JP2006303349A - Method for manufacturing piezoelectric ceramic lamination element and piezoelectric ceramic lamination actuator - Google Patents

Method for manufacturing piezoelectric ceramic lamination element and piezoelectric ceramic lamination actuator Download PDF

Info

Publication number
JP2006303349A
JP2006303349A JP2005126130A JP2005126130A JP2006303349A JP 2006303349 A JP2006303349 A JP 2006303349A JP 2005126130 A JP2005126130 A JP 2005126130A JP 2005126130 A JP2005126130 A JP 2005126130A JP 2006303349 A JP2006303349 A JP 2006303349A
Authority
JP
Japan
Prior art keywords
piezoelectric ceramic
layer
ceramic
internal electrode
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005126130A
Other languages
Japanese (ja)
Inventor
Yukio Nishinomiya
幸雄 西宮
Shuji Aizawa
周二 相澤
Yoshihiro Kawakami
祥広 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2005126130A priority Critical patent/JP2006303349A/en
Publication of JP2006303349A publication Critical patent/JP2006303349A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a piezoelectric ceramic lamination element and a piezoelectric ceramic lamination actuator, wherein a thin layer of a piezoelectric ceramic can be accomplished for low voltage driving, and a low-cost base metal internal electrode can be used. <P>SOLUTION: A laminated body is formed by laminating piezoelectric ceramics 11 and internal electrodes 12 alternately, and a ceramic insulator 14 is provided on a side face of this laminated body for insulating ends of the internal electrodes 12 every layer so as to constitute an opposing electrode. An external electrode 15 is connected to the internal electrode 12 which remains exposed to the side face, and the ceramic insulator 14 is formed through a resist coating and exposure process to the side face by an aerosol deposition method. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、圧電セラミック積層素子の製造方法及び圧電セラミック積層アクチュエータに関し、例えば、自動車用インジェクション、主に半導体製造装置に利用される光学装置等の精密位置決め装置やマスフローコントローラのバルブ駆動素子に利用される圧電セラミック積層アクチュエータや近年ではマイクロロボットや小型携帯機器等に使用される圧電マイクロアクチュエータに関するものである。   The present invention relates to a method for manufacturing a piezoelectric ceramic multilayer element and a piezoelectric ceramic multilayer actuator, and is used for, for example, a precision positioning device such as an optical device used for automobile injection and semiconductor manufacturing equipment, and a valve driving element of a mass flow controller. The present invention relates to a piezoelectric ceramic laminated actuator, and in recent years, a piezoelectric microactuator used for a micro robot, a small portable device, or the like.

従来より、圧電セラミック積層素子としては、圧電セラミックと内部電極を交互に積層した圧電セラミック積層アクチュエータが知られている。図3(a)は、従来の圧電セラミック積層アクチュエータ素子の斜視図、図3(b)はB−B線に沿った縦断面図、図3(c)は内部電極と外部電極の接合部を拡大して示す模式断面図である。このアクチュエータでは、圧電セラミック11と内部電極12が交互に積層されて積層体13が形成され、その積層方向に対する両側面には1層おきに対向電極構造を成す様にガラスで絶縁される。この絶縁ガラス24は水中で電荷を帯びたガラス粒子をガラスとは逆の電荷を与えた端面電極へ電気泳動させ、選択的に1層おきに付着する様に構成し、その後、大気中で焼き付けを施して形成する。ガラスで絶縁された素子側面上に外部電極15を形成し、その外部電極上には、さらにリード線16が半田17により固定されている。   Conventionally, as a piezoelectric ceramic multilayer element, a piezoelectric ceramic multilayer actuator in which piezoelectric ceramics and internal electrodes are alternately laminated is known. 3A is a perspective view of a conventional piezoelectric ceramic multilayer actuator element, FIG. 3B is a longitudinal sectional view taken along the line B-B, and FIG. 3C is a view showing a joint between an internal electrode and an external electrode. It is a schematic cross section which expands and shows. In this actuator, the piezoelectric ceramics 11 and the internal electrodes 12 are alternately laminated to form a laminated body 13, which is insulated with glass so as to form a counter electrode structure every other layer on both side surfaces with respect to the lamination direction. The insulating glass 24 is configured such that glass particles charged in water are electrophoresed to an end face electrode having a charge opposite to that of glass, and selectively adhered to every other layer, and then baked in the atmosphere. To form. An external electrode 15 is formed on the side surface of the element insulated by glass, and a lead wire 16 is further fixed by solder 17 on the external electrode.

ところで、近年において、機器の小型化、低背化、低電圧化が進み、圧電セラミック積層アクチュエータにおいても同様に小型化、低背化、低電圧駆動の要求が著しく高まっている。低電圧駆動させるためには駆動に必要な電界強度を得るために電極間距離を短くする必要がある。すなわち圧電セラミックの薄層化が必要である。   By the way, in recent years, the miniaturization, low profile, and low voltage of devices have progressed, and the demand for miniaturization, low profile, and low voltage drive has been remarkably increased also in the piezoelectric ceramic laminated actuator. In order to drive at a low voltage, it is necessary to shorten the distance between the electrodes in order to obtain the electric field strength necessary for driving. That is, it is necessary to reduce the thickness of the piezoelectric ceramic.

