 325 secure insulation between the multilayer piezoelectric element 1 and the outside.
Although not shown, a lead wire for connecting an external power supply is provided on the side electrode layers 31 and 32, and an insulating film is provided on the entire outer peripheral side surface of the multilayer piezoelectric element 1 including the side electrode layers 31 and 32.
[0023]
Further, the laminated piezoelectric element 1 according to the present example has a partial electrode configuration.
That is, an internal electrode layer 21 is provided on a certain piezoelectric layer 11 as shown in FIG. 3, the end of the internal electrode layer 21 is exposed to the outside on the right side of the drawing, and the left side of the drawing is not covered by the internal electrode layer 21. A part 119 is formed. As shown in FIG. 4, there is also a retaining portion 109 on the right side and a piezoelectric layer 11 on the left side of which the end of the internal electrode layer 22 is exposed to the outside. The piezoelectric layers 11 provided with the internal electrode layers 21 and the piezoelectric layers 11 provided with the internal electrode layers 22 are alternately stacked as shown in FIG.
[0024]
A manufacturing method and a detailed structure of the multilayer piezoelectric element 1 of this example will be described.
The laminated piezoelectric element 1 of this example is manufactured by using a widely used green sheet method. First, powders such as lead oxide, zirconium oxide, titanium oxide, niobium oxide, and strontium carbonate, which are main raw materials of a piezoelectric material, are weighed to have a desired composition. This is dry-mixed in a mixer and then calcined.
[0025]
Next, pure water and a dispersant are added to the calcined powder to form a slurry, which is wet-pulverized by a pearl mill. After the pulverized product is dried and degreased, a solvent, a binder, a plasticizer, a dispersant and the like are added and mixed by a ball mill. Thereafter, the slurry is subjected to vacuum defoaming and viscosity adjustment while being stirred by a stirrer in a vacuum device.
Next, the slurry is formed into a green sheet having a constant thickness by a doctor blade device, and the green sheet is punched out by a press or cut by a cutting machine to form a rectangular body having a predetermined size. A common green sheet is used for the driving unit, the buffer unit, and the dummy unit.
[0026]
Next, a pattern for an internal electrode layer is screen-printed on one surface of the rectangular body using a paste material containing silver / palladium having a weight ratio of silver / palladium = 7/3. As shown in FIGS. 3 and 4, the pattern at the time of screen printing is formed so as to have a notch so as to have a partial electrode configuration.
Such a rectangular body is prepared for a predetermined number of layers based on the required displacement amount specifications of the drive unit 111 and the buffer unit 112. Also, a required number of rectangular bodies on which the internal electrode layers 31 and 32 for the buffer unit 112 and the dummy unit 113 are not printed are prepared.
[0027]
Next, these rectangular bodies are laminated. FIG. 5 substantially shows the state of the drive unit 111 of the multilayer piezoelectric element 1, but the stacking of the rectangular body is also in such a state.
In the central portion serving as the drive portion 111, only the rectangular body on which the pattern serving as the internal electrode layer 21 is formed is laminated, and the rectangular body on which the pattern is formed in the buffer portion 112 is formed with no pattern. In the dummy portion 113, only a rectangular body without a pattern is laminated. As a result, an unfired laminate having the structure shown in FIG. 1 can be obtained.
Then, after thermocompression bonding with a hot water rubber press or the like, the laminate was degreased in an electric furnace at 400 to 700 ° C. and fired at 900 to 1200 ° C. to obtain a laminate 10.
[0028]
Next, a process of forming the side electrode layers 31 and 32 on the side surfaces of the multilayer body 10 will be described.
An electrode material, crystallized glass, an organic solvent, and a resin binder were added and kneaded by a three-roll mill to prepare a paste material for a side electrode layer.
