JP4066432B2 - Manufacturing method of laminated piezoelectric ceramic element - Google Patents

Manufacturing method of laminated piezoelectric ceramic element Download PDF

Info

Publication number
JP4066432B2
JP4066432B2 JP2003371754A JP2003371754A JP4066432B2 JP 4066432 B2 JP4066432 B2 JP 4066432B2 JP 2003371754 A JP2003371754 A JP 2003371754A JP 2003371754 A JP2003371754 A JP 2003371754A JP 4066432 B2 JP4066432 B2 JP 4066432B2
Authority
JP
Japan
Prior art keywords
piezoelectric ceramic
internal electrode
powder
inorganic thin
ceramic element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003371754A
Other languages
Japanese (ja)
Other versions
JP2005136260A (en
Inventor
崇行 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2003371754A priority Critical patent/JP4066432B2/en
Publication of JP2005136260A publication Critical patent/JP2005136260A/en
Application granted granted Critical
Publication of JP4066432B2 publication Critical patent/JP4066432B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、外部からの応力を検知し電圧を発生する積層型圧電センサや電圧を加えて変位や力を発生する積層型圧電アクチュエータ等に好適な積層型圧電セラミックス素子の製造方法に関し、特に内部電極に卑金属を用いた積層型圧電セラミックス素子の製造方法に関するものである。 The present invention relates to a method for manufacturing a laminated piezoelectric ceramic element suitable for a laminated piezoelectric sensor that detects a stress from the outside and generates a voltage, a laminated piezoelectric actuator that generates a displacement and a force by applying a voltage, and the like. a method of manufacturing a multilayer piezoelectric ceramic element using the base metal in the electrode.

通常、積層型圧電セラミックス素子は、チタン酸ジルコン酸鉛を主成分とする圧電セラミックス板とAg−Pd合金などの貴金属からなる内部電極板を複数積層一体化し、内部電極が一層ずつ対向電極となるように一層置きに一対の共通の外部電極に接続した構造であり、グリーンシート法と呼ばれる厚膜印刷積層方法により、未焼結積層体を作り、脱バインダ工程と焼結工程は大気中で行うのが一般的である。   Usually, a laminated piezoelectric ceramic element is formed by integrating a plurality of piezoelectric ceramic plates mainly composed of lead zirconate titanate and an internal electrode plate made of a noble metal such as an Ag-Pd alloy, and the internal electrodes become a counter electrode one by one. In this structure, the layers are connected to a pair of common external electrodes, and an unsintered laminate is formed by a thick film printing lamination method called a green sheet method, and the binder removal step and the sintering step are performed in the atmosphere. It is common.

前述の脱バインダ工程は500℃程度の温度で未焼結積層体中に含まれるバインダ等の有機物を除去する工程で、またチタン酸ジルコン酸鉛セラミックスの焼結工程は950℃から1200℃程度の温度になる。このような脱バインダ工程や焼結工程で内部電極が酸化しないで板状の電極を形成するために、内部電極としてAg−Pd合金などの貴金属を用いる必要があった。   The binder removal step described above is a step of removing organic substances such as a binder contained in the unsintered laminate at a temperature of about 500 ° C., and the sintering step of lead zirconate titanate ceramics is about 950 ° C. to 1200 ° C. Become temperature. In order to form a plate-like electrode without oxidizing the internal electrode in such a binder removal process or sintering process, it was necessary to use a noble metal such as an Ag—Pd alloy as the internal electrode.

内部電極の内Pdはその生産が地球上で偏在化し、高価で、価格変動が大きく、積層型圧電セラミックス素子の材料費の中に占めるPdのコストが大きく、積層型圧電セラミックス素子の普及のためには内部電極のコスト低減の課題があった。   The production of Pd in the internal electrode is unevenly distributed on the earth, is expensive, has a large price fluctuation, and the cost of Pd in the material cost of the multilayer piezoelectric ceramic element is large. Has the problem of reducing the cost of the internal electrodes.

内部電極のコスト低減のために内部電極材料を卑金属とすることが考えられる。しかし、Cu、Ni、W等の卑金属は、貴金属と異なり焼結過程で酸化され易いので、低酸素分圧雰囲気中で焼結する必要があるが、低酸素雰囲気中では、酸化鉛を主成分とする圧電セラミックスが還元され易いことから、焼結雰囲気の調整が非常に困難であるという問題点が有った。   In order to reduce the cost of the internal electrode, the internal electrode material may be a base metal. However, base metals such as Cu, Ni, and W are easily oxidized during the sintering process unlike noble metals, so it is necessary to sinter in a low oxygen partial pressure atmosphere, but lead oxide is the main component in the low oxygen atmosphere. Since the piezoelectric ceramic is easily reduced, there is a problem that adjustment of the sintering atmosphere is very difficult.

類似の技術として、近年、誘電体セラミックスのBaTiO3を主成分とする積層型セラミックコンデンサでは、内部電極としてNiを用いた製品が開発、商品化されており、この場合、脱バインダ工程を大気等の高酸素分圧下の雰囲気で行うと、Ni内部電極が酸化膨張するために、積層セラミックコンデンサ内部に応力が生じ、焼結時に層間剥離やクラックが発生するという問題が有った。 As a similar technology, in recent years, products using Ni as an internal electrode have been developed and commercialized for multilayer ceramic capacitors mainly composed of dielectric ceramics BaTiO 3. In this case, the binder removal process is performed in the atmosphere, etc. When this was performed in an atmosphere under a high oxygen partial pressure, since the Ni internal electrode oxidatively expanded, stress was generated inside the multilayer ceramic capacitor, causing delamination and cracks during sintering.