従来の技術では、例えば特許文献1ではガラス絶縁を形成する際のガラス泳動工程に使用するガラスの粒度を微小なものにすることが提案されているが、そのとき電極間距離はせいぜい100μmが限界である。しかし、昨今の機器の小型化、低電圧駆動化の要求に応じるには、さらに薄層化を進める必要がある。   In the prior art, for example, Patent Document 1 proposes to make the particle size of glass used in the glass migration process when forming glass insulation fine, but the distance between the electrodes is limited to 100 μm at the maximum. It is. However, in order to meet the recent demands for downsizing and low-voltage driving of devices, it is necessary to further reduce the thickness.

特開昭60−86881号公報JP 60-86881 A

この様に、圧電セラミック積層アクチュエータを低電圧駆動させるためには、電界強度を上げるためセラミック厚みを薄くする必要がある。上記従来のアクチュエータの製造方法では、ガラス絶縁を形成する際に焼き付けしたガラスが広がり、1層おきに絶縁をすることが困難になる。よって、従来製法ではセラミック層の薄層化に限界があり、それゆえ低電圧駆動に限界があり、製造方法の改善が必要になっている。   Thus, in order to drive the piezoelectric ceramic multilayer actuator at a low voltage, it is necessary to reduce the ceramic thickness in order to increase the electric field strength. In the above conventional actuator manufacturing method, the glass baked when forming the glass insulation spreads, making it difficult to insulate every other layer. Therefore, there is a limit to thinning the ceramic layer in the conventional manufacturing method. Therefore, there is a limit to low voltage driving, and improvement of the manufacturing method is required.

また、内部電極材料に高価なパラジウムが用いられており、近年の圧電セラミックの薄層化、積層数の増加に伴い、使用するパラジウム量が増加し、製造コストが増大するという問題もある。そのため内部電極に卑金属を使用する試みがされているが、ガラス絶縁の焼き付けは大気中で行うため、内部電極が酸化してしまい、電極の抵抗が上昇してしまう問題点もある。   Further, expensive palladium is used as the internal electrode material, and there is a problem that the amount of palladium to be used increases with the recent thinning of the piezoelectric ceramic and the increase in the number of laminated layers, and the manufacturing cost increases. For this reason, attempts have been made to use a base metal for the internal electrode. However, since the glass insulation is baked in the air, the internal electrode is oxidized and the resistance of the electrode is increased.

すなわち本発明の課題は、低電圧で変位駆動させるため、圧電セラミックの薄層化を可能とし、安価な卑金属内部電極を用いることも出来る圧電セラミック積層素子の製造方法及び圧電セラミック積層アクチュエータを提供することにある。   That is, an object of the present invention is to provide a method of manufacturing a piezoelectric ceramic multilayer element and a piezoelectric ceramic multilayer actuator that can be driven thinly and can use an inexpensive base metal internal electrode because displacement driving is performed at a low voltage. There is.

本発明の圧電セラミック積層素子の製造方法は、圧電セラミック層と内部電極層が交互に積層され、前記内部電極層の端部が積層体の外形側面に露出し、前記端部を1層おきに絶縁する複数のセラミック絶縁体を有し、絶縁されなかった端部を接続する外部電極を有する圧電セラミック積層素子の製造方法において、前記セラミック絶縁体を形成する過程は、前記内部電極層の端部が露出した外形側面の全面へ感光性のレジストをコートするか又はドライシートレジストを貼ることによりレジスト層を形成する工程と、前記内部電極層の端部を1層おきにマスクする様に前記レジスト層に露光処理を施し現像液で一部を除去する工程と、1層おきに内部電極層が露出した外形側面にエアロゾルデポジション法にて絶縁セラミック膜を形成する工程と、残ったレジスト層を全て剥離する工程とを有することを特徴とする。   In the method for manufacturing a piezoelectric ceramic multilayer element according to the present invention, piezoelectric ceramic layers and internal electrode layers are alternately stacked, the end portions of the internal electrode layers are exposed on the outer side surface of the laminate, and the end portions are formed every other layer. In the method of manufacturing a piezoelectric ceramic multilayer element having a plurality of ceramic insulators to be insulated and having external electrodes for connecting the non-insulated ends, the step of forming the ceramic insulator includes the end portions of the internal electrode layers. A step of forming a resist layer by coating a photosensitive resist or applying a dry sheet resist to the entire outer surface of the exposed external side surface, and the resist so that every other end of the internal electrode layer is masked. An insulating ceramic film is formed by an aerosol deposition method on the outer side surface where the internal electrode layer is exposed every other layer, in which a layer is exposed to light and partly removed with a developer. And having degree and, a step of peeling all the remaining resist layer.

前記絶縁セラミック層は、チタン酸ジルコン酸鉛(Pb(Zr,Ti)O)を主成分とするセラミック、アルミナ(Al)、酸化ジルコニア(ZrO)、チタン酸バリウム(BaTiO)のいずれかからなるとよい。 The insulating ceramic layer is composed of a ceramic mainly composed of lead zirconate titanate (Pb (Zr, Ti) O 3 ), alumina (Al 2 O 3 ), zirconia oxide (ZrO 2 ), and barium titanate (BaTiO 3 ). It is good to consist of either.

また、本発明の圧電セラミック積層アクチュエータは、前記圧電セラミック積層素子の製造方法により得られた圧電セラミック積層素子を用いて形成したことを特徴とする。   In addition, the piezoelectric ceramic multilayer actuator of the present invention is formed using a piezoelectric ceramic multilayer element obtained by the method for manufacturing a piezoelectric ceramic multilayer element.