As the electrode material, a powder mixture of silver powder having a particle size of 0.1 to 10 μm and palladium powder having a particle size of 0.01 to 10 μm was used.
In addition to mixed powders, there are alloy powders in which silver and palladium are alloyed in advance, and coprecipitated powders in which silver and palladium are simultaneously deposited in a liquid layer to ensure good mixing and dispersion. No problem.
Note that silver and palladium are alloyed when the side electrode layer is fired.
[0029]
Then, with respect to the electrode material 100 parts by weight, 2 to a crystallized glass in which PbO-ZnO-B 2 O 3 , PbO-BaO-Si 2 O 3, SiO 2 -Bi 2 O 3 -CuO-MnO 2 , etc. 20 parts by weight of an organic solvent (butyl carbitol, butyl carbitol acetate, terpineol) and a resin binder (ethyl cellulose) in an amount of 5 to 30 parts by weight and 1 to 10 parts by weight were added to obtain a paste material. Was. This paste material was pattern-formed on the above-mentioned laminate using a screen printing method, dried, and then fired at a maximum temperature of 600 to 850 ° C. in an air atmosphere.
The organic solvent and the resin binder are added in order to maintain the printing properties of the pressure-sensitive film and the adhesion during lamination. The above embodiments do not limit this patent.
[0030]
After the firing, the piezoelectric layer 11 is polarized by applying a DC voltage from the side electrode layers 31 and 32 to the internal electrode layers 21 and 22 by dipping in insulating oil, and insulating plates 315 and 325 are provided on both end faces. The laminated piezoelectric element 1 was provided.
[0031]
With reference to FIG. 6, a description will be given of a bonding portion between the side face 101 and the side face electrode layer 31 where the end of the internal electrode layer 21 is exposed in the multilayer piezoelectric element 1 manufactured by the above manufacturing method.
The crystallized glass contained in the paste material melts and moves between the side electrode layer 31 and the side surface 101 of the laminate 10 to form the thin layer 310.
In the side electrode layer 31, a glass phase 313 and pores 314 of the remaining crystallized glass having the thin layer 310 are present between crystal grains 312 of silver-palladium alloy. The outline of the pore 314 is denoted by reference numeral 3140.
Such a state of the structure can be observed from a photograph or the like obtained by photographing a cross section of the multilayer piezoelectric element 1 with a scanning electron microscope or the like.
[0032]
Then, in the manufacturing method of this embodiment, mixed powder of silver and palladium the electrode material described above, a crystallized glass as PbO-ZnO-B 2 O 3 , 10 parts by weight added crystallized glass to the electrode material 100 parts by weight The side surface electrode layer 31 was formed from the paste material thus manufactured.
A cross-sectional photograph of the side electrode layer 31 was taken by a scanning microscope and examined by image processing with a computer. As a result, the porosity of pores having a major axis of 1 μm to 50 μm in an arbitrary area of 10,000 square μm was 21%, and the porosity was 21%. The number was 225 (sample 3 in Example 2 described later).
[0033]
As described above, the side electrode layer 31 in the multilayer piezoelectric element 1 according to the present example has a porosity of 15 to 50% due to pores having a major axis of 1 μm to 50 μm in an arbitrary area having an area of 10000 square μm. The number of pores is 100-6000.
The side electrode layer 31 has low hardness and softness (see Example 2). Therefore, since the side electrode layers 31 and 32 can follow the expansion of the piezoelectric layer 11 during the operation of the multilayer piezoelectric element 1, an excessive force is hardly applied to the side electrode layers 31 and 32. That is, the stress generated by the extension of the piezoelectric layer 11 in the side electrode layers 31 and 32 is reduced. Therefore, peeling, cracking, cracks, and the like hardly occur in the side electrode layers 31, 32, and the durability during long-term use is excellent (see Example 2).