そこで、内部電極材料としてNiの替わりにCuOまたはCu2Oを用いて、脱バインダ時に内部電極の酸化膨張が起こらないようにする提案がされている。この場合、脱バインダ後に、内部電極をCuに還元することが必要になるが、還元が不十分であると、内部電極の一部がCuOのまま残り、焼結時にセラミック中に拡散して、絶縁抵抗の劣化や、誘電特性を劣化させる要因となる問題が有る。 Therefore, it has been proposed to use CuO or Cu 2 O instead of Ni as the internal electrode material to prevent oxidative expansion of the internal electrode during debinding. In this case, it is necessary to reduce the internal electrode to Cu after debinding, but if the reduction is insufficient, a part of the internal electrode remains CuO and diffuses into the ceramic during sintering, There is a problem that causes deterioration of insulation resistance and dielectric characteristics.

このような問題を解決するために、特許文献1において、バインダ成分を除去した後、誘電体セラミックスと内部電極を共に還元させる工程と、前記還元工程の後に、内部電極が酸化せず、誘電体セラミックスが酸化する雰囲気中で焼成する工程とを備えた製造方法が提案されている。   In order to solve such a problem, in Patent Document 1, after the binder component is removed, the dielectric ceramic and the internal electrode are reduced together, and the internal electrode is not oxidized after the reduction step. There has been proposed a manufacturing method including a step of firing in an atmosphere in which ceramics are oxidized.

この方法は、還元雰囲気でBaTiO3系誘電体セラミックスと内部電極の還元処理を行った後、誘電体セラミックスのみ再酸化処理を行うものである。しかしながら、チタン酸ジルコン酸鉛のような、酸化鉛を含有した圧電セラミックスを還元処理すると、酸化鉛が還元されて金属鉛の液相になり、表面エネルギーの関係で、液相の金属鉛が焼結体内部に凝集したり焼結体表面に析出してしまい、更に再酸化処理を行うと圧電セラミックスの組成が不均一になり、圧電特性が得られないので、この方法を適用することは不可能である。 In this method, after reducing the BaTiO 3 dielectric ceramics and internal electrodes in a reducing atmosphere, only the dielectric ceramics are reoxidized. However, when reduction treatment is performed on piezoelectric ceramics containing lead oxide, such as lead zirconate titanate, lead oxide is reduced to a liquid phase of metallic lead, and the metallic lead in the liquid phase is sintered due to surface energy. If it is aggregated inside the body or deposited on the surface of the sintered body and further reoxidation treatment is performed, the composition of the piezoelectric ceramic becomes non-uniform and piezoelectric properties cannot be obtained. Is possible.

特開平5−82387号公報JP-A-5-82387

以上に述べたように、コスト低減のために卑金属の内部電極を使用した積層型圧電セラミックス素子では、焼結過程で内部電極が酸化膨張するために、積層セラミックス内部に応力が生じ、焼結時に層間剥離やクラックが発生するという問題が有り、またチタン酸鉛ジルコン酸鉛系の圧電セラミックスには酸化鉛が還元するので還元−再酸化処理工程は適用できないという問題点があった。   As described above, in a laminated piezoelectric ceramic element using a base metal internal electrode for cost reduction, the internal electrode oxidizes and expands during the sintering process. There is a problem that delamination and cracks occur, and a lead-zirconate titanate-based piezoelectric ceramic has a problem that the reduction-reoxidation process cannot be applied because lead oxide is reduced.

従って、本発明は、卑金属内部電極を使用し、層間剥離がなく、圧電特性が良好で、かつ焼結の雰囲気の調整が容易な、安価な積層型圧電セラミックス素子の製造方法を実現することを目的とするものである。 Accordingly, the present invention uses a base metal internal electrodes, without delamination, the piezoelectric characteristics are good, and easy adjustment of the atmosphere sintering, to realize a method for manufacturing inexpensive multilayer piezoelectric ceramic element It is intended.

本発明によれば、圧電セラミックス層と内部電極層とを複数、交互に積層して一体化した積層体で、前記内部電極層の表面露出部に内部電極と電気的に接続する外部電極を形成した積層型圧電セラミックス素子の製造方法において、前記内部電極はCuを主成分とし、Ni、Ir、Pd、Pt、Rhのうち少なくとも1種類の金属を0.5重量%以上、10重量%以下、含有する積層型圧電セラミックス素子の製造方法であって、前記内部電極を印刷する導電ペーストに含まれる金属粉末の平均粒子径は、0.1〜5μmであり、前記金属粉末の表面に、PbO、Bi 2 3 、SiO 2 、GeO 2 、Li 2 CO 3 、ZnO、B 2 3 、BaO、SrO、CaO、CuO、Agのうち少なくとも1種類以上からなる低融点の無機薄膜層を形成したことを特徴とする積層型圧電セラミックス素子の製造方法が得られる。 According to the present invention, a laminated body in which a plurality of piezoelectric ceramic layers and internal electrode layers are alternately laminated and integrated, and an external electrode that is electrically connected to the internal electrode is formed on a surface exposed portion of the internal electrode layer. In the laminated piezoelectric ceramic element manufacturing method , the internal electrode is mainly composed of Cu, and at least one metal of Ni, Ir, Pd, Pt, and Rh is 0.5 wt% or more, 10 wt% or less, It is a manufacturing method of the lamination type piezoelectric ceramic element to be contained, Comprising: The average particle diameter of the metal powder contained in the electrically conductive paste which prints the internal electrode is 0.1-5 micrometers, and the surface of the metal powder is PbO, Bi 2 O 3, SiO 2, GeO 2, Li 2 CO 3, ZnO, B 2 O 3, BaO, SrO, CaO, CuO, to form a low melting point of the inorganic thin layer consisting of at least one or more of Ag Method of fabricating the multilayer piezoelectric ceramic element, characterized in that is obtained.