従来は異極間の絶縁を電気泳動、焼き付け処理をしてガラス絶縁していたため、セラミックの薄層化を進める場合には100μm以下厚みは製造困難であったが、本発明の圧電セラミック積層素子では、15μmまでは絶縁可能になる。   Conventionally, since insulation between different electrodes was made by glass electrophoresis by electrophoresis and baking, it was difficult to produce a thickness of 100 μm or less when the thinning of the ceramic was promoted. Then, insulation is possible up to 15 μm.

さらに本発明によれば、ガラス絶縁を形成する際の大気中の焼き付け工程が無いので内部電極は従来のAg/Pd材料はもちろん、安価な卑金属を用いても形成でき、安価な圧電セラミック積層素子が提供出来る。また、Agを内部電極材料に使用しない場合は、マイグレーションによる絶縁性の劣化が防止できる。さらに従来、ガラス焼き付け時のセラミックヘの浸透や濡れ性などを考慮に入れなければならなかったが、本発明は常温でセラミックが形成可能なため、品質ばらつきが抑えられる作用もある。   Further, according to the present invention, since there is no baking step in the air when forming the glass insulation, the internal electrode can be formed using not only a conventional Ag / Pd material but also an inexpensive base metal, and an inexpensive piezoelectric ceramic multilayer element. Can be provided. Further, when Ag is not used as the internal electrode material, it is possible to prevent the deterioration of insulation due to migration. Furthermore, conventionally, it has been necessary to take into consideration the penetration and wettability of the ceramic during glass baking. However, since the present invention can form a ceramic at room temperature, it also has the effect of suppressing quality variations.

尚、上記エアロゾルデポジション法はエアロゾル化した微粉末を真空チャンバー内にセットしたワーク上ヘノズルを通してガスと共に亜音速で衝突・固化させるセラミックの成膜方法であり、室温で熱処理なしで緻密な厚膜が形成出来る特長を持つ。   The above-mentioned aerosol deposition method is a ceramic film-forming method in which aerosolized fine powder collides and solidifies at a subsonic speed with a gas through a nozzle on a work set in a vacuum chamber. It has the feature that can be formed.

そのとき、絶縁用のセラミック材料にはエアロゾルデポジション法で成膜可能であるチタン酸ジルコン酸鉛Pb(Zr,Ti)Oを主成分とするセラミック、あるいはアルミナAl、酸化ジルコニアZrO、チタン酸バリウムBaTiO等の絶縁性セラミックを用いるとよい。 At that time, the ceramic material for insulation may be a ceramic mainly composed of lead zirconate titanate Pb (Zr, Ti) O 3 that can be formed by an aerosol deposition method, or alumina Al 2 O 3 , zirconia oxide ZrO. 2. Insulating ceramics such as barium titanate BaTiO 3 may be used.

本発明の積層圧電セラミック素子の製造方法によれば、従来の様に内部電極が全面電極構造であっても圧電セラミック層の薄層化が可能となり、低電圧駆動が可能となる。また、圧電セラミックには耐還元性を有する材料を用いることで内部電極は卑金属材料を使用することも可能となり、製造コストを安価にすることも可能である。さらに、電極材料にAgを使用しないことも可能であり、マイグレーションが発生しにくい信頼性に優れた圧電セラミック積層アクチュエータを提供出来る。   According to the method for manufacturing a laminated piezoelectric ceramic element of the present invention, the piezoelectric ceramic layer can be made thin even when the internal electrode has a full-surface electrode structure as in the prior art, and low voltage driving is possible. In addition, by using a reduction-resistant material for the piezoelectric ceramic, it is possible to use a base metal material for the internal electrodes, and the manufacturing cost can be reduced. Furthermore, it is possible not to use Ag as the electrode material, and it is possible to provide a piezoelectric ceramic laminated actuator excellent in reliability in which migration is unlikely to occur.

図1は本発明の一実施の形態での圧電セラミック積層素子を示すもので、図1(a)は斜視図、図1(b)は図1(a)のA−A線に沿った縦断面図、図1(c)は内部電極と外部電極の接合部を拡大して示す模式断面図である。   FIG. 1 shows a piezoelectric ceramic multilayer element according to an embodiment of the present invention. FIG. 1 (a) is a perspective view, and FIG. 1 (b) is a longitudinal section along the line AA in FIG. 1 (a). FIG. 1C is a schematic cross-sectional view showing an enlarged joint portion between the internal electrode and the external electrode.

圧電セラミック積層素子は、図1に示す様に、圧電セラミック11とそれに等しい面積の内部電極12とを交互に複数積層してなる積層体の側面において、内部電極12の端部を一層おきにセラミック絶縁体14で被覆し、絶縁体被覆していない内部電極12の端部に銀を主成分とする導電材とガラスフリットからなる外部電極15を接合し、外部電極15にリード線16を半田17で接続固定して構成されている。   As shown in FIG. 1, the piezoelectric ceramic multilayer element is formed of ceramics with the end portions of the internal electrodes 12 disposed on the side surfaces of a laminate formed by alternately laminating a plurality of piezoelectric ceramics 11 and internal electrodes 12 having the same area. An external electrode 15 composed of a conductive material mainly composed of silver and glass frit is bonded to the end portion of the internal electrode 12 which is covered with the insulator 14 and is not covered with the insulator, and the lead wire 16 is soldered to the external electrode 15 with the solder 17. The connection is fixed and configured.