As described above, according to this example, it is possible to provide the laminated piezoelectric element 1 having excellent long-term durability.
[0034]
(Example 2)
The performance of the multilayer piezoelectric element according to the present invention will be described together with a comparative example.
The laminated piezoelectric elements 1 of Samples 1 to 11 described in Table 1 according to the present invention and the comparative example have the configuration shown in Example 1, and the sample according to the present invention uses crystallized glass as a glass component. A paste material for an electrode layer is prepared. In the sample according to the comparative example, an amorphous glass is used.
As shown in Table 1, the electrode material was a mixture of silver and palladium powders, but samples 10 and 11 were silver powder only.
Also, the amount of glass component (ie, amorphous glass or crystallized glass) added to the electrode material was changed depending on the sample. The type of glass component was also changed. Details are shown in Table 1.
[0035]
Incidentally, PbO-ZnO-B 2 O 3 based crystallized glass, PbO-BaO-Si 2 O 3 based crystallized glass, crystallized rate in SiO 2 -Bi 2 O 3 -CuO- MnO 2 based crystallized glass, By the X-ray diffraction method, the intensity of the precipitation peak of the crystallized component can be measured relative to the peak of the pure crystal, and those used in this example were 30%, 20%, and 43%, respectively. Was.
[0036]
Each of the samples 1 to 11 was cut in a direction crossing the side electrode layer, the cut surface was photographed with a scanning electron microscope, and the photographed image was subjected to image processing to measure the porosity. In addition, the number of pores was measured.
Further, the hardness of the side electrode layer was measured with an indenter load of 10 g using an ultra-fine hardness meter for thin films. The measurement result was defined as the side electrode layer hardness.
Further, a sine waveform voltage having a maximum applied voltage of 190 V and a frequency of 60 Hz was applied to each sample to expand the piezoelectric layer at normal temperature.
Thereafter, a 2 mm square metal chip was adhered to the side electrode layer with an adhesive, and the metal chip was pulled vertically from the surface of the side electrode layer at a speed of 10 mm / min. The force when the side electrode layer was peeled off was defined as the adhesion strength after durability. After the endurance, the presence or absence of cracks in the side electrode layer was confirmed by visual observation. Table 1 summarizes the above measurement results.
[0037]
As is clear from the table, even if the side electrode layer is made of a paste material containing crystallized glass, sample 1 with a small amount of crystallized glass has a small porosity, a small number of pores, and a crack. There has occurred. Similarly, Samples 8, 9, and 10 using amorphous glass as the paste material also had a small porosity, a small number of pores, and cracks. As is clear from the table, the side electrode layers according to these samples had high hardness (that is, hard and lacked flexibility) and low adhesion strength after durability.
[0038]
On the contrary, samples 2 to 7, 11 containing crystallized glass in the range of 2 to 30 parts by weight have a large porosity, a large number of pores, and cracks regardless of the type of the crystallized glass. Did not. The hardness of the side electrode layer was large, and the adhesion strength after durability was all large.
[0039]
As described above, according to this example, the porosity of pores having a major axis of 1 μm to 50 μm is 15 to 50% and the number of pores is 100 to 6000 in an arbitrary region having an area of 10,000 square μm of the side electrode layer. Thus, it was found that cracks hardly occur after the durability, and the multilayer piezoelectric element was excellent in long-term durability.
Furthermore, it was found that the above-mentioned laminated piezoelectric element can be produced by mixing crystallized glass with a paste material when producing a side electrode layer.
[0040]
[Table 1]
Figure 2004241590