また、本発明によれば、前記金属粉末の表面に形成した無機薄膜層は、融点が1000℃以下で、その厚さは、10nm以上であることを特徴とする上記の積層型圧電セラミックス素子の製造方法が得られる。 Further, according to the present invention, the inorganic thin film layer formed on the surface of the metal powder has a melting point at 1000 ° C. or less, the thickness of the multilayer piezoelectric ceramic element, characterized in that at 10nm or more A manufacturing method is obtained.

また、本発明によれば、前記金属粉末の表面に形成した無機薄膜層の含有量は、金属粉末に対し0.5重量%以上、5重量%以下であることを特徴とする上記の積層型圧電セラミックス素子の製造方法が得られる。 Further, according to the present invention, the content of the inorganic thin film layer formed on the surface of the metal powder, the metal powder to 0.5 wt% or more, above the multilayer, characterized in that 5 wt% or less A method for manufacturing a piezoelectric ceramic element is obtained.

また、本発明によれば、前記圧電セラミックス層を形成する圧電セラミックス原料粉末に、前記無機薄膜層と同じ元素からなる化合物を、0.1重量%以上、2重量%以下、含有することを特徴とする上記の積層型圧電セラミックス素子の製造方法が得られる。 According to the invention, the piezoelectric ceramic raw material powder forming the piezoelectric ceramic layer contains a compound comprising the same element as the inorganic thin film layer in an amount of 0.1 wt% or more and 2 wt% or less. The method for producing the laminated piezoelectric ceramic element is obtained.

また、本発明によれば、温度が950℃では酸素分圧1.01×103から1.01×102Pa、1050℃では、酸素分圧7.07×10-2から2.02×10-1Paの範囲の雰囲気で焼結することを特徴とする上記の積層型圧電セラミックス素子の製造方法が得られる。 Further, according to the present invention, when the temperature is 950 ° C., the oxygen partial pressure is 1.01 × 10 3 to 1.01 × 10 2 Pa, and when the temperature is 1050 ° C., the oxygen partial pressure is 7.07 × 10 −2 to 2.02 ×. It is possible to obtain the method for producing a laminated piezoelectric ceramic element as described above, wherein sintering is performed in an atmosphere in a range of 10 −1 Pa.

本発明により、内部電極用のCu粉末に合金成分の添加や無機薄膜層を形成することで、950℃〜1050℃の温度で焼結し、層間剥離がなく、圧電特性が良好で、特に脱バインダ工程で内部電極の酸化がなく、還元雰囲気で圧電セラミックスの還元がない安価な積層型圧電セラミックス素子の製造方法を提供することが可能である。 According to the present invention, by adding an alloy component or forming an inorganic thin film layer to Cu powder for internal electrodes, sintering is performed at a temperature of 950 ° C. to 1050 ° C., there is no delamination, and the piezoelectric characteristics are good. no oxidation of the internal electrode in the binder process, it is possible to provide a method for manufacturing inexpensive multilayer piezoelectric ceramic element is no reduction of the piezoelectric ceramic in a reducing atmosphere.

以下、本発明の実施の形態を実施例に基づいて説明する。   Hereinafter, embodiments of the present invention will be described based on examples.

出発原料として0.5Pb(Ni1/3Nb2/3)O3−0.15PbZrO3−0.35PbTiO3の化学組成を有する圧電セラミックス粉末を主成分とし、低温焼結助剤としてPbOを5mol%添加した。次に、この粉末と有機バインダとしてポリビニルブチラール(PVB)、分散剤としてエチレングリコールエチルエーテル系溶剤、可塑剤としてジブチルフタレートを表1に示した分量秤量し、ホモミキサーで混練しスラリーとし、ドクターブレード法により厚さ110μmのグリーンシートを作製した。 The main component is a piezoelectric ceramic powder having a chemical composition of 0.5 Pb (Ni 1/3 Nb 2/3 ) O 3 -0.15PbZrO 3 -0.35PbTiO 3 , and 5 mol of PbO as a low temperature sintering aid. % Was added. Next, this powder and polyvinyl butyral (PVB) as an organic binder, ethylene glycol ethyl ether solvent as a dispersing agent, and dibutyl phthalate as a plasticizer are weighed in amounts shown in Table 1, kneaded with a homomixer to form a slurry, and a doctor blade A green sheet having a thickness of 110 μm was prepared by the method.

Figure 0004066432
Figure 0004066432

導電ペーストは、Niを10重量%添加した平均粒径3μmのCu合金粉末を用い、エチルセルロース−αテルピネオール系有機ビヒクルとを表2に示した分量秤量し、3本ロールミルで混練して作製し、この導電ペーストを用いてスクリーン印刷法で前記グリーンシート上に寸法6mm−6mm、厚さ6μmの内部電極パターンを複数印刷した。   The conductive paste was prepared by using a Cu alloy powder having an average particle diameter of 3 μm to which 10% by weight of Ni was added, and weighing and weighing ethylcellulose-α terpineol-based organic vehicle as shown in Table 2, and kneading with a three-roll mill. Using this conductive paste, a plurality of internal electrode patterns having dimensions of 6 mm to 6 mm and a thickness of 6 μm were printed on the green sheet by screen printing.