圧電セラミックは、チタン酸ジルコン酸鉛Pb(Zr,Ti)O3(PZT)を主成分とする圧電セラミックス材料で形成されている。この圧電セラミックスは、その圧電特性を示す圧電歪み定数d33が高いものが望ましい。圧電セラミック11の間には内部電極12が積層されているが、この内部電極12は貴金属であるAg/Pdの他にも圧電セラミック11に耐還元性を付与すれば、卑金属で形成することも可能である。卑金属としては、Cu,Ni,Cu/Ni合金等があり、特に焼成時に酸化されにくいという点からCuが望ましい。異極間の絶縁には従来法ではガラスを用いたが、本発明では絶縁性セラミックが用いられる。本発明のセラミックによる絶縁形成はエアロゾルデポジション法にて成される。 The piezoelectric ceramic is made of a piezoelectric ceramic material mainly composed of lead zirconate titanate Pb (Zr, Ti) O 3 (PZT). This piezoelectric ceramic desirably has a high piezoelectric strain constant d 33 indicating its piezoelectric characteristics. An internal electrode 12 is laminated between the piezoelectric ceramics 11. The internal electrode 12 may be formed of a base metal in addition to Ag / Pd, which is a noble metal, if the piezoelectric ceramic 11 is given reduction resistance. Is possible. As the base metal, there are Cu, Ni, Cu / Ni alloys, etc., and Cu is particularly desirable because it is not easily oxidized during firing. In the conventional method, glass is used for insulation between different electrodes, but in the present invention, an insulating ceramic is used. The insulation formation by the ceramic of the present invention is performed by an aerosol deposition method.

各圧電セラミック11に所定の電圧を印加し、圧電セラミック11に逆圧電効果による変位を起こさせる作用を成す。従来、圧電セラミックの厚み、つまり内部電極間の距離は250〜100μmであったが、近年の低電圧駆動化の要求から100〜15μmが望まれている。また、圧電セラミック積層アクチュエータは電圧を印加してより大きな変位量を得るために、積層数を増加させる方法がとられるが、上記のような薄い圧電セラミック厚みを採用することにより、アクチュエータとしての小型化、低背化も達成でき、本発明の圧電セラミック積層素子も充分対応する。   A predetermined voltage is applied to each piezoelectric ceramic 11 to cause the piezoelectric ceramic 11 to be displaced by an inverse piezoelectric effect. Conventionally, the thickness of the piezoelectric ceramic, that is, the distance between the internal electrodes has been 250 to 100 μm, but 100 to 15 μm is desired in view of the recent demand for low voltage driving. In addition, in order to obtain a larger displacement amount by applying a voltage to the piezoelectric ceramic laminated actuator, a method of increasing the number of laminated layers is used. By adopting the thin piezoelectric ceramic thickness as described above, the piezoelectric ceramic laminated actuator can be reduced in size. Therefore, the piezoelectric ceramic multilayer element according to the present invention can be sufficiently used.

外部電極15は、Ag,Ni,Cu,Au,Al等の導電性を備えた金属及びそれらの合金から構成されていても良いが、外部電極15は、内部電極と同一金属又は同一合金を主成分とすることが望ましい。外部電極15にはリード線16が半田17により接続固定され、このリード線16は外部電極15を外部の電圧供給部に接続する働きをなす。   The external electrode 15 may be made of a conductive metal such as Ag, Ni, Cu, Au, Al, or an alloy thereof, but the external electrode 15 is mainly made of the same metal or the same alloy as the internal electrode. It is desirable to make it an ingredient. A lead wire 16 is connected and fixed to the external electrode 15 by solder 17, and the lead wire 16 serves to connect the external electrode 15 to an external voltage supply unit.

本発明による圧電セラミック積層素子の製造方法について説明する。まず、PZT等の圧電セラミックスの仮焼粉末と、アクリル系、ブチラール系等の有機樹脂からなるバインダー、MFG(メチルプロピレングリコール)、BC(ブチルカルビトール)等の有機溶剤とDOP(フタル酸ジオチル)、BPBG(ブチルフタリルグリコール酸ブチル)等の可塑剤とを混合、分散させてスラリーを作製し、そのスラリーを周知のドクターブレード法やカレンダーロール法等のシート成型法により圧電セラミック11となるセラミックグリーンシートを作製する。   A method for manufacturing a piezoelectric ceramic multilayer element according to the present invention will be described. First, calcined powder of piezoelectric ceramics such as PZT, binder made of acrylic or butyral organic resin, organic solvent such as MFG (methylpropylene glycol), BC (butyl carbitol) and DOP (dioctyl phthalate) BPBG (butyl phthalyl glycolate) and other plasticizers are mixed and dispersed to prepare a slurry, and the slurry becomes a piezoelectric ceramic 11 by a sheet molding method such as a known doctor blade method or calendar roll method. Make a green sheet.

次に、例えばAg/Pd粉末にバインダー、可塑剤等を添加混合して導電性ぺーストを作製し、これを前記各グリーンシートの上面にスクリーン印刷によって1〜5μmの厚みに印刷する。そして、上面に導電性ぺーストが印刷されたグリーンシートを複数積層するとともに、この積層体の上下面に、導電性ペーストが印刷されていないグリーンシートを複数積層し、熱プレスにより一体化し、その後、この積層体をバインダーの種類に合わせて400〜500℃間の温度を選択して脱バインダー熱処理を行った後、大気雰囲気中1000℃で焼成することによって作製される。   Next, for example, a binder, a plasticizer, and the like are added to and mixed with Ag / Pd powder to prepare a conductive paste, and this is printed on the upper surface of each green sheet to a thickness of 1 to 5 μm by screen printing. And while laminating a plurality of green sheets with conductive paste printed on the upper surface, laminating a plurality of green sheets with no conductive paste printed on the upper and lower surfaces of this laminate, and integrating them by hot press, The laminate is produced by firing at 1000 ° C. in an air atmosphere after performing a binder removal heat treatment by selecting a temperature between 400 and 500 ° C. according to the type of binder.

図2は焼結した積層体の内部電極を1層おきに絶縁する工程を示している。また、図2(c)〜図2(g)の各図には下側に部分拡大図を付けた。まず、図2(a)の様に焼成した積層体31を切断線39に沿って、図2(b)の様に所定の大きさにスライス加工し、図2(c)の様にスライス加工された積層体32の側面にレジストをコート又はシートレジストを貼り付けてレジスト膜33を形成する。その後、露出している内部電極層を1層おきにマスキングし、露光する。次に、露光部分のレジストを除去し、図2(d)の様に1層おきに内部電極を露出させ、図2(e)の様にセラミック膜をエアロゾルデポジション法によりノズル34からエアロゾル化した微粉末を噴出し絶縁セラミック膜35を成形する。その後、レジストを全部剥離させ、図2(f)の様に1層おきに内部電極がセラミック膜により絶縁される。また、この側面と対向する側面についても同様な工程を施し、対向電極構造を成す様に1層おきにセラミックで絶縁する。その後、図2(g)の様にセラミック絶縁した面上ヘガラスフリット入りのAg外部電極ぺーストをスクリーン印刷法で形成し、乾燥後、焼き付けし、外部電極36を形成する。その外部電極36を形成した後、個々の大きさに切断し、リード線を半田により接続することにより本発明の積層セラミック圧電素子を作製する。また、電圧印加用の電源をつなぎ、分極処理などを行い、本発明の積層セラミック圧電アクチュエータを得る。   FIG. 2 shows a process of insulating the internal electrodes of the sintered laminate every other layer. Moreover, the partial enlarged view was attached to each figure of each figure of FIG.2 (c)-FIG.2 (g). First, the laminated body 31 baked as shown in FIG. 2A is sliced into a predetermined size as shown in FIG. 2B along the cutting line 39, and sliced as shown in FIG. 2C. A resist coating 33 or a sheet resist is attached to the side surface of the laminated body 32 to form a resist film 33. Thereafter, every other exposed internal electrode layer is masked and exposed. Next, the resist in the exposed portion is removed, the internal electrodes are exposed every other layer as shown in FIG. 2 (d), and the ceramic film is aerosolized from the nozzle 34 by the aerosol deposition method as shown in FIG. 2 (e). The insulating ceramic film 35 is formed by ejecting the fine powder. Thereafter, the resist is completely peeled off, and the internal electrodes are insulated by the ceramic film every other layer as shown in FIG. The same process is applied to the side surface facing this side surface, and every other layer is insulated with ceramic so as to form a counter electrode structure. After that, as shown in FIG. 2G, an Ag external electrode paste containing a glass frit on the surface insulated with ceramic is formed by a screen printing method, dried and baked to form an external electrode 36. After forming the external electrode 36, the multilayer ceramic piezoelectric element of the present invention is manufactured by cutting into individual sizes and connecting lead wires with solder. In addition, the power supply for voltage application is connected, and polarization treatment is performed to obtain the multilayer ceramic piezoelectric actuator of the present invention.

次に本発明の実施例を挙げてさらに説明する。圧電歪み定数d33=850pm/Vであり、組成が50Pb(Ni,Nb)O3−15PbZrO3−35PbTiO3で表される平均粒径が0.7μmの圧電セラミックスの仮焼粉末50wt%、アクリル樹脂系バインダー5wt%、溶剤としてメチルプロピレングリコール(MFG)を38wt%、ブチルカルビトール(BC)が10wt%、可塑剤としてフタル酸ジオクチル(DOP)が2wt%となる組成でホモジナイサーにて混合、分散してスラリーを作製し、そのスラリーをドクターブレード法にて25μm厚みに調整して、セラミックグリーンシートを作製した。 Next, examples of the present invention will be further described. Piezoelectric ceramics calcined powder of 50 wt%, acrylic strain constant d 33 = 850 pm / V, composition of 50 Pb (Ni, Nb) O 3 -15PbZrO 3 -35PbTiO 3 and an average particle size of 0.7 μm Mix and disperse in a homogenizer with a composition of 5 wt% resin binder, 38 wt% methylpropylene glycol (MFG) as solvent, 10 wt% butyl carbitol (BC), and 2 wt% dioctyl phthalate (DOP) as plasticizer A slurry was prepared, and the slurry was adjusted to a thickness of 25 μm by a doctor blade method to prepare a ceramic green sheet.

次に、平均粒径が0.5μm、Ag/Pd=80/20の粉末60wt%、バインダーとしてエチルセルロース4wt%、溶剤としてテルピネオールが36wt%の組成になるよう3本ロールにて混練し、これをグリーンシートの上面ヘスクリーン印刷法にてベタパターン2μm厚み目標にスクリーンメッシュは400メッシュを用いて、各種印刷条件を調整し、形成した。そして、Ag/Pdぺーストが印刷されたグリーンシート200枚を積層するとともに、この積層体の上下面に、導電性ぺーストが印刷されていないグリーンシートを10層ずつ積層し、70℃、50kgf/cm、30分の条件にて熱プレス機で一体化させた。この積層体を大気雰囲気中、450℃で脱バインダーを行った後、大気雰囲気中、1000℃で焼成し、内部電極の厚みが1.5μmで、圧電セラミックの厚みが20μm、圧電セラミック、内部電極の各々の積層数が200層の積層体を得た。 Next, kneading was carried out with three rolls so that the composition had an average particle size of 0.5 μm, Ag / Pd = 80/20 powder 60 wt%, ethyl cellulose 4 wt% as binder, and terpineol 36 wt% as solvent. The screen mesh was formed by adjusting the various printing conditions using a 400 mesh mesh with a solid pattern of 2 μm thickness target by the screen printing method on the upper surface of the green sheet. Then, 200 green sheets on which Ag / Pd paste was printed were laminated, and 10 layers of green sheets on which no conductive paste was printed were laminated on the upper and lower surfaces of the laminate, and 70 ° C., 50 kgf It was integrated with a hot press under the conditions of / cm 2 and 30 minutes. This laminate was debindered at 450 ° C. in an air atmosphere, and then fired at 1000 ° C. in an air atmosphere. The thickness of the internal electrode was 1.5 μm, the thickness of the piezoelectric ceramic was 20 μm, the piezoelectric ceramic, and the internal electrode A laminate having 200 layers was obtained.

その後、ワイヤーソーにより焼結された積層体を積層方向に対し垂直に2mm厚みのスライス体とした。スライスした積層体の内部電極が露出する面に、レジストをコートし、レジスト膜を形成した。そして露出している内部電極の端部へ1層おきにマスク出来るようなプレートにて露光処理、レジスト除去を施し、1層おきにマスクキング処理をした。続いて、平均粒径が0.5μmのPZT粉末を準備し、マスキングしていない露出した内部電極端部にエアロゾルデポジション法により面全体に成膜する様に5μm厚みにセラミックでコートした。その後、付着しているレジストを全部除去し、内部電極が1層おきに絶縁された構造体を作成した。さらに対向する面に対しても同様の処理を施し、内部電極が対向電極構造を成す様にセラミックで内部電極を1層おきに絶縁した。   Then, the laminated body sintered by the wire saw was made into the slice body of thickness 2mm perpendicular | vertical with respect to the lamination direction. A resist was coated on the surface of the sliced laminated body where the internal electrodes were exposed to form a resist film. Then, exposure processing and resist removal were performed with a plate that can mask every other layer on the exposed end portion of the internal electrode, and masking processing was performed on every other layer. Subsequently, a PZT powder having an average particle size of 0.5 μm was prepared, and was coated with a ceramic to a thickness of 5 μm so as to form a film over the entire surface by an aerosol deposition method on the exposed uncovered internal electrode end. Thereafter, all of the adhering resist was removed, and a structure in which internal electrodes were insulated every other layer was produced. Further, the same treatment was applied to the opposing surfaces, and the internal electrodes were insulated every other layer with ceramic so that the internal electrodes formed a counter electrode structure.

次に、平均粒径5μmのAg粉末が50wt%と、平均粒径5μmのケイ素を主成分とする軟化点が600℃の非晶質のほうけい酸塩ガラス粉末が5wt%、バインダーとしてエチルセルロースが5wt%、溶剤としてテルピネオールが40wt%となる様に充分に3本ロールミルにて混合して銀ガラス導電性ぺーストを作製し、前記積層体のセラミック絶縁を形成した面に露出した内部電極が全部接続する様にスクリーン印刷法にてl0μm厚みに印刷し、大気雰囲気800℃で焼き付けを行い、外部電極を形成した。そして、個々のアクチュエータとするために、ワイヤーソーにより2mm幅の素子になる様に切断して、形状が2mm×2mm×4.6mmの圧電セラミック積層層素子を得た。その後、外部電極にリード線を半田にて接続し、正極及び負極の外部電極にリード線を介して50V、15分間印加して分極処理を行い、積層セラミック圧電アクチュエータを作製した。   Next, 50 wt% of Ag powder having an average particle diameter of 5 μm, 5 wt% of amorphous borosilicate glass powder having a softening point of 600 ° C. having an average particle diameter of 5 μm as a main component, and ethyl cellulose as a binder. A silver glass conductive paste was prepared by mixing in a three roll mill so that 5 wt% and terpineol as a solvent would be 40 wt%, and all the internal electrodes exposed on the surface of the laminate on which the ceramic insulation was formed Printing was performed to a thickness of 10 μm by screen printing so as to be connected, and baking was performed at an air atmosphere of 800 ° C. to form external electrodes. And in order to make it an individual actuator, it cut | disconnected so that it might become an element of 2 mm width with a wire saw, and obtained the piezoelectric ceramic laminated layer element whose shape is 2 mm x 2 mm x 4.6 mm. Thereafter, lead wires were connected to the external electrodes by soldering, and polarization treatment was performed by applying 50 V for 15 minutes to the positive and negative external electrodes via the lead wires, thereby producing a multilayer ceramic piezoelectric actuator.

得られた積層型圧電アクチュエータに10Vの直流電圧を印加した結果、積層方向に1.5μmの設計値通りの変位量が得られた。また、絶縁抵抗値は8.0×l0Ωを示し、使用上充分な絶縁性も確保できた。 As a result of applying a DC voltage of 10 V to the obtained multilayer piezoelectric actuator, a displacement amount as designed value of 1.5 μm was obtained in the lamination direction. Further, the insulation resistance value was 8.0 × 10 8 Ω, and sufficient insulation properties could be secured.

本発明の一実施の形態での圧電セラミック積層素子を示し、図1(a)は斜視図、図1(b)はA−A線に沿った縦断面図、図1(c)は内部電極と外部電極の接合部を示す模式断面図。1A and 1B show a piezoelectric ceramic multilayer element according to an embodiment of the present invention, in which FIG. 1A is a perspective view, FIG. 1B is a longitudinal sectional view along the line AA, and FIG. Sectional drawing which shows the junction part of an electrode and an external electrode. 本発明に係る積層体の内部電極を1層おきに絶縁する工程を示し、図2(a)は積層体をスライス加工する工程の図、図2(b)はスライス加工した積層体の図、図2(c)はスライス加工された積層体にレジスト膜を形成する工程の図、図2(d)は1層おきに内部電極を露出させる工程の図、図2(e)はセラミック膜をエアロデポジション法により成形する工程の図、図2(f)は内部電極が1層おきにセラミック膜により絶縁された状態を示す図、図2(g)は外部電極を形成し個々の大きさに切断した状態を示す図。FIG. 2 (a) shows a process of slicing a laminated body, FIG. 2 (b) is a diagram of a sliced laminated body, showing a process of insulating every other layer of internal electrodes of the laminated body according to the present invention. FIG. 2C is a diagram of a process of forming a resist film on a sliced laminate, FIG. 2D is a diagram of a process of exposing internal electrodes every other layer, and FIG. 2E is a ceramic film. FIG. 2 (f) is a diagram showing a process of forming by the aero deposition method, FIG. 2 (f) is a diagram showing a state in which the internal electrodes are insulated by a ceramic film every other layer, and FIG. The figure which shows the state cut | disconnected in. 従来の圧電セラミック積層アクチュエータ素子を示し、図3(a)は、その斜視図、図3(b)はB−B線に沿った縦断面図、図3(c)は内部電極と外部電極の接合部を拡大して示す模式断面図。FIG. 3A shows a conventional piezoelectric ceramic multilayer actuator element, FIG. 3B is a perspective view thereof, FIG. 3B is a longitudinal sectional view taken along the line BB, and FIG. 3C is an internal electrode and an external electrode. The schematic cross section which expands and shows a junction part.

符号の説明Explanation of symbols

11 圧電セラミック
12 内部電極
13 積層体
14 セラミック絶縁体
15 外部電極
16 リード線
17 半田
24 絶縁ガラス
31 焼結した積層体
32 スライス加工された積層体
33 レジスト膜
34 ノズル
35 絶縁セラミック膜
36 外部電極
39 切断線
DESCRIPTION OF SYMBOLS 11 Piezoelectric ceramic 12 Internal electrode 13 Laminated body 14 Ceramic insulator 15 External electrode 16 Lead wire 17 Solder 24 Insulating glass 31 Sintered laminated body 32 Sliced laminated body 33 Resist film 34 Nozzle 35 Insulating ceramic film 36 External electrode 39 Cutting line

Claims (3)

圧電セラミック層と内部電極層が交互に積層され、前記内部電極層の端部が積層体の外形側面に露出し、前記端部を1層おきに絶縁する複数のセラミック絶縁体を有し、絶縁されなかった端部を接続する外部電極を有する圧電セラミック積層素子の製造方法において、前記セラミック絶縁体を形成する過程は、前記内部電極層の端部が露出した外形側面の全面へ感光性のレジストをコートするか又はドライシートレジストを貼ることによりレジスト層を形成する工程と、前記内部電極層の端部を1層おきにマスクするように前記レジスト層に露光処理を施し現像液で一部を除去する工程と、1層おきに内部電極層が露出した外形側面にエアロゾルデポジション法にて絶縁セラミック膜を形成する工程と、残ったレジスト層を全て剥離する工程とを有することを特徴とする圧電セラミック積層素子の製造方法。   Piezoelectric ceramic layers and internal electrode layers are alternately laminated, and the end portions of the internal electrode layers are exposed on the outer side surface of the laminate, and have a plurality of ceramic insulators that insulate the end portions every other layer. In the method of manufacturing a piezoelectric ceramic multilayer element having external electrodes that connect the end portions that have not been formed, the process of forming the ceramic insulator is performed by applying a photosensitive resist to the entire outer side surface where the end portions of the internal electrode layers are exposed. Forming a resist layer by coating or applying a dry sheet resist, and subjecting the resist layer to an exposure process so as to mask every other end of the internal electrode layer, and partially using a developer. A step of removing, a step of forming an insulating ceramic film by an aerosol deposition method on the outer side surface where the internal electrode layer is exposed every other layer, and a step of removing all remaining resist layers Method of manufacturing a piezoelectric ceramic multilayer element characterized by having a. 前記絶縁セラミック層は、チタン酸ジルコン酸鉛(Pb(Zr,Ti)O)を主成分とするセラミック、アルミナ(Al)、酸化ジルコニア(ZrO)、チタン酸バリウム(BaTiO)のいずれかからなることを特徴とする、請求項1記載の圧電セラミック積層素子の製造方法。 The insulating ceramic layer is composed of a ceramic mainly composed of lead zirconate titanate (Pb (Zr, Ti) O 3 ), alumina (Al 2 O 3 ), zirconia oxide (ZrO 2 ), and barium titanate (BaTiO 3 ). The method for manufacturing a piezoelectric ceramic multilayer element according to claim 1, comprising: 請求項1又は2記載の圧電セラミック積層素子の製造方法により得られた圧電セラミック積層素子を用いてアクチュエータを形成したことを特徴とする圧電セラミック積層アクチュエータ。   3. A piezoelectric ceramic multilayer actuator, wherein an actuator is formed using the piezoelectric ceramic multilayer element obtained by the method for manufacturing a piezoelectric ceramic multilayer element according to claim 1.
JP2005126130A 2005-04-25 2005-04-25 Method for manufacturing piezoelectric ceramic lamination element and piezoelectric ceramic lamination actuator Pending JP2006303349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005126130A JP2006303349A (en) 2005-04-25 2005-04-25 Method for manufacturing piezoelectric ceramic lamination element and piezoelectric ceramic lamination actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005126130A JP2006303349A (en) 2005-04-25 2005-04-25 Method for manufacturing piezoelectric ceramic lamination element and piezoelectric ceramic lamination actuator

Publications (1)

Publication Number Publication Date
JP2006303349A true JP2006303349A (en) 2006-11-02

Family

ID=37471251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005126130A Pending JP2006303349A (en) 2005-04-25 2005-04-25 Method for manufacturing piezoelectric ceramic lamination element and piezoelectric ceramic lamination actuator

Country Status (1)

Country Link
JP (1) JP2006303349A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302330A (en) * 2007-06-11 2008-12-18 Kansai Paint Co Ltd Method for forming inorganic material pattern by using aerosol
US10090454B2 (en) 2012-02-24 2018-10-02 Epcos Ag Method for producing an electric contact connection of a multilayer component
WO2020216612A1 (en) * 2019-04-26 2020-10-29 Pi Ceramic Gmbh Electromechanical actuator having ceramic insulation and method for production thereof
CN113794400A (en) * 2021-09-16 2021-12-14 黑龙江迪米电陶科技有限公司 Laminated piezoelectric ceramic high-speed deflection mirror structure and manufacturing process thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302330A (en) * 2007-06-11 2008-12-18 Kansai Paint Co Ltd Method for forming inorganic material pattern by using aerosol
US10090454B2 (en) 2012-02-24 2018-10-02 Epcos Ag Method for producing an electric contact connection of a multilayer component
WO2020216612A1 (en) * 2019-04-26 2020-10-29 Pi Ceramic Gmbh Electromechanical actuator having ceramic insulation and method for production thereof
DE102019206018B4 (en) 2019-04-26 2022-08-25 Pi Ceramic Gmbh Electromechanical actuator with ceramic insulation, method for its production and method for controlling such an actuator
CN113794400A (en) * 2021-09-16 2021-12-14 黑龙江迪米电陶科技有限公司 Laminated piezoelectric ceramic high-speed deflection mirror structure and manufacturing process thereof
CN113794400B (en) * 2021-09-16 2023-08-04 黑龙江迪米电陶科技有限公司 Laminated piezoelectric ceramic high-speed deflection mirror structure and manufacturing process thereof

Similar Documents

Publication Publication Date Title
JP7148239B2 (en) Ceramic electronic component and manufacturing method thereof
JP2004111939A (en) Laminated piezoelectric element and method of manufacturing the same
JP2001267646A (en) Stacked piezoelectriic actuator
JP2006303349A (en) Method for manufacturing piezoelectric ceramic lamination element and piezoelectric ceramic lamination actuator
JP3045531B2 (en) Stacked displacement element
JP4066432B2 (en) Manufacturing method of laminated piezoelectric ceramic element
JPH06140683A (en) Stacked piezoelectric actuator and manufacture thereof
JP2001250994A (en) Laminated piezoelectric element
JP4670260B2 (en) Multilayer electronic components
JP4211419B2 (en) Multilayer piezoelectric element
JPH053349A (en) Laminated piezo-electric actuator and its manufacture
JP2003008092A (en) Laminated piezoelectric element and its manufacturing method as well as sealing material for laminated piezoelectric element
JP4925563B2 (en) Multilayer piezoelectric element and jetting apparatus using the same
JPWO2013157293A1 (en) Film-type piezoelectric / electrostrictive element
JP2010199271A (en) Multilayer piezoelectric element, manufacturing method thereof, and vibrator
JP7312525B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2007134561A (en) Method for forming multilayer piezoelectric element
JPH06181343A (en) Laminated displacement element and manufacture thereof
JPH04273183A (en) Piezoelectric effect element and electrostriction effect element and its manufacture
JP2010171360A (en) Laminated piezoelectric element, method of manufacturing the same, and vibrator
WO2023157523A1 (en) Laminate-type piezoelectric element and electronic device
JP2010199272A (en) Laminated piezoelectric element, method of manufacturing the same, and vibrating body
JP4737948B2 (en) Manufacturing method of multilayer piezoelectric element
JPH06283777A (en) Multilayer piezoelectric actuater and manufacture thereof
JP3746475B2 (en) Manufacturing method of multilayer electronic components