[Brief description of the drawings]
FIG. 1 is a perspective view of a laminated piezoelectric element according to a first embodiment.
FIG. 2 is an explanatory side view of the multilayer piezoelectric element according to the first embodiment.
FIG. 3 is an explanatory diagram showing a positional relationship between a piezoelectric layer and an internal electrode layer in the first embodiment.
FIG. 4 is an explanatory view showing a positional relationship between the internal electrode layer and another piezoelectric layer adjacent to the piezoelectric layer according to FIG. 3 in the first embodiment.
FIG. 5 is an explanatory diagram relating to a stacked state of piezoelectric layers in the first embodiment.
FIG. 6 is an explanatory view showing a structure of a joint portion between a side surface where an end portion of an internal electrode layer is exposed and a side surface electrode layer in Example 1.
[Explanation of symbols]
1. . . Multilayer piezoelectric element,
11. . . Piezoelectric layer,
21, 22. . . Internal electrode layer,
31, 32. . . Side electrode layer,

Claims (3)

印加電圧に応じて伸張する複数の圧電層と印加電圧供給用の内部電極層とを交互に積層してなる積層体と,該積層体の外周側面に,圧電層を介して隣接する内部電極層が異なる極となるように交互に電気的に導通した一対の側面電極層を設けてなる積層型圧電体素子において,
上記側面電極層の面積10000平方μmの任意の領域において,長径が1μm〜50μmである気孔による気孔率が15〜50%であり,
かつ上記側面電極層の10000平方μmの任意の領域において,長径が1μm〜50μmである気孔の数は100〜6000個であることを特徴とする積層型圧電体素子。
A laminated body in which a plurality of piezoelectric layers extending according to an applied voltage and internal electrode layers for supplying an applied voltage are alternately laminated, and an internal electrode layer adjacent to the outer peripheral side of the laminated body via the piezoelectric layer Is a laminated piezoelectric element having a pair of side electrode layers that are electrically conductive alternately so that
The porosity of pores having a major axis of 1 μm to 50 μm in an arbitrary region having an area of 10,000 square μm of the side electrode layer is 15 to 50%,
In addition, the number of pores having a major axis of 1 μm to 50 μm is 100 to 6000 in an arbitrary area of 10000 square μm of the side electrode layer.
請求項1において,上記側面電極層は,電極材料,バインダー,結晶化ガラスを含有するペースト材料を焼結して形成してなり,
かつ上記ペースト材料において,上記電極材料100重量部に対し上記結晶化ガラスは2〜20重量部添加してなることを特徴とする積層型圧電体素子。
In claim 1, the side electrode layer is formed by sintering a paste material containing an electrode material, a binder, and crystallized glass.
In the paste material, 2 to 20 parts by weight of the crystallized glass is added to 100 parts by weight of the electrode material.
請求項2において,上記結晶化ガラスはSiO−Bi−CuO−MnO,PbO−ZnO−B,PbO−BaO−SiOより選ばれるいずれか1種以上を含有する材料からなることを特徴とする積層型圧電体素子。3. The material according to claim 2, wherein the crystallized glass contains at least one selected from the group consisting of SiO 2 —Bi 2 O 3 —CuO—MnO 2 , PbO—ZnO—B 2 O 3 , and PbO—BaO—SiO 3. A multilayer piezoelectric element, comprising:
JP2003028842A 2003-02-05 2003-02-05 Multilayer piezoelectric element Expired - Fee Related JP4211419B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003028842A JP4211419B2 (en) 2003-02-05 2003-02-05 Multilayer piezoelectric element
DE200410005528 DE102004005528A1 (en) 2003-02-05 2004-02-04 Laminated piezoelectric element used as a drive source for injecting into a vehicle, comprises a laminated body containing piezoelectric layers, and a pair of lateral electrode layers made from a porous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003028842A JP4211419B2 (en) 2003-02-05 2003-02-05 Multilayer piezoelectric element

Publications (2)

Publication Number Publication Date
JP2004241590A true JP2004241590A (en) 2004-08-26
JP4211419B2 JP4211419B2 (en) 2009-01-21

Family

ID=32767650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003028842A Expired - Fee Related JP4211419B2 (en) 2003-02-05 2003-02-05 Multilayer piezoelectric element

Country Status (2)