Figure 0004066432
Figure 0004066432

次に、前記内部電極パターンを印刷したグリーンシートを寸法6.5mm−7mmに切断し、内部電極が一層ずつ対向電極となるように金型内に100枚積層し、温度150℃、圧力24.5MPaで熱プレスし、未焼結積層体とした。その後、この未焼結積層体を、大気および窒素中で250〜600℃の温度範囲を温度−雰囲気を制御して脱バインダした。図1(a)に、脱バインダの温度−雰囲気プロファイルを示した。次に、温度と雰囲気を自動制御して温度1050℃で2時間焼結を行い、積層型圧電セラミックス素子とし、端面に露出した内部電極に接続するAg外部電極を形成した。得られた積層型圧電セラミックス素子の性能を表3に示した。比較のため同じ圧電セラミックス粉末と、内部電極にAg70重量%−Pd30重量%の合金を用いて同じ構造の積層型圧電セラミックス素子を製造し、その性能を表3に示した。   Next, the green sheet on which the internal electrode pattern is printed is cut to a size of 6.5 mm to 7 mm, and 100 sheets are stacked in the mold so that each internal electrode becomes a counter electrode, and the temperature is 150 ° C. and the pressure is 24. It was hot-pressed at 5 MPa to obtain a green laminate. Thereafter, the green laminate was debindered by controlling the temperature-atmosphere in the temperature range of 250 to 600 ° C. in air and nitrogen. FIG. 1A shows a temperature-atmosphere profile of the binder removal. Next, the temperature and atmosphere were automatically controlled and sintered at a temperature of 1050 ° C. for 2 hours to form a laminated piezoelectric ceramic element, and an Ag external electrode connected to the internal electrode exposed at the end face. The performance of the obtained multilayer piezoelectric ceramic element is shown in Table 3. For comparison, a laminated piezoelectric ceramic element having the same structure was manufactured using the same piezoelectric ceramic powder and an alloy of Ag 70 wt% -Pd 30 wt% for the internal electrode, and the performance is shown in Table 3.

図2に、本発明の焼結時の自動制御の温度−酸素分圧範囲を示した。   FIG. 2 shows the temperature-oxygen partial pressure range of automatic control during sintering according to the present invention.

本実施例では、圧電セラミックスとして焼結温度が1050℃で、低酸素分圧下で比較的、還元され易い酸化鉛を主成分とする圧電セラミックスを用いたので、内部電極としてCu−10重量%Ni合金を用いたが、Cuに固溶し、融点が高くなる金属、例えばNi以外に、Ir、Pd、Pt、Rhのうち少なくとも1種類の金属であれば同様の効果が得られ、その添加量は金属の種類で異なるが、0.5重量%未満では融点を高くする効果が少なく、また、10重量%を超えると融点が高くなりすぎ、内部電極が焼結不足となるので、添加量は0.5〜10重量%が適当である。   In this example, a piezoelectric ceramic mainly composed of lead oxide, which has a sintering temperature of 1050 ° C. and is relatively easy to be reduced under a low oxygen partial pressure, was used as the piezoelectric ceramic. Although an alloy is used, the same effect can be obtained as long as it is at least one metal selected from Ir, Pd, Pt, and Rh other than a metal that dissolves in Cu and has a high melting point, for example, Ni. However, if the amount is less than 0.5% by weight, the effect of increasing the melting point is small, and if it exceeds 10% by weight, the melting point becomes too high and the internal electrode becomes insufficiently sintered. 0.5 to 10% by weight is suitable.

また、合金粉末の粒径は、0.1μm未満では自然に表面酸化が進行し、導電ペーストを作製することができなく、また焼結後の内部電極の厚さが3〜5μmが適当なことから合金粉末の粒径が5μmを超えると焼結後の内部電極厚みも5μmを超えてしまうので、導電ペーストに含まれる金属粉末の平均粒子径は、0.1〜5μmが適当である。   In addition, when the particle size of the alloy powder is less than 0.1 μm, the surface oxidation proceeds spontaneously, the conductive paste cannot be produced, and the thickness of the internal electrode after sintering is 3 to 5 μm. Therefore, if the particle diameter of the alloy powder exceeds 5 μm, the thickness of the internal electrode after sintering also exceeds 5 μm, so the average particle diameter of the metal powder contained in the conductive paste is suitably 0.1 to 5 μm.

実施例1と同じ圧電セラミックス粉末を使用して、内部電極を形成する金属粉末はCu粉末の表面上に、Bi23とSiO2とBaOからなる化合物を形成したCu粉末を用い、実施例1と同じ構造の未焼結積層型圧電セラミックス素子を製造した。 Using the same piezoelectric ceramic powder as in Example 1, the metal powder forming the internal electrode was a Cu powder in which a compound composed of Bi 2 O 3 , SiO 2 and BaO was formed on the surface of the Cu powder. An unsintered laminated piezoelectric ceramic element having the same structure as 1 was manufactured.

Cu粉末上へのBi23とSiO2とBaOの化合物の形成方法は、出発原料に金属アルコキシドを用い、これらを2メトキシエタノールに窒素雰囲気中で溶解させ、Cu粉末表面上に選択的に加水分解させるゾル・ゲル法を用いた表面修飾法により形成し、その後、還元雰囲気中で250℃で熱処理することにより、Cu粉末表面上に厚さ15nmの無機薄膜層を形成した。図3に、無機薄膜層を形成したCu粉末の断面図を示した。 A method of forming a compound of Bi 2 O 3 , SiO 2, and BaO on Cu powder uses metal alkoxide as a starting material, dissolves these in 2 methoxyethanol in a nitrogen atmosphere, and selectively forms on the Cu powder surface. An inorganic thin film layer having a thickness of 15 nm was formed on the surface of the Cu powder by forming the surface by a surface modification method using a sol-gel method for hydrolysis, followed by heat treatment at 250 ° C. in a reducing atmosphere. FIG. 3 shows a cross-sectional view of Cu powder on which an inorganic thin film layer is formed.

図4(a)は、Cu粉末の熱分析結果を示し、図4(b)は、無機薄膜層を形成したCu粉末の熱分析結果を示した。図4(a)から、Cu粉末は大気中約200℃でCu2Oになり、約330℃でCuOになるが、図4(b)から、無機薄膜層を形成したCu粉末は、大気中においても300℃まで酸化しないことが分かる。したがって、無機薄膜層を形成したCu粉末を内部電極とした未焼結積層型圧電セラミックス素子は大気中300℃でも脱バインダが可能であることが分かる。 FIG. 4A shows the thermal analysis result of the Cu powder, and FIG. 4B shows the thermal analysis result of the Cu powder on which the inorganic thin film layer is formed. From FIG. 4A, the Cu powder becomes Cu 2 O at about 200 ° C. in the atmosphere and becomes CuO at about 330 ° C. From FIG. 4B, the Cu powder with the inorganic thin film layer formed in the atmosphere As can be seen from FIG. Therefore, it can be seen that the unsintered laminated piezoelectric ceramic element using Cu powder with an inorganic thin film layer as an internal electrode can be debindered even at 300 ° C. in the atmosphere.

本実施例では、この未焼結積層体を、大気および窒素中で250〜600℃の温度範囲を図1(b)に示すような雰囲気プロファイルで脱バインダし、次に、図2の斜線部の酸素分圧の範囲内に収まるような雰囲気で温度1000℃で2時間焼結を行い、積層型圧電セラミックス素子とし、端面に露出した内部電極に接続するAg外部電極を形成した。得られた積層型圧電セラミックス素子の性能を表3に示した。   In this example, this unsintered laminate was debindered in the atmosphere and nitrogen at a temperature range of 250 to 600 ° C. with an atmosphere profile as shown in FIG. 1B, and then the hatched portion in FIG. Sintering was performed at a temperature of 1000 ° C. for 2 hours in an atmosphere so as to be within the range of the oxygen partial pressure, to form a laminated piezoelectric ceramic element, and an Ag external electrode connected to the internal electrode exposed at the end face was formed. The performance of the obtained multilayer piezoelectric ceramic element is shown in Table 3.

1000℃の焼結時に融点が1000℃以下の無機薄膜層は液相となり、圧電セラミックス層と内部電極層の界面に析出し、最終的には圧電セラミックス層と反応または拡散するので、無機薄膜層には圧電セラミックスと反応しても圧電特性を劣化させない化合物を用いる必要があり、Bi23−SiO2−BaO化合物以外でも、PbO、Bi23、SiO2、GeO2、Li2CO3、ZnO、B23、BaO、SrO、CaO、CuOのうち少なくとも1種類以上を含む低融点酸化物でも同様の効果を得ることができ、また、Agでも同様の効果が得られる。 An inorganic thin film layer having a melting point of 1000 ° C. or lower during sintering at 1000 ° C. becomes a liquid phase and precipitates at the interface between the piezoelectric ceramic layer and the internal electrode layer and eventually reacts or diffuses with the piezoelectric ceramic layer. It is necessary to use a compound that does not degrade the piezoelectric characteristics even when it reacts with piezoelectric ceramics. Other than Bi 2 O 3 —SiO 2 —BaO compounds, PbO, Bi 2 O 3 , SiO 2 , GeO 2 , Li 2 CO The same effect can be obtained with a low melting point oxide containing at least one of 3 , ZnO, B 2 O 3 , BaO, SrO, CaO and CuO, and the same effect can be obtained with Ag.

図5には、Bi23−SiO2−BaOの無機薄膜層の厚さと、Cu粉末の酸化温度を示した。図5から、無機薄膜層の厚さが10nm未満では、Cu粉末の表面全体に無機薄膜層を形成することができず、部分的に酸化することが分かる。無機薄膜層の厚さを10nm以上にすることで、Cu粉末の表面に均一に無機薄膜層を形成し、Cu粉末の酸化開始温度を300℃以上になるので、大気中の脱バインダ温度を300℃とすることが可能になり、有機成分の除去が完全になり緻密な焼結体を得ることができる。 FIG. 5 shows the thickness of the Bi 2 O 3 —SiO 2 —BaO inorganic thin film layer and the oxidation temperature of the Cu powder. FIG. 5 shows that when the thickness of the inorganic thin film layer is less than 10 nm, the inorganic thin film layer cannot be formed on the entire surface of the Cu powder and is partially oxidized. By setting the thickness of the inorganic thin film layer to 10 nm or more, the inorganic thin film layer is uniformly formed on the surface of the Cu powder, and the oxidation start temperature of the Cu powder becomes 300 ° C. or higher. It is possible to set the temperature to 0 ° C., and the removal of organic components is complete, and a dense sintered body can be obtained.

図6に、10nmの無機薄膜層を形成したときのCu粉末の粒子径と無機薄膜層の含有量を示した。焼結後の積層体の内部電極の厚さは1〜5μmが適しているので、Cu粉末の粒子径は、3μm以下が好ましい。また、無機薄膜層の含有量は、0.5重量%未満では、Cu粉末の粒子径が5μmを超えるので無機薄膜層の含有量は、0.5重量%以上必要であり、無機薄膜層の含有量が多いと、無機薄膜化合物の成分が焼結時にCuや圧電セラミック層と反応してしまい、電気抵抗や圧電特性が劣化するので、無機薄膜層の含有量はCu粉末に対して5重量%以下が好適である。   FIG. 6 shows the particle diameter of the Cu powder and the content of the inorganic thin film layer when the 10 nm inorganic thin film layer was formed. Since the thickness of the internal electrode of the laminated body after sintering is suitably 1 to 5 μm, the particle diameter of the Cu powder is preferably 3 μm or less. In addition, if the content of the inorganic thin film layer is less than 0.5% by weight, the particle diameter of the Cu powder exceeds 5 μm, so the content of the inorganic thin film layer is required to be 0.5% by weight or more. If the content is large, the component of the inorganic thin film compound reacts with Cu and the piezoelectric ceramic layer during sintering, and the electrical resistance and piezoelectric characteristics deteriorate, so the content of the inorganic thin film layer is 5 wt.% With respect to the Cu powder. % Or less is preferred.

実施例1と同じ圧電セラミックス粉末に、Bi23とSiO2とBaOからなる化合物を2重量%添加した粉末を出発原料として用い、内部電極を形成する金属粉末はCu粉末の表面上に、Bi23とSiO2とBaOからなる化合物を形成したCu粉末を用い、実施例2と同じ条件で脱バインダし、次に、図2の斜線部の酸素分圧の範囲内に収まるような雰囲気で温度950℃で2時間焼結を行い、実施例1と同じ構造の積層型圧電セラミックス素子を製造した。 A powder obtained by adding 2% by weight of a compound composed of Bi 2 O 3 , SiO 2 and BaO to the same piezoelectric ceramic powder as in Example 1 was used as a starting material, and the metal powder forming the internal electrode was on the surface of the Cu powder. Using Cu powder in which a compound composed of Bi 2 O 3 , SiO 2 and BaO was formed, the binder was removed under the same conditions as in Example 2, and then within the range of the oxygen partial pressure in the shaded area in FIG. Sintering was performed in an atmosphere at a temperature of 950 ° C. for 2 hours to produce a laminated piezoelectric ceramic element having the same structure as in Example 1.

実施例1に比較し、実施例2と実施例3が、それぞれ50℃と100℃焼結温度が低くなっているのは、低融点の化合物が焼結助剤となり、より低温度で焼結の緻密化が進行するためである。   Compared to Example 1, Example 2 and Example 3 have lower sintering temperatures of 50 ° C. and 100 ° C., respectively, because the low melting point compound serves as a sintering aid and sintering at a lower temperature. This is because the densification proceeds.

焼結時にCu粉末の表面上のBi23とSiO2とBaOからなる化合物の無機薄膜層が液相になり、圧電セラミックス層に拡散または反応した場合には、濃度勾配ができるため、圧電セラミックス原料粉末に無機薄膜層と同じ元素を含む化合物を0.1〜2重量%添加することにより、内部電極と圧電セラミックス間の濃度勾配を少なくできるので、電気特性のばらつきの少ない積層型圧電セラミック素子を作製することができる。圧電セラミックス原料粉末への無機薄膜層と同じ元素を含む化合物の添加量が0.1重量%未満では濃度勾配低減効果が得られず、また2重量%を超えると液相の量が多くなり、圧電セラミックスと反応しすぎて、圧電セラミックスが変質し電気的特性が低下する。得られた積層型圧電セラミックス素子の性能を表3に示した。 When an inorganic thin film layer of a compound composed of Bi 2 O 3 , SiO 2, and BaO on the surface of the Cu powder becomes a liquid phase during sintering and diffuses or reacts with the piezoelectric ceramic layer, a concentration gradient is generated. By adding 0.1 to 2% by weight of the compound containing the same element as the inorganic thin film layer to the ceramic raw material powder, the concentration gradient between the internal electrode and the piezoelectric ceramic can be reduced. An element can be manufactured. If the amount of the compound containing the same element as the inorganic thin film layer to the piezoelectric ceramic raw material powder is less than 0.1% by weight, the concentration gradient reduction effect cannot be obtained, and if it exceeds 2% by weight, the amount of the liquid phase increases. It reacts too much with the piezoelectric ceramic, and the piezoelectric ceramic is altered and the electrical characteristics are lowered. The performance of the obtained multilayer piezoelectric ceramic element is shown in Table 3.

実施例1と同じ圧電セラミックス粉末を使用して、内部電極を形成する金属粉末はCu粉末の表面上に、Bi23とSiO2とBaOからなる化合物を形成したCu粉末を用い、実施例1と同じ構造の未焼結積層型圧電セラミックス素子を製造した。 Using the same piezoelectric ceramic powder as in Example 1, the metal powder forming the internal electrode was a Cu powder in which a compound composed of Bi 2 O 3 , SiO 2 and BaO was formed on the surface of the Cu powder. An unsintered laminated piezoelectric ceramic element having the same structure as 1 was manufactured.

本実施例では、圧電セラミックスとして酸化鉛系セラミックスと内部電極としてCuを使用しているので、焼結過程で酸化鉛が還元されず、Cu内部電極が酸化されない酸素分圧雰囲気での焼結が必要で、温度が950℃では酸素分圧1.01×103から1.01×102Pa、1050℃では、酸素分圧7.07×10-2から2.02×10-1Paの範囲の雰囲気で焼結した。この雰囲気範囲より酸素分圧高いとCu内部電極が酸化され、低いと酸化鉛が還元されるので積層型圧電セラミックス素子としての電気的特性が得られない。 In this embodiment, lead oxide ceramics are used as piezoelectric ceramics and Cu is used as internal electrodes. Therefore, lead oxide is not reduced in the sintering process, and sintering in an oxygen partial pressure atmosphere in which Cu internal electrodes are not oxidized is performed. When the temperature is 950 ° C., the oxygen partial pressure is 1.01 × 10 3 to 1.01 × 10 2 Pa. At 1050 ° C., the oxygen partial pressure is 7.07 × 10 −2 to 2.02 × 10 −1 Pa. Sintered in a range of atmospheres. If the oxygen partial pressure is higher than this atmospheric range, the Cu internal electrode is oxidized, and if it is lower, lead oxide is reduced, so that the electrical characteristics as a multilayer piezoelectric ceramic element cannot be obtained.

得られた積層型圧電セラミックス素子の性能を表3に示した。   The performance of the obtained multilayer piezoelectric ceramic element is shown in Table 3.

Figure 0004066432
Figure 0004066432

表3から、本発明の実施例1乃至実施例4で得られた積層型圧電セラミックス素子の性能は、内部電極に貴金属を用いた比較例と遜色無く、また、内部電極のコストが比較例の1/3から1/7に低減しているのが分かる。   From Table 3, the performance of the laminated piezoelectric ceramic elements obtained in Examples 1 to 4 of the present invention is comparable to the comparative example in which noble metal is used for the internal electrode, and the cost of the internal electrode is that of the comparative example. It can be seen that the ratio is reduced from 1/3 to 1/7.

脱バインダの温度−雰囲気プロファイルを示す図。図1(a)は、本発明の実施例1の脱バインダの温度−雰囲気プロファイル、図1(b)は、本発明の実施例2の脱バインダの温度−雰囲気プロファイル。The figure which shows the temperature-atmosphere profile of a binder removal. FIG. 1A shows the temperature-atmosphere profile of the binder removed in Example 1 of the present invention, and FIG. 1B shows the temperature-atmosphere profile of the binder removed in Example 2 of the present invention. 本発明の焼結時の自動制御の温度−酸素分圧範囲。Temperature-oxygen partial pressure range of automatic control during sintering of the present invention. 本発明の無機薄膜層を形成したCu粉末の断面図。Sectional drawing of Cu powder in which the inorganic thin film layer of this invention was formed. Cu粉末と無機薄膜層を形成したCu粉末の熱分析結果を示す図。図4(a)は、Cu粉末の熱分析結果を示す図、図4(b)は、無機薄膜層を形成したCu粉末の熱分析結果を示す図。The figure which shows the thermal-analysis result of Cu powder which formed Cu powder and the inorganic thin film layer. FIG. 4A is a diagram showing a thermal analysis result of Cu powder, and FIG. 4B is a diagram showing a thermal analysis result of Cu powder on which an inorganic thin film layer is formed. Bi23−SiO2−BaO無機薄膜層の厚さと、Cu粉末の酸化温度の関係を示す図。It shows the thickness, the relationship between the oxidation temperature of Cu powder Bi 2 O 3 -SiO 2 -BaO inorganic thin layer. 10nmの無機薄膜層を形成したときのCu粉末の粒子径と無機薄膜層の含有量の関係を示す図。The figure which shows the relationship between the particle diameter of Cu powder when forming a 10 nm inorganic thin film layer, and content of an inorganic thin film layer.

符号の説明Explanation of symbols

31 Cu粉末
32 無機薄膜層
31 Cu powder 32 Inorganic thin film layer

Claims (5)

圧電セラミックス層と内部電極層とを複数、交互に積層して一体化した積層体で、前記内部電極層の表面露出部に内部電極と電気的に接続する外部電極を形成した積層型圧電セラミックス素子の製造方法において、前記内部電極はCuを主成分とし、Ni、Ir、Pd、Pt、Rhのうち少なくとも1種類の金属を0.5重量%以上、10重量%以下、含有する積層型圧電セラミックス素子の製造方法であって、前記内部電極を印刷する導電ペーストに含まれる金属粉末の平均粒子径は、0.1〜5μmであり、前記金属粉末の表面に、PbO、Bi 2 3 、SiO 2 、GeO 2 、Li 2 CO 3 、ZnO、B 2 3 、BaO、SrO、CaO、CuO、Agのうち少なくとも1種類以上からなる低融点の無機薄膜層を形成したことを特徴とする積層型圧電セラミックス素子の製造方法A multilayer piezoelectric ceramic element in which a plurality of piezoelectric ceramic layers and internal electrode layers are alternately laminated and integrated, and an external electrode electrically connected to the internal electrode is formed on the exposed surface of the internal electrode layer in the method of manufacturing, the internal electrode is mainly composed of Cu, Ni, Ir, Pd, Pt, at least one metal of 0.5 wt% or more of Rh, 10 wt% or less, the laminated piezoelectric ceramics containing In the device manufacturing method, the average particle diameter of the metal powder contained in the conductive paste for printing the internal electrode is 0.1 to 5 μm, and PbO, Bi 2 O 3 , SiO on the surface of the metal powder. 2, GeO 2, Li 2 CO 3, ZnO, B 2 O 3, BaO, be SrO, CaO, CuO, characterized in that the formation of the low-melting inorganic thin layer consisting of at least one or more of Ag Method for producing a product layer piezoelectric ceramic element. 前記金属粉末の表面に形成した無機薄膜層は、融点が1000℃以下で、その厚さは、10nm以上であることを特徴とする請求項に記載の積層型圧電セラミックス素子の製造方法2. The method for manufacturing a multilayer piezoelectric ceramic element according to claim 1 , wherein the inorganic thin film layer formed on the surface of the metal powder has a melting point of 1000 ° C. or less and a thickness of 10 nm or more. 前記金属粉末の表面に形成した無機薄膜層の含有量は、金属粉末に対し0.5重量%以上、5重量%以下であることを特徴とする請求項またはに記載の積層型圧電セラミックス素子の製造方法The multilayer piezoelectric ceramic according to claim 1 or 2 , wherein the content of the inorganic thin film layer formed on the surface of the metal powder is 0.5 wt% or more and 5 wt% or less with respect to the metal powder. Device manufacturing method . 前記圧電セラミックス層を形成する圧電セラミックス原料粉末に、前記無機薄膜層と同じ元素からなる化合物を、0.1重量%以上、2重量%以下、含有することを特徴とする請求項1乃至3のいずれかに記載の積層型圧電セラミックス素子の製造方法A piezoelectric ceramic material powder for forming the piezoelectric ceramic layer, a compound having the same elements as the inorganic thin layer, 0.1 wt% or more, 2% by weight, of claims 1 to 3, characterized in that it contains A method for producing a multilayer piezoelectric ceramic element according to any one of the above. 温度が950℃では酸素分圧1.01×103から1.01×102Pa、1050℃では、酸素分圧7.07×10-2から2.02×10-1Paの範囲の雰囲気で焼結することを特徴とする請求項1乃至4のいずれかに記載の積層型圧電セラミックス素子の製造方法。 When the temperature is 950 ° C., the oxygen partial pressure is 1.01 × 10 3 to 1.01 × 10 2 Pa, and when the temperature is 1050 ° C., the oxygen partial pressure is 7.07 × 10 −2 to 2.02 × 10 −1 Pa. 5. The method for manufacturing a laminated piezoelectric ceramic element according to claim 1, wherein the method is sintered at a temperature.
JP2003371754A 2003-10-31 2003-10-31 Manufacturing method of laminated piezoelectric ceramic element Expired - Lifetime JP4066432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003371754A JP4066432B2 (en) 2003-10-31 2003-10-31 Manufacturing method of laminated piezoelectric ceramic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003371754A JP4066432B2 (en) 2003-10-31 2003-10-31 Manufacturing method of laminated piezoelectric ceramic element

Publications (2)

Publication Number Publication Date
JP2005136260A JP2005136260A (en) 2005-05-26
JP4066432B2 true JP4066432B2 (en) 2008-03-26

Family

ID=34648321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003371754A Expired - Lifetime JP4066432B2 (en) 2003-10-31 2003-10-31 Manufacturing method of laminated piezoelectric ceramic element

Country Status (1)

Country Link
JP (1) JP4066432B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107082632A (en) * 2017-04-25 2017-08-22 成都新柯力化工科技有限公司 A kind of piezoelectric and preparation method for adapting to hot environment

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196717A (en) * 2005-01-14 2006-07-27 Nec Tokin Corp Laminated piezoelectric ceramics element, and manufacturing method thereof
JP4873327B2 (en) * 2005-06-03 2012-02-08 株式会社村田製作所 Piezoelectric element
JP2007258280A (en) * 2006-03-20 2007-10-04 Tdk Corp Laminated piezoelectric element
JP5392603B2 (en) * 2009-03-13 2014-01-22 株式会社村田製作所 Method for manufacturing piezoelectric ceramic electronic component
DE102012103994A1 (en) 2012-05-07 2013-11-21 Epcos Ag Method for producing a multilayer component and multilayer component produced by the method
JP6115163B2 (en) * 2013-02-05 2017-04-19 株式会社村田製作所 Multilayer piezoelectric ceramic element and manufacturing method thereof
CN106663493A (en) 2014-08-28 2017-05-10 E.I.内穆尔杜邦公司 Copper-containing conductive pastes and electrodes made therefrom
JP6564024B2 (en) 2014-08-28 2019-08-21 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Method for manufacturing a solar cell having a copper electrode
DE112014006910T5 (en) 2014-08-28 2017-05-18 E.I. Du Pont De Nemours And Company Copper-containing conductive pastes and electrodes made therefrom

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107082632A (en) * 2017-04-25 2017-08-22 成都新柯力化工科技有限公司 A kind of piezoelectric and preparation method for adapting to hot environment
CN107082632B (en) * 2017-04-25 2019-07-23 成都新柯力化工科技有限公司 A kind of piezoelectric material and preparation method adapting to hot environment

Also Published As

Publication number Publication date
JP2005136260A (en) 2005-05-26

Similar Documents

Publication Publication Date Title
CN108257779B (en) Laminated ceramic electronic component
JP7227690B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2018032788A (en) Multilayer ceramic capacitor and method for manufacturing the same
JP2019201161A (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2018041814A (en) Multilayer ceramic capacitor and manufacturing method of the same
JP4066432B2 (en) Manufacturing method of laminated piezoelectric ceramic element
JP3477089B2 (en) Multilayer ceramic capacitor and method of manufacturing the same
JP2005174974A (en) Manufacturing method for laminated piezoelectric body
JPWO2005117040A1 (en) Electronic component, multilayer ceramic capacitor, and method for manufacturing the same
JP5527404B2 (en) Multilayer ceramic electronic components
JP3935089B2 (en) Manufacturing method of composite electronic component
JP5641139B2 (en) Multilayer ceramic electronic component and method of manufacturing multilayer ceramic electronic component
JP2019145684A (en) Ceramic capacitor and manufacturing method thereof
JP5527405B2 (en) Multilayer ceramic electronic components
JPH0582387A (en) Manufacture of laminated ceramic capacitor
JP2007149780A (en) Multilayered ceramic electronic component and its manufacturing method
JP2018182107A (en) Multilayer ceramic capacitor and manufacturing method thereof
JP5527403B2 (en) Multilayer ceramic electronic components
JP6946907B2 (en) Laminated electronic components
JP5527400B2 (en) Multilayer ceramic electronic components
JP5527401B2 (en) Multilayer ceramic electronic components
JP4163637B2 (en) Electronic component, multilayer ceramic capacitor, and method for manufacturing the same
JP2007134561A (en) Method for forming multilayer piezoelectric element
JP4231653B2 (en) Manufacturing method of laminated piezoelectric actuator
JPH11233364A (en) Laminated ceramics capacitor and manufacture of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4066432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term