Country Link
JP (1) JP4211419B2 (en)
DE (1) DE102004005528A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053467A (en) * 2006-08-24 2008-03-06 Denso Corp Stacked piezoelectric device and its manufacturing method
US7868524B2 (en) 2005-01-26 2011-01-11 Epcos Ag Piezoelectric component
JP5329544B2 (en) * 2008-07-29 2013-10-30 京セラ株式会社 Fuel injection system
CN109285943A (en) * 2017-07-20 2019-01-29 太阳诱电株式会社 Laminated piezoelectric element, piezoelectric vibrating device and electronic equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008055131A1 (en) * 2008-12-23 2010-07-01 Robert Bosch Gmbh Piezoactuator for use in fuel-injector to adjust e.g. control valve, has electrode firmly connected with piezobody using sintered paste or by adhesive, soldering or welding material and designed as open porous sintered mold
DE102008055144A1 (en) * 2008-12-23 2010-07-01 Robert Bosch Gmbh Piezoactuator for use in fuel-injector for internal combustion engine to adjust e.g. jet needle, has inner electrodes connected with collector electrodes that are designed as open porous sintered mold parts consisting of silver metal flakes

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7868524B2 (en) 2005-01-26 2011-01-11 Epcos Ag Piezoelectric component
JP2008053467A (en) * 2006-08-24 2008-03-06 Denso Corp Stacked piezoelectric device and its manufacturing method
JP5329544B2 (en) * 2008-07-29 2013-10-30 京セラ株式会社 Fuel injection system
US8578911B2 (en) 2008-07-29 2013-11-12 Kyocera Corporation Multi-layer piezoelectric element, and injection device and fuel injection system using the same
CN109285943A (en) * 2017-07-20 2019-01-29 太阳诱电株式会社 Laminated piezoelectric element, piezoelectric vibrating device and electronic equipment

Also Published As

Publication number Publication date
JP4211419B2 (en) 2009-01-21
DE102004005528A1 (en) 2004-08-26

Similar Documents

Publication Publication Date Title
CN108735508B (en) Multilayer ceramic capacitor and method for manufacturing the same
JP4945801B2 (en) Piezoelectric element and method for manufacturing piezoelectric element
JP5646989B2 (en) Piezoelectric / electrostrictive element and manufacturing method thereof
JP2004002069A (en) Processes for manufacturing piezoelectric ceramic and piezoelectric element
US20080129154A1 (en) Piezoelectric ceramic composition and laminated piezoelectric element
JPWO2013022064A1 (en) Dielectric ceramic, multilayer ceramic electronic component, multilayer ceramic capacitor, and multilayer ceramic capacitor manufacturing method
JP4682426B2 (en) Electronic component and manufacturing method thereof
JP5745852B2 (en) Piezoceramic multilayer element
JP2008305844A (en) Laminated ceramic capacitor and manufacturing method therefor
JP4748291B2 (en) Laminate displacement element
JP4211419B2 (en) Multilayer piezoelectric element
JP3045531B2 (en) Stacked displacement element
JP2994492B2 (en) Multilayer piezoelectric actuator and method of manufacturing the same
JP2007258301A (en) Laminated piezoelectric element, and its manufacturing method
JP2006303349A (en) Method for manufacturing piezoelectric ceramic lamination element and piezoelectric ceramic lamination actuator
JP2001250994A (en) Laminated piezoelectric element
JP3855750B2 (en) Multilayer piezoelectric element
JP2000306762A (en) Multilayer ceramic capacitor
JP4925563B2 (en) Multilayer piezoelectric element and jetting apparatus using the same
JP2006156587A (en) Multilayer piezoelectric element
JP2006108546A (en) Laminated piezoelectric ceramic element, and manufacturing method thereof
WO2023157523A1 (en) Laminate-type piezoelectric element and electronic device
JP2006156586A (en) Multilayer piezoelectric element and its production process
JP2803227B2 (en) Multilayer electronic components
JP4993056B2 (en) Manufacturing method and oxygen supply method of multilayer piezoelectric element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees