JP2006265059A - Manufacturing method of piezoelectric material and laminated piezoelectric element - Google Patents

Manufacturing method of piezoelectric material and laminated piezoelectric element Download PDF

Info

Publication number
JP2006265059A
JP2006265059A JP2005088039A JP2005088039A JP2006265059A JP 2006265059 A JP2006265059 A JP 2006265059A JP 2005088039 A JP2005088039 A JP 2005088039A JP 2005088039 A JP2005088039 A JP 2005088039A JP 2006265059 A JP2006265059 A JP 2006265059A
Authority
JP
Japan
Prior art keywords
piezoelectric
piezoelectric material
general formula
fired
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005088039A
Other languages
Japanese (ja)
Inventor
Hirotaka Kubota
弘貴 久保田
Etsuro Yasuda
悦朗 安田
Atsuhiro Sumiya
篤宏 角谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2005088039A priority Critical patent/JP2006265059A/en
Priority to DE200610013200 priority patent/DE102006013200A1/en
Publication of JP2006265059A publication Critical patent/JP2006265059A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • C04B35/493Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT containing also other lead compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • H10N30/053Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes by integrally sintering piezoelectric or electrostrictive bodies and electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead based oxides
    • H10N30/8554Lead zirconium titanate based
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3265Mn2O3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6586Processes characterised by the flow of gas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6588Water vapor containing atmospheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a piezoelectric material and a laminated piezoelectric element which can be fired at a low temperature and can exhibit an excellent displacement amount even if fired at a low temperature. <P>SOLUTION: The piezoelectric material contains 0.07 mol% or less of Sb<SB>2</SB>O<SB>3</SB>or Sb<SB>2</SB>O<SB>5</SB>against 1 mol of a compound expressed by general formula (1): (Pb<SB>1-x</SB>Ma<SB>x</SB>)(Zr<SB>1-y-z</SB>Ti<SB>y</SB>Sb<SB>z</SB>)<SB>1-p-q</SB>(Y<SB>1/2</SB>Nb<SB>1/2</SB>)<SB>p</SB>(Mn<SB>1-B1-B2</SB>W<SB>B1</SB>Sb<SB>B2</SB>)<SB>q</SB>O<SB>3</SB>(wherein Ma is one kind or more selected from the group consisting of Ba, La, Sr, and Ce). In a manufacturing method of a laminated piezoelectric element 1 which is obtained by laminating piezoelectric layer 11 and internal electrodes layers 21, 22 alternately, as a piezoelectric material there is used a material containing a compound of above general formula (1) and Sb<SB>2</SB>O<SB>3</SB>and/or Sb<SB>2</SB>O<SB>5</SB>. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、低温焼成可能な圧電材料及び該圧電材料を用いて作製される積層型圧電素子に関する。   The present invention relates to a piezoelectric material that can be fired at a low temperature and a laminated piezoelectric element manufactured using the piezoelectric material.

従来より、燃料噴射装置等のアクチュエータには、圧電層と内部電極層とを積層してなる積層型圧電素子が用いられている。高性能のアクチュエータを達成するために、上記積層型圧電素子としては、キュリー点及び変位量が高く、損失が小さいものが望まれている。
上記積層型圧電素子は、例えば次のようにして製造することができる。
即ち、まず、圧電材料のシートを作製し、該シートの上に電極材料を印刷する。次いで電極材料を印刷した圧電材料のシートを積層し、積層体を作製する。次に、積層体を脱脂し、焼成して上記積層型圧電素子を作製することができる。
上記圧電材料の例としては、A(2価)B(4価)O3で表される複合ペロブスカイト構造を有するPZT等が用いられていた。その他にも、例えば下記の特許文献1に示される圧電材料等が開発されている。
Conventionally, a laminated piezoelectric element in which a piezoelectric layer and an internal electrode layer are laminated is used for an actuator such as a fuel injection device. In order to achieve a high-performance actuator, it is desired that the multilayer piezoelectric element has a high Curie point and a large amount of displacement and a small loss.
The laminated piezoelectric element can be manufactured, for example, as follows.
That is, first, a sheet of piezoelectric material is produced, and an electrode material is printed on the sheet. Next, a sheet of piezoelectric material on which the electrode material is printed is laminated to produce a laminate. Next, the multilayer body can be degreased and fired to produce the multilayer piezoelectric element.
As an example of the piezoelectric material, PZT having a composite perovskite structure represented by A (divalent) B (tetravalent) O 3 has been used. In addition, for example, a piezoelectric material shown in Patent Document 1 below has been developed.

ところで、積層型圧電素子の製造方法においては、圧電材料を充分に焼結させるために、上記積層体は1200℃を超える高温で焼成される。そのため、圧電材料と同時に焼成される電極材料としては、圧電材料が焼結する温度、即ち1200℃以上という高温でも溶融しない材料を用いる必要があった。また、上記積層体の焼成は、通常酸化性雰囲気にて行われるため、上記電極材料は酸化性雰囲気で焼成しても酸化され難いものを用いる必要があった。このような理由で、上記電極材料としては貴金属を用いる必要があった。   By the way, in the manufacturing method of the laminated piezoelectric element, the laminated body is fired at a high temperature exceeding 1200 ° C. in order to sufficiently sinter the piezoelectric material. Therefore, as the electrode material fired simultaneously with the piezoelectric material, it is necessary to use a material that does not melt even at a temperature at which the piezoelectric material sinters, that is, a high temperature of 1200 ° C. or higher. In addition, since the laminate is usually fired in an oxidizing atmosphere, it is necessary to use an electrode material that is not easily oxidized even when fired in an oxidizing atmosphere. For this reason, it was necessary to use a noble metal as the electrode material.

しかし、貴金属は非常に高価である。そのため、電極材料に貴金属を用いると、積層型圧電素子の製造コストのうち、内部電極層の材料費が占める割合が非常に大きくなる。そのため、積層型圧電素子の低価格化が困難になっていた。
そこで、電極材料として、比較的安価な銅、ニッケル、銀等を用いることができるように、低温焼成が可能な圧電材料の開発が望まれている。そして、一般に、圧電材料中のPbOを増量したり、PbO−WO3等の低融点組成物を添加したりすることにより、圧電材料の低温焼成が可能になることが知られている。
However, noble metals are very expensive. Therefore, when a noble metal is used as the electrode material, the ratio of the material cost of the internal electrode layer to the manufacturing cost of the multilayer piezoelectric element becomes very large. Therefore, it has been difficult to reduce the cost of the multilayer piezoelectric element.
Therefore, development of a piezoelectric material that can be fired at a low temperature is desired so that relatively inexpensive copper, nickel, silver, or the like can be used as an electrode material. In general, it is known that the piezoelectric material can be fired at a low temperature by increasing the amount of PbO in the piezoelectric material or adding a low melting point composition such as PbO-WO 3 .

しかしながら、PbOの増量や単に低融点組成物を添加するだけでは、実用に耐えうる程充分な変位量を発揮できなくなるという問題があった。したがって、従来の圧電材料においては、低温焼成と、変位量等の圧電特性とを両立させることは困難であった。   However, there has been a problem that an increase in PbO or a simple addition of a low-melting-point composition cannot exhibit a displacement enough to withstand practical use. Therefore, in conventional piezoelectric materials, it has been difficult to achieve both low-temperature firing and piezoelectric characteristics such as displacement.

特開2001−322870号公報JP 2001-322870 A

本発明はかかる従来の問題点に鑑みてなされたものであって、低温焼成が可能であり、低温で焼成しても優れた変位量を示すことができる圧電材料及び積層型圧電素子の製造方法を提供しようとするものである。   The present invention has been made in view of such conventional problems, and can be fired at a low temperature, and can exhibit excellent displacement even when fired at a low temperature, and a method for manufacturing a multilayer piezoelectric element Is to provide.

第1の発明は、一般式(1):(Pb1-xMax)(Zr1-y-zTiySbz)1-p-q(Y1/2Nb1/2)p(Mn1-B1-B2B1SbB2)q3で示される化合物と、Sb23及び/又はSb25とを含有する圧電材料(ただし、MaはBa、La、Sr、及びCeから選ばれる1種以上)であって、
該圧電材料は、上記一般式(1)で表される化合物1molに対してSb23及び/又はSb25を0.7mol%以下含有し、
0.04≦x≦0.1
0.44≦y≦0.48
0≦z≦0.01
0≦p≦0.02
0.003≦q≦0.01
0≦B1≦0.34
0≦B2≦0.5
であることを特徴とする圧電材料にある(請求項1)。
The first invention of the general formula (1) :( Pb 1-x Ma x) (Zr 1-yz Ti y Sb z) 1-pq (Y 1/2 Nb 1/2) p (Mn 1-B1- B2 W B1 Sb B2 ) A piezoelectric material containing a compound represented by q O 3 and Sb 2 O 3 and / or Sb 2 O 5 (where Ma is one selected from Ba, La, Sr and Ce) Above)
The piezoelectric material contains 0.7 mol% or less of Sb 2 O 3 and / or Sb 2 O 5 with respect to 1 mol of the compound represented by the general formula (1).
0.04 ≦ x ≦ 0.1
0.44 ≦ y ≦ 0.48
0 ≦ z ≦ 0.01
0 ≦ p ≦ 0.02
0.003 ≦ q ≦ 0.01
0 ≦ B1 ≦ 0.34
0 ≦ B2 ≦ 0.5
The piezoelectric material is characterized in that (Claim 1).

上記第1の発明の圧電材料は、上記一般式(1)で表される化合物とSb23及び/又はSb25とを上記特定の割合で含有する。そのため、上記圧電材料は、例えば温度1000℃以下という低温で焼成することができ、かつ低温で焼成しても実用上充分な変位量を発揮することができる。
さらに、上記圧電材料においては、実用上充分に高いキュリー温度を示すことができる共に、損失の温度依存性を小さくすることができる。そのため、例えば−40℃〜160℃という幅広い温度領域で使用しても、安定した特性を発揮できる。
The piezoelectric material of the first invention contains the compound represented by the general formula (1) and Sb 2 O 3 and / or Sb 2 O 5 in the specific ratio. Therefore, the piezoelectric material can be fired at a low temperature of, for example, 1000 ° C. or less, and can exhibit a practically sufficient amount of displacement even when fired at a low temperature.
Furthermore, the piezoelectric material can exhibit a sufficiently high Curie temperature for practical use and can reduce the temperature dependence of loss. Therefore, for example, even when used in a wide temperature range of −40 ° C. to 160 ° C., stable characteristics can be exhibited.

この理由は次のように推定される。
即ち、上記圧電材料において、上記一般式(1)で表される化合物は、一般にABO3で表されるペロブスカイト構造化合物におけるBサイトに、変位量を向上させることができると共に低温焼成可能な組成(Mn1-B1-B2B1SbB2)qを組み込んだ構造を有している。また、上記圧電材料は、変位量を向上させることができるSb23及び/又はSb25を含有している。
そのため、上記圧電材料は、低温での緻密化及び粒子成長が可能になり、また、変位量が向上する。それ故、上記圧電材料は、上記のごとく例えば1000℃以下という低温で焼成することができ、低温で焼成させても優れた変位量を発揮することができる。
The reason for this is estimated as follows.
That is, in the piezoelectric material, the compound represented by the general formula (1) can improve the amount of displacement to the B site in the perovskite structure compound generally represented by ABO 3 and can be fired at a low temperature ( Mn 1-B1-B2 W B1 Sb B2 ) q is incorporated. The piezoelectric material contains Sb 2 O 3 and / or Sb 2 O 5 that can improve the amount of displacement.
Therefore, the piezoelectric material can be densified and grow at low temperatures, and the amount of displacement is improved. Therefore, as described above, the piezoelectric material can be fired at a low temperature of 1000 ° C. or less, for example, and can exhibit an excellent displacement even when fired at a low temperature.

また、上記一般式(1)で表される化合物は、Aサイト元素のPbの一部が価数の異なるBa、La、Sr、及びCeから選ばれる1種以上で置換された構造を有している。そのため、上記一般式(1)で表される化合物においては、電気的中性を保持するために空孔が生じる。この空孔の生成により電荷分布が変化し、電荷分布が格子の歪以上に大きく変化する。そのため、キュリー温度をほとんど低下させることなく変位量を向上させることができ、上記圧電材料は、上記のごとく高いキュリー温度と高い変位量とを両立して発揮することができる。   Further, the compound represented by the general formula (1) has a structure in which part of Pb of the A site element is substituted with one or more selected from Ba, La, Sr, and Ce having different valences. ing. Therefore, in the compound represented by the general formula (1), pores are generated to maintain electrical neutrality. The charge distribution changes due to the generation of the vacancies, and the charge distribution changes more than the strain of the lattice. Therefore, the amount of displacement can be improved without substantially reducing the Curie temperature, and the piezoelectric material can exhibit both a high Curie temperature and a high amount of displacement as described above.

また、上記一般式(1)で表される化合物は、Zr、Tiに対して価数の低いSbをアクセプタとして注入した(Zr1-y-zTiySbz)1-p-qという組成を有している。そのため、酸素の空孔を形成することができ、この酸素空孔とこの空孔を作るための注入イオンとからなる欠陥双極子が分極構造にしたがって容易に配向することができる。そのため、分域壁をピン留めすることができ、このピン留め効果により電界印加による誘電損失を抑えることができる。それ故、上記圧電材料においては、上記のごとく損失を低減することができる。 Further, the compound represented by the general formula (1) has a composition of (Zr 1 -yz Ti y Sb z ) 1 -pq in which Sb having a lower valence than Zr and Ti is injected as an acceptor. Yes. Therefore, oxygen vacancies can be formed, and defect dipoles composed of the oxygen vacancies and implanted ions for forming the vacancies can be easily oriented according to the polarization structure. Therefore, the domain wall can be pinned, and dielectric loss due to electric field application can be suppressed by this pinning effect. Therefore, in the piezoelectric material, loss can be reduced as described above.

以上のように、上記第1の発明によれば、低温焼成が可能であり、低温で焼成しても優れた変位量を示すことができる圧電材料を提供することができる。   As described above, according to the first invention, it is possible to provide a piezoelectric material that can be fired at a low temperature and can exhibit an excellent displacement even when fired at a low temperature.

第2の発明は、圧電層と内部電極層とを交互に積層してなる積層型圧電素子の製造方法であって、
上記第1の発明の圧電材料を含むシート形成材料を準備し、該シート形成材料を成形して未焼シートを作製し、該未焼シートに内部電極層用の電極材料を含有するペーストからなる印刷層を設け、
その後上記印刷層を設けた未焼シートを複数枚積層して未焼積層体となし、該未焼積層体を焼成することを特徴とする積層型圧電素子の製造方法にある(請求項5)。
A second invention is a method for manufacturing a laminated piezoelectric element in which piezoelectric layers and internal electrode layers are alternately laminated,
A sheet-forming material containing the piezoelectric material of the first invention is prepared, the sheet-forming material is molded to produce a green sheet, and the green sheet is made of a paste containing an electrode material for an internal electrode layer Providing a printing layer,
Thereafter, a plurality of unfired sheets provided with the printed layer are laminated to form an unfired laminated body, and the unfired laminated body is fired (claim 5). .

上記第2の発明の製造方法においては、上記第1の発明の圧電材料を用いて上記未焼積層体を作製している。そのため、該未焼積層体の焼成時においては、低温焼成が可能な上記圧電材料の特性を生かして、例えば1000℃以下という低温で焼成を行うことができる。したがって、上記圧電材料と同時に焼成する上記電極材料として、融点1000℃程度の低融点の金属を含有する材料を用いることができる。また、上記電極材料として、特に低融点でかつ比較的安価な銅、ニッケル、銀等を含有する材料を用いることができる。そのため、上記積層型圧電素子の製造コストを低減することができる。   In the manufacturing method of the second invention, the unfired laminate is produced using the piezoelectric material of the first invention. Therefore, at the time of firing the unfired laminated body, it is possible to perform firing at a low temperature of, for example, 1000 ° C. or less, taking advantage of the characteristics of the piezoelectric material that can be fired at low temperature. Therefore, a material containing a low melting point metal having a melting point of about 1000 ° C. can be used as the electrode material fired simultaneously with the piezoelectric material. In addition, as the electrode material, a material containing copper, nickel, silver or the like that has a particularly low melting point and is relatively inexpensive can be used. As a result, the manufacturing cost of the multilayer piezoelectric element can be reduced.

また、上記第2の発明の製造方法によって得られる上記積層型圧電素子は、上記第1の発明の圧電材料からなる圧電層を有する。そのため、上述の圧電材料の優れた特性を生かして、上記積層型圧電素子は、低温で焼成しても実用に耐えうる充分な変位量、キュリー温度を発揮することができる。さらに、損失の温度依存性が小さく、例えば−40℃〜160℃という幅広い温度領域で使用しても、安定した特性を発揮できる。   Moreover, the multilayer piezoelectric element obtained by the manufacturing method of the second invention has a piezoelectric layer made of the piezoelectric material of the first invention. Therefore, taking advantage of the excellent characteristics of the piezoelectric material described above, the multilayer piezoelectric element can exhibit a sufficient displacement amount and Curie temperature that can withstand practical use even when fired at a low temperature. Furthermore, the temperature dependency of the loss is small, and stable characteristics can be exhibited even when used in a wide temperature range of, for example, −40 ° C. to 160 ° C.

以上のように、上記第2の発明によれば、低温焼成が可能であり、低温で焼成しても優れた変位量を示すことができる積層型圧電素子の製造方法を提供することができる。   As described above, according to the second invention, it is possible to provide a method for manufacturing a multilayer piezoelectric element that can be fired at a low temperature and can exhibit an excellent displacement even when fired at a low temperature.

次に、本発明の実施の形態について説明する。
上記圧電材料は、上記一般式(1):(Pb1-xMax)(Zr1-y-zTiySbz)1-p-q(Y1/2Nb1/2)p(Mn1-B1-B2B1SbB2)q3で示される化合物を含有する。
上記一般式(1)において、xの範囲は、0.04≦x≦0.1である。
xが0.04未満の場合には、格子のひずみが小さくなり、静電容量が低下し、変位量が低下するおそれがある。一方、0.1を越える場合には、キュリー点が例えば280℃以下まで低下するおそれがあり、高温度使用時に分極劣化が起こって変位量が低下するおそれがある。したがって、例えば最高温度170℃程度で使用される燃料噴射装置等に適用することが困難になる。
Next, an embodiment of the present invention will be described.
The piezoelectric material, the general formula (1) :( Pb 1-x Ma x) (Zr 1-yz Ti y Sb z) 1-pq (Y 1/2 Nb 1/2) p (Mn 1-B1- B2 W B1 Sb B2 ) Contains a compound represented by qO 3 .
In the general formula (1), the range of x is 0.04 ≦ x ≦ 0.1.
When x is less than 0.04, the strain of the lattice is reduced, the capacitance is decreased, and the displacement amount may be decreased. On the other hand, when it exceeds 0.1, the Curie point may be lowered to, for example, 280 ° C. or lower, and there is a possibility that the amount of displacement is lowered due to polarization deterioration at the time of use at a high temperature. Therefore, it becomes difficult to apply to a fuel injection device used at a maximum temperature of about 170 ° C., for example.

また、yの範囲は、0.44≦y≦0.48である。
yが0.44未満の場合または0.48を越える場合には、上記一般式(1)で表される化合物がMPB(モルフォトロピック・フェイズ・バウンダリー、Morphotropic Phase Boundary)から大きく外れ、その結果上記圧電材料の変位量が小さくなるおそれがある。
zの範囲は、0≦z≦0.01である。
zが0.01を越える場合には、一般にABO3で表されるペロブスカイト構造のBサイトの欠陥が過剰になり、変位量が小さくなるおそれがある。また、好ましくはz>0がよい。この場合には、上記一般式(1)においてZrあるいはTiに対してアクセプタとして注入される価数の低いSbが必須成分となる。そして、アクセプタとして注入されたSbは、酸素の空孔を形成することができる。この空孔とアクセプタ(Sb)とからなる欠陥双極子は分子構造にしたがって容易に配列できるため、分域壁をピン止めすることができる。その結果、上記圧電材料の誘電損失をより低減させることができる。
The range of y is 0.44 ≦ y ≦ 0.48.
When y is less than 0.44 or exceeds 0.48, the compound represented by the general formula (1) deviates greatly from MPB (Morphotropic Phase Boundary), and as a result, There is a possibility that the amount of displacement of the piezoelectric material is reduced.
The range of z is 0 ≦ z ≦ 0.01.
When z exceeds 0.01, defects in the B site of the perovskite structure generally represented by ABO 3 become excessive, and the amount of displacement may be small. Further, preferably z> 0. In this case, Sb having a low valence injected as an acceptor for Zr or Ti in the general formula (1) is an essential component. Sb implanted as an acceptor can form oxygen vacancies. Since the defect dipole composed of the vacancy and the acceptor (Sb) can be easily arranged according to the molecular structure, the domain wall can be pinned. As a result, the dielectric loss of the piezoelectric material can be further reduced.

また、pの範囲は、0≦p≦0.02である。
pが0.02を越える場合には、キュリー点が低下して使用可能な温度が低くなり、実用性に欠ける圧電材料になるおそれがある。またこの場合には、変位量が小さくなるおそれがある。好ましくは、p>0がよい。この場合には上記一般式(1)において(Y1/2Nb1/2)が必須成分となる。そのためこの場合には、変位量をより向上させることができる。
qの範囲は、0.003≦q≦0.01である。
qが0.003未満の場合には、焼結温度が高くなり、低温での焼成が困難になるおそれがある。一方、0.01を越える場合には、上記一般式(1)における(Mn1-B1-B2B1SbB2)組成によって生じる液相が過剰になり、焼結時に異常粒子成長等が起こるおそれがある。その結果、割れやすくなったり、変位量が小さくなったりするおそれがある。
The range of p is 0 ≦ p ≦ 0.02.
When p exceeds 0.02, the Curie point is lowered, the usable temperature is lowered, and there is a possibility that the piezoelectric material lacks practicality. In this case, the amount of displacement may be small. Preferably, p> 0. In this case, (Y 1/2 Nb 1/2 ) is an essential component in the general formula (1). Therefore, in this case, the amount of displacement can be further improved.
The range of q is 0.003 ≦ q ≦ 0.01.
When q is less than 0.003, the sintering temperature becomes high, and firing at low temperature may be difficult. On the other hand, if it exceeds 0.01, the liquid phase generated by the (Mn 1 -B1-B2 W B1 Sb B2 ) composition in the general formula (1) becomes excessive, and abnormal particle growth or the like may occur during sintering. There is. As a result, there is a risk of being easily broken or having a small displacement.

また、B1の範囲は、0≦B1≦0.34であり、B2の範囲は0≦B2≦0.5である。
B1が0.34を越える場合またはB2が0.5を越える場合には、電荷バランスが崩れ易くなり、変位量が小さくなるおそれがある。
好ましくはB1>0がよい。この場合には、上記一般式(1)における(Mn1-B1-B2B1SbB2)のWが必須成分になる。そのためこの場合には、上記一般式(1)においてMnとWとを共存させることができるため、より一層低温で焼結し易くなり、低温で焼成しても結晶粒が成長し易くなる。その結果、変位量をより向上させることができる。
また、好ましくはB2>0がよい。この場合には、上記一般式(1)における(Mn1-B1-B2B1SbB2)のSbが必須成分になる。そのためこの場合には、上記一般式(1)においてMnとSbとを共存させることができるため、より一層低温で焼結し易くなり、低温で焼成しても結晶粒が成長し易くなる。その結果、変位量をより向上させることができる。
The range of B1 is 0 ≦ B1 ≦ 0.34, and the range of B2 is 0 ≦ B2 ≦ 0.5.
When B1 exceeds 0.34 or B2 exceeds 0.5, the charge balance tends to be lost, and the amount of displacement may be reduced.
B1> 0 is preferable. In this case, W of (Mn 1-B1-B2 W B1 Sb B2 ) in the general formula (1) is an essential component. Therefore, in this case, since Mn and W can coexist in the general formula (1), it becomes easier to sinter at a lower temperature, and crystal grains easily grow even when fired at a lower temperature. As a result, the amount of displacement can be further improved.
Further, B2> 0 is preferable. In this case, Sb of (Mn 1 -B1-B2 W B1 Sb B2 ) in the general formula (1) is an essential component. Therefore, in this case, since Mn and Sb can coexist in the general formula (1), it becomes easier to sinter at a lower temperature, and crystal grains easily grow even when fired at a lower temperature. As a result, the amount of displacement can be further improved.

また、上記圧電材料は、上記一般式(1)で表される化合物1molに対してSb23及び/又はSb25を0.7mol%以下含有する。
Sb23及び/又はSb25の含有量が0.7mol%を越える場合には、過剰のSbにより上記圧電材料の変位量が小さくなるおそれがある。
Moreover, the piezoelectric material contains 0.7 mol% or less of Sb 2 O 3 and / or Sb 2 O 5 with respect to 1 mol of the compound represented by the general formula (1).
When the content of Sb 2 O 3 and / or Sb 2 O 5 exceeds 0.7 mol%, the amount of displacement of the piezoelectric material may be reduced by excessive Sb.

また、上記圧電材料において、上記一般式(1)の「Pb1-xMax」にかかる項は圧電材料の結晶格子(ペロブスカイト構造である)でPbがMaという元素で置換されていることを意味するが、Maとして複数の元素を選択した場合、複数の元素を合わせた合計のモル分率がxとなる。
例えばMaがBa、La、Sr、Ceからなる場合は、「Pb1-xBakLalSrmCen」でk+l+m+n=xとなる。
Further, in the piezoelectric material, that Pb in the section relating to "Pb 1-x Ma x" is (a perovskite structure) crystal lattice of the piezoelectric material of the general formula (1) is substituted with an element of Ma Meaning, when a plurality of elements are selected as Ma, the total mole fraction of the plurality of elements combined is x.
For example, when Ma is made of Ba, La, Sr, and Ce, “Pb 1−x BakLalSrmCen” is k + l + m + n = x.

また、上記一般式(1)におけるMaは、Ba、La、Sr、及びCeから選ばれる1種以上の元素である。
好ましくは、上記一般式(1)におけるMaは、必須成分のSrと、Ba、La、又はCeとからなることがよい(請求項2)。
この場合には、上記圧電材料の結晶格子に歪を与えて分極を生じさせると共に、結晶構造を比較的安定に保つことができる。その結果、より高い変位量とより高いキュリー温度とを両立して発揮させるさせることができる。
また、より好ましくは、上記一般式(1)のMaにおいては、Ba、La、又はCeと、Srとは、Pbに対する置換割合が略同比率であることがよい(請求項3)。具体的には、例えばMa=Sr0.045Ba0.045等にすることができる。
この場合には、上記一般式(1)で表される化合物において、イオン半径の小さなSrとイオン半径の大きなBa、La、CeとがPbの一部を同比率で置換するため、結晶格子に歪を与えつつも、その結晶構造の安定性をより向上させることができる。したがってこの場合には、上記圧電材料の変位量を向上しつつ、キュリー温度をより高い値に保持することができる。
In the general formula (1), Ma is one or more elements selected from Ba, La, Sr, and Ce.
Preferably, Ma in the general formula (1) is composed of Sr as an essential component and Ba, La, or Ce (Claim 2).
In this case, the crystal lattice of the piezoelectric material is distorted to cause polarization, and the crystal structure can be kept relatively stable. As a result, a higher displacement amount and a higher Curie temperature can be exhibited at the same time.
More preferably, in the Ma of the general formula (1), Ba, La, or Ce and Sr may have substantially the same substitution ratio with respect to Pb (Claim 3). Specifically, for example, Ma = Sr 0.045 Ba 0.045 can be set.
In this case, in the compound represented by the general formula (1), Sr having a small ionic radius and Ba, La, and Ce having a large ionic radius replace a part of Pb at the same ratio. While giving strain, the stability of the crystal structure can be further improved. Therefore, in this case, the Curie temperature can be maintained at a higher value while improving the amount of displacement of the piezoelectric material.

次に、上記圧電材料は、上記圧電材料は、上記一般式(1)で表される化合物100重量部に対して、PbOを0.05〜2重量部、及びWO3を0.001〜0.038重量部含有することが好ましい(請求項4)。
この場合には、焼成時に一部蒸発するPbを補うことにより変位量の低下を抑制できると共に、PbO−WO3の液相添加物により上記圧電材料の焼成温度をより低減させることができる。
PbOが0.05重量部未満の場合には、焼成時に蒸発するPb量を充分に補うことができず、変位量が低下するおそれがある。一方、PbOが2重量部を越える場合には、液相が過剰に形成され、変位量が小さくなるおそれがある。
また、WO3の含有量が0.001重量部未満の場合には、液相がほとんど形成されず、上述のPbO−WO3の液相添加物による焼成温度の低減効果がほとんど得られななくなるおそれがある。一方、WO3が0.038重量部を越える場合には、上記圧電材料の変位量が低下するおそれがある。
Next, the piezoelectric material is 0.05 to 2 parts by weight of PbO and 0.001 to 0 of WO 3 with respect to 100 parts by weight of the compound represented by the general formula (1). It is preferable to contain 0.038 parts by weight (claim 4).
In this case, the amount of displacement can be suppressed by supplementing Pb partially evaporated during firing, and the firing temperature of the piezoelectric material can be further reduced by the liquid phase additive of PbO—WO 3 .
If PbO is less than 0.05 parts by weight, the amount of Pb that evaporates during firing cannot be sufficiently compensated, and the amount of displacement may decrease. On the other hand, when PbO exceeds 2 parts by weight, the liquid phase is excessively formed and the amount of displacement may be small.
Moreover, when the content of WO 3 is less than 0.001 part by weight, a liquid phase is hardly formed, and the effect of reducing the firing temperature by the liquid phase additive of PbO—WO 3 is hardly obtained. There is a fear. On the other hand, when WO 3 exceeds 0.038 parts by weight, the amount of displacement of the piezoelectric material may be reduced.

次に、上記第2の発明においては、圧電層と内部電極層とを交互に積層してなる積層型圧電素子を製造する。この製造方法においては、圧電層の圧電材料として、上記第1の発明の圧電材料を用いる。   Next, in the second aspect of the present invention, a multilayer piezoelectric element is manufactured in which piezoelectric layers and internal electrode layers are alternately stacked. In this manufacturing method, the piezoelectric material of the first invention is used as the piezoelectric material of the piezoelectric layer.

すなわち、まず所定の組成比となるように出発原料を秤量し、該出発原料を仮焼した後、所定のBET比表面積となるまで粉砕する。その後、例えばPbO、WO3等の助剤酸化物等を加えて混合物となす。または、出発原料を仮焼し、その後助剤酸化物を加えて粉砕することもできる。 That is, first, the starting material is weighed so as to have a predetermined composition ratio, the starting material is calcined, and then pulverized until a predetermined BET specific surface area is obtained. Thereafter, for example, auxiliary oxides such as PbO and WO 3 are added to form a mixture. Alternatively, the starting material can be calcined, and then an auxiliary oxide can be added and pulverized.

また、出発原料を仮焼、粉砕して得られた圧電材料の微粉は、助剤酸化物との反応性が高いため、助剤酸化物の圧電材料への固溶を極力抑えるために、圧電材料を粉砕した後、400〜700℃で予焼して得られた粉に、助剤酸化物、溶剤、バインダー、可塑剤、分散剤を添加して成形することもできる。   In addition, since the fine powder of the piezoelectric material obtained by calcining and pulverizing the starting material has high reactivity with the auxiliary oxide, the piezoelectric oxide is used in order to suppress the solid solution of the auxiliary oxide in the piezoelectric material as much as possible. After pulverizing the material, auxiliary oxides, solvents, binders, plasticizers, and dispersants may be added to the powder obtained by pre-baking at 400 to 700 ° C. to form the material.

また、本発明における積層型圧電素子の製造方法において、圧電材料が所定のBET比表面積となるように調整する際は、ボールミルや媒体攪拌ミル等を用いて粉砕し、粒径を微粒化することによって行うことができる。   Further, in the method for manufacturing a multilayer piezoelectric element according to the present invention, when adjusting the piezoelectric material to have a predetermined BET specific surface area, it is pulverized using a ball mill, a medium agitating mill, or the like to reduce the particle size. Can be done by.

また、未焼シートを作製する際には、圧電材料と助剤酸化物等との混合物に、バインダー等を加えたスラリーを調製し、通常知られたドクターブレード法によって未焼シートを作製することができる。その後、未焼シートに電極材料を含有するペーストを印刷して印刷層を設ける。
上記印刷層を設けた未焼シートを所望の枚数積層して、圧着し、未焼積層体を作製する。この未焼積層体を脱脂、焼成し、その後内部電極層と電気的に導通させる側面電極等を設けた後、分極処理などを施すことで、積層型圧電素子を得ることができる。
Also, when preparing an unfired sheet, prepare a slurry in which a binder is added to a mixture of a piezoelectric material and an auxiliary oxide, etc., and prepare an unfired sheet by a generally known doctor blade method. Can do. Thereafter, a paste containing an electrode material is printed on the green sheet to provide a printed layer.
A desired number of unfired sheets provided with the printed layer are laminated and pressure bonded to produce an unfired laminate. This unfired laminate is degreased, fired, and then provided with side electrodes and the like that are electrically connected to the internal electrode layer, and then subjected to polarization treatment or the like, whereby a laminated piezoelectric element can be obtained.

また、ここで記載した手順は積層型圧電素子でよく知られた製造方法であり、これ以外の方法で積層型圧電素子を作製する場合に関して第2の発明を適用することもできる。
なお、内部電極層は、後述する実施例1で示した部分電極構成(積層方向に直交する断面での面積が圧電層よりも小さい。)の他、全面電極構成(圧電層と略等しい面積を備える。)として作製することもできる。
The procedure described here is a manufacturing method well known for multilayer piezoelectric elements, and the second invention can also be applied to the case of manufacturing multilayer piezoelectric elements by other methods.
In addition to the partial electrode configuration (the area in the cross section perpendicular to the stacking direction is smaller than that of the piezoelectric layer) shown in Example 1 described later, the internal electrode layer has an entire surface electrode configuration (area substantially equal to the piezoelectric layer). Can also be prepared.

上記電極材料は、銅、ニッケル、及び銀から選ばれる1種以上を含有することが好ましい。
この場合には、上記積層型圧電素子を低コストで製造することができると共に、低温焼成可能な上記圧電材料の特徴を最大限に発揮することができる。
即ち、融点の低い銅、ニッケル、及び銀を電極材料に用いて印刷層を形成した未焼シートを焼成する場合には、低温にて焼成を行う必要がある。上記圧電材料を含有する上記未焼シートは、例えば1000℃以下という低温で焼結が可能であるため、上記電極材料と同時に焼成させることができるからである。
The electrode material preferably contains one or more selected from copper, nickel, and silver.
In this case, the multilayer piezoelectric element can be manufactured at low cost, and the characteristics of the piezoelectric material that can be fired at a low temperature can be exhibited to the maximum.
That is, when firing an unfired sheet in which a printed layer is formed using copper, nickel, and silver having a low melting point as an electrode material, it is necessary to perform firing at a low temperature. This is because the green sheet containing the piezoelectric material can be sintered at a low temperature of, for example, 1000 ° C. or less, and can be fired simultaneously with the electrode material.

また、上記未焼積層体の焼成は、温度850℃〜1000℃で行うことが好ましい(請求項6)。
上記未焼積層体の焼成温度が850℃未満の場合には、充分に焼結させることが困難になるおそれがある。一方、1000℃を越える場合には、低温焼成可能な上記圧電材料の特徴を充分に発揮することができなくなると共に、上記電極材料として比較的低融点の銅、ニッケル、及び銀を用いた際に電極材料が溶融するおそれがある。
Moreover, it is preferable to perform baking of the said unbaked laminated body at the temperature of 850 to 1000 degreeC (Claim 6).
When the firing temperature of the green laminate is less than 850 ° C., it may be difficult to sufficiently sinter. On the other hand, when the temperature exceeds 1000 ° C., the characteristics of the piezoelectric material that can be fired at a low temperature cannot be exhibited sufficiently, and copper, nickel, and silver having a relatively low melting point are used as the electrode material. The electrode material may melt.

上記積層型圧電素子は、変位量が大きく、損失の小さい圧電材料からなる圧電層を有しており、優れた変位量を安定に発揮できる圧電アクチュエータに用いることができる。
このような圧電アクチュエータは、自動車エンジン等の内燃機関における燃料噴射用のインジェクタの駆動源として好適である。
The laminated piezoelectric element has a piezoelectric layer made of a piezoelectric material having a large amount of displacement and a small loss, and can be used for a piezoelectric actuator that can stably exhibit an excellent amount of displacement.
Such a piezoelectric actuator is suitable as a drive source for an injector for fuel injection in an internal combustion engine such as an automobile engine.

(実施例1)
次に、本発明の圧電材料の実施例につき、説明する。
本例の圧電材料は、一般式(1):(Pb1-xMax)(Zr1-y-zTiySbz)1-p-q(Y1/2Nb1/2)p(Mn1-B1-B2B1SbB2)q3で示される化合物と、Sb23とを含有し、MaはBa、La、及びSrから選ばれる1種以上である。また、圧電材料は、上記一般式(1)で表される化合物1molに対してSb23を0.7mol%以下含有する。一般式(1)においては、0.04≦x≦0.1、0.44≦y≦0.48、0≦z≦0.01、0≦p≦0.02、0.003≦q≦0.01、0≦B1≦0.34、0≦B2≦0.5という関係を満たす。
Example 1
Next, examples of the piezoelectric material of the present invention will be described.
The piezoelectric material of the present example, the general formula (1) :( Pb 1-x Ma x) (Zr 1-yz Ti y Sb z) 1-pq (Y 1/2 Nb 1/2) p (Mn 1-B1 and a compound represented by -B2 W B1 Sb B2) q O 3, containing the Sb 2 O 3, Ma is Ba, La, and one or more selected from Sr. The piezoelectric material contains 0.7 mol% or less of Sb 2 O 3 with respect to 1 mol of the compound represented by the general formula (1). In the general formula (1), 0.04 ≦ x ≦ 0.1, 0.44 ≦ y ≦ 0.48, 0 ≦ z ≦ 0.01, 0 ≦ p ≦ 0.02, 0.003 ≦ q ≦ The relationship of 0.01, 0 ≦ B1 ≦ 0.34, 0 ≦ B2 ≦ 0.5 is satisfied.

以下、本例について詳細に説明する。
本例においては、本発明の実施例にかかる圧電材料(試料E1〜E12)と、比較用の圧電材料(試料C1〜C4)とを作製し、また、これらの圧電材料を用いて積層型圧電素子を作製しその性能を評価する。
Hereinafter, this example will be described in detail.
In this example, piezoelectric materials (samples E1 to E12) according to examples of the present invention and comparative piezoelectric materials (samples C1 to C4) are produced, and a laminated piezoelectric material using these piezoelectric materials. An element is fabricated and its performance is evaluated.

即ち、試料E1〜E12は、一般式(1):(Pb1-xMax)(Zr1-y-zTiySbz)1-p-q(Y1/2Nb1/2)p(Mn1-B1-B2B1SbB2)q3の置換元素であるMaの種類、組成比(x、y、z、p、q、B1、及びB2)、及び一般式(1)の化合物に添加するSb23、PbO、及びWO3の配合割合を表1のように変更して得た圧電材料である。
一方、試料C1及び試料C2は、表1に示すごとく一般式(1)におけるqの値が0であり、本発明の範囲外の組成である。また、試料C3及び試料C4は、表1に示すごとくSb23が添加されておらず、本発明の範囲外の組成である。
That is, the sample E1~E12 the general formula (1) :( Pb 1-x Ma x) (Zr 1-yz Ti y Sb z) 1-pq (Y 1/2 Nb 1/2) p (Mn 1- B1-B2 W B1 Sb B2 ) Add to the compound of Ma, which is a substitution element of q O 3 , composition ratio (x, y, z, p, q, B1, and B2), and the compound of general formula (1) It is a piezoelectric material obtained by changing the blending ratio of Sb 2 O 3 , PbO, and WO 3 as shown in Table 1.
On the other hand, as shown in Table 1, the sample C1 and the sample C2 have a q value of 0 in the general formula (1) and are out of the scope of the present invention. Sample C3 and sample C4 are not added with Sb 2 O 3 as shown in Table 1, and have compositions outside the scope of the present invention.

本例においては、これらの圧電材料から図1〜図3に示すごとき積層型圧電素子1を作製し、その圧電特性を調べた。
積層型圧電素子1は、図1〜図3に示すごとく、圧電層11の層間に内部電極層21、22を交互に正負となるように作製してなる。図2(a)に示すごとく、一方の内部電極層21は圧電層11に対し控え部119を残して、図1に示すごとく、一方の側面101に露出するように配設され、他方の内部電極層22は他方の側面102に露出するように配設されている。
In this example, a laminated piezoelectric element 1 as shown in FIGS. 1 to 3 was produced from these piezoelectric materials, and the piezoelectric characteristics thereof were examined.
As shown in FIGS. 1 to 3, the multilayer piezoelectric element 1 is produced so that the internal electrode layers 21 and 22 are alternately positive and negative between the piezoelectric layers 11. As shown in FIG. 2 (a), one internal electrode layer 21 is disposed so as to be exposed on one side face 101 as shown in FIG. The electrode layer 22 is disposed so as to be exposed on the other side surface 102.

そして、積層型圧電素子1の側面101、102には、露出した内部電極層21、22の端部を導通させるように側面電極31が設けてある。
また、図3に示すごとく、積層型圧電素子1の積層方向の中央部分は内部電極層21、22に通電することで伸張する駆動部111であり、該駆動部111を挟持するセラミック層12は、少なくとも一方の面は、内部電極層21、22と接していない。よって、セラミック層12は内部電極層21、22に通電しても伸張しないダミー部112となる。
Further, side electrodes 31 are provided on the side surfaces 101 and 102 of the multilayer piezoelectric element 1 so as to conduct the exposed end portions of the internal electrode layers 21 and 22.
As shown in FIG. 3, the central portion of the multilayer piezoelectric element 1 in the stacking direction is a drive unit 111 that expands when the internal electrode layers 21 and 22 are energized, and the ceramic layer 12 sandwiching the drive unit 111 is At least one surface is not in contact with the internal electrode layers 21 and 22. Therefore, the ceramic layer 12 becomes a dummy portion 112 that does not expand even when the internal electrode layers 21 and 22 are energized.

次に、圧電材料と積層型圧電素子の具体的な製造方法について説明する。
圧電材料の各構成原子を含む出発原料としてPbO、SrCO3、BaCO3、La23、ZrO2、TiO2、Y23、Nb25、Sb23、WO3、Mn23、CeO2を使用し、表1に示す所望の組成となるよう、すなわち、目的組成における各構成原子の比と出発原料における各構成原子の比が同じになるように秤量した。
Next, a specific method for manufacturing the piezoelectric material and the multilayer piezoelectric element will be described.
PbO, SrCO 3 , BaCO 3 , La 2 O 3 , ZrO 2 , TiO 2 , Y 2 O 3 , Nb 2 O 5 , Sb 2 O 3 , WO 3 , Mn 2 are used as starting materials containing each constituent atom of the piezoelectric material. O 3 and CeO 2 were used and weighed so that the desired composition shown in Table 1 was obtained, that is, the ratio of each constituent atom in the target composition to the same ratio in each starting material.

秤量した原料を湿式混合し、乾燥後800℃で5時間仮焼し、これを媒体攪拌ミルにより湿式粉砕し、BET比表面積が2.5〜3m2/gの粉砕物を得た。これに溶剤、バインダー、可塑剤、分散剤を加えてボールミルにより混合してスラリーを得た。
ドクターブレード装置を用いて、上記スラリーから厚み100μmの未焼シートを成形した。この未焼シートに銀/パラジウム=7/3(重量比)からなる電極材料を含んだ導電ペーストを印刷して内部電極層用の印刷層を設けた。
The weighed raw materials were wet-mixed, dried and calcined at 800 ° C. for 5 hours, and wet-pulverized with a medium stirring mill to obtain a pulverized product having a BET specific surface area of 2.5 to 3 m 2 / g. A solvent, a binder, a plasticizer, and a dispersant were added to this and mixed by a ball mill to obtain a slurry.
A green sheet having a thickness of 100 μm was formed from the slurry using a doctor blade device. A conductive layer containing an electrode material made of silver / palladium = 7/3 (weight ratio) was printed on the green sheet to provide a printed layer for an internal electrode layer.

上記印刷層を設けた未焼シートを図3に示すように20枚積層し、更に、上下端に内部電極層用の印刷層がない単なる未焼シートを載置し、熱圧着を行なって未焼積層体を作製した。
次いで、未焼積層体を電気炉において脱脂し、その後950℃で焼成し、全面研磨して7×7×1.8mmの積層焼結体を得た。この積層焼結体において、各圧電層の厚みは80μmであった。
更に、上記積層焼結体の側面に内部電極層を一層おきに導通させるため一対の側面電極を焼き付けた後、130℃、2kV/mmの印加電界で30分間分極し、48時間室温にて放置した。
以上により、積層型圧電素子を得た。
As shown in FIG. 3, 20 unfired sheets provided with the above printed layers are stacked, and a simple unfired sheet having no internal electrode layer printed layers is placed on the upper and lower ends, and thermocompression bonding is performed to perform unfired sheets. A fired laminate was produced.
Next, the green laminate was degreased in an electric furnace, then fired at 950 ° C., and polished on the entire surface to obtain a 7 × 7 × 1.8 mm laminated sintered body. In this laminated sintered body, the thickness of each piezoelectric layer was 80 μm.
Further, a pair of side electrodes were baked in order to make the internal electrode layer conductive every other side surface of the laminated sintered body, then polarized for 30 minutes at an applied electric field of 130 ° C. and 2 kV / mm, and left at room temperature for 48 hours. did.
Thus, a multilayer piezoelectric element was obtained.

次いで、各試料を圧電層に用いて作製した積層型圧電素子について、圧電層の焼結密度及び変位量を調べた。その結果を表2に示す。
焼結密度は、圧電層を所定の寸法に研磨し、その重量と体積と測定して算出した。
変位量は、各積層型圧電素子に150Vの電圧を印加し、そのときの積層型圧電素子の変位をレーザー変位計により測定することにより測定した。なお、変位量の測定は室温で行うが、予め積層型圧電素子を駆動している状態で20分程度エージングした後に測定を行った。
Subsequently, the sintered density and the displacement amount of the piezoelectric layer were examined for the laminated piezoelectric element manufactured using each sample as the piezoelectric layer. The results are shown in Table 2.
The sintered density was calculated by polishing the piezoelectric layer to a predetermined size and measuring its weight and volume.
The amount of displacement was measured by applying a voltage of 150 V to each laminated piezoelectric element and measuring the displacement of the laminated piezoelectric element at that time with a laser displacement meter. The displacement amount was measured at room temperature, but was measured after aging for about 20 minutes in a state where the laminated piezoelectric element was driven in advance.

さらに、本例においては、未焼積層体の焼成温度を1000℃、1050℃、及び1100℃に変えて焼成を行い、このときの圧電層の焼結密度及び変位量を調べた。その結果を表2に示す。   Furthermore, in this example, firing was performed by changing the firing temperature of the green laminate to 1000 ° C., 1050 ° C., and 1100 ° C., and the sintered density and displacement of the piezoelectric layer at this time were examined. The results are shown in Table 2.

Figure 2006265059
Figure 2006265059

Figure 2006265059
Figure 2006265059

表1及び表2から知られるごとく、試料E1〜試料E12の圧電材料は、950℃という低温においても充分に焼結されていた。そして試料E1〜試料E12を圧電層の材料に用いて作製した積層型圧電素子は、950℃という低温で焼成した場合でも、電圧印加によって変位を生じることがわかった。また、試料E1〜試料E12は、焼成温度950〜1100℃において、それぞれ異なる焼成温度に変位量のピークを有しているが、その変位量のピークは、いずれもが1.55μm以上という優れたものであった。
これに対し、試料C1〜試料C4の圧電材料は、950℃での焼成では、変位を示すことができなかった。また、焼成温度950〜1100℃において、試料C1〜試料C4の変位量のピークは、焼成温度1050℃及び1100℃で焼成したときの試料C2であるが、これは1.45μm程度という低いものであった。
As known from Tables 1 and 2, the piezoelectric materials of Sample E1 to Sample E12 were sufficiently sintered even at a low temperature of 950 ° C. Then, it was found that the multilayer piezoelectric element produced using Sample E1 to Sample E12 as the material of the piezoelectric layer causes displacement by voltage application even when fired at a low temperature of 950 ° C. Samples E1 to E12 have displacement peaks at different firing temperatures at firing temperatures of 950 to 1100 ° C., and the displacement peaks are all excellent at 1.55 μm or more. It was a thing.
On the other hand, the piezoelectric materials of Sample C1 to Sample C4 could not show displacement when fired at 950 ° C. In addition, at the firing temperature of 950 to 1100 ° C., the displacement peak of sample C1 to sample C4 is sample C2 when fired at firing temperatures of 1050 ° C. and 1100 ° C., which is as low as about 1.45 μm. there were.

また、試料E1を用いて作製した積層型圧電素子と、試料C2を用いて作製した積層型圧電素子について、これらの圧電層の電子顕微鏡(SEM)写真を図4及び図5に示す。
図4は、試料E1を用いて作製した積層型圧電素子の圧電層を示し、(a)は温度1000℃で焼成した圧電層、(b)は1050℃で焼成した圧電層を示す。
また、図5は、試料C2を用いて作製した積層型圧電素子の圧電層を示し、(a)は温度1000℃で焼成した圧電層、(b)は1050℃で焼成した圧電層を示す。
図4及び図5から知られるごとく、試料E1の圧電材料においては、試料C2に比べて、より低温で結晶粒の成長がおこり、結晶粒径が大きくなっていることがわかる。そしてこの低温での成長のし易さによって、表2に示すごとく、試料E1は試料C2に比べてより高い変位量を発揮できると考えられる。
4 and 5 show electron microscope (SEM) photographs of these piezoelectric layers of the multilayer piezoelectric element fabricated using Sample E1 and the multilayer piezoelectric element fabricated using Sample C2.
FIG. 4 shows a piezoelectric layer of a multilayer piezoelectric element manufactured using the sample E1, (a) shows a piezoelectric layer fired at a temperature of 1000 ° C., and (b) shows a piezoelectric layer fired at 1050 ° C.
FIG. 5 shows a piezoelectric layer of a multilayer piezoelectric element manufactured using Sample C2, (a) shows a piezoelectric layer fired at a temperature of 1000 ° C., and (b) shows a piezoelectric layer fired at 1050 ° C.
As can be seen from FIGS. 4 and 5, in the piezoelectric material of the sample E1, it can be seen that the crystal grains grow at a lower temperature and the crystal grain size is larger than that of the sample C2. Due to the ease of growth at this low temperature, as shown in Table 2, it is considered that the sample E1 can exhibit a higher displacement than the sample C2.

また、本例においては、試料E7、試料C3、及び試料C4を用いて作製した積層型圧電素子について、損失を測定し、その温度依存性を調べた。
具体的には、まず、各積層型圧電素子に、400Nの負荷荷重をかけ、温度−40℃〜160℃で0〜150Vの電圧を繰り返し印加して積層型圧電素子を作動させた。このときの入力エネルギーをE1、積層型圧電素子に蓄えられたエネルギーをE2とすると、損失Lは、次の式で算出される。
L=(E1−E2)/E1×100
その結果を表3に示す。
Further, in this example, the loss was measured for the laminated piezoelectric element manufactured using the sample E7, the sample C3, and the sample C4, and the temperature dependency was examined.
Specifically, first, a load of 400 N was applied to each multilayer piezoelectric element, and a voltage of 0 to 150 V was repeatedly applied at a temperature of −40 ° C. to 160 ° C. to operate the multilayer piezoelectric element. If the input energy at this time is E1, and the energy stored in the multilayer piezoelectric element is E2, the loss L is calculated by the following equation.
L = (E1-E2) / E1 × 100
The results are shown in Table 3.

Figure 2006265059
Figure 2006265059

表3から知られるごとく、Sbを含有する試料E7に比べて、Sbが添加されていない試料C3及び試料C4においては、各使用温度での損失が増大していることがわかる。   As can be seen from Table 3, the loss at each use temperature is increased in the sample C3 and the sample C4 to which Sb is not added as compared with the sample E7 containing Sb.

以上のように本例によれば、一般式(1):(Pb1-xMax)(Zr1-y-zTiySbz)1-p-q(Y1/2Nb1/2)p(Mn1-B1-B2B1SbB2)q3で示される化合物1molに対してSb23を0.7mol%以下含有し、0.04≦x≦0.1、0.44≦y≦0.48、0≦z≦0.01、0≦p≦0.02、0.003≦q≦0.01、0≦B1≦0.34、0≦B2≦0.5である圧電材料は、低温焼成が可能で、低温で焼成しても実用に耐えうる変位量を発揮でき、その損失も小さいことがわかる。 According to the present embodiment as described above, the general formula (1) :( Pb 1-x Ma x) (Zr 1-yz Ti y Sb z) 1-pq (Y 1/2 Nb 1/2) p (Mn 1-B1-B2 W B1 Sb B2 ) q O 3 is contained in an amount of 0.7 mol% or less of Sb 2 O 3 with respect to 1 mol of the compound represented by 0.04 ≦ x ≦ 0.1, 0.44 ≦ y ≦ Piezoelectric materials with 0.48, 0 ≦ z ≦ 0.01, 0 ≦ p ≦ 0.02, 0.003 ≦ q ≦ 0.01, 0 ≦ B1 ≦ 0.34, 0 ≦ B2 ≦ 0.5 It can be seen that it can be fired at a low temperature, can exhibit a displacement that can withstand practical use even when fired at a low temperature, and its loss is small.

なお、表1に示すごとく、本例においては、一般式(1)で表される化合物におけるMaとして、SrとBa、又はSrとLaとの組み合わせを用いた。表中には示していないが、MaとしてSrとCeとの組み合わせを用いた場合においても、本例と同様の結果が得られることを確認している。   In addition, as shown in Table 1, in this example, as Ma in the compound represented by the general formula (1), a combination of Sr and Ba or a combination of Sr and La was used. Although not shown in the table, it has been confirmed that the same result as this example can be obtained even when a combination of Sr and Ce is used as Ma.

(実施例2)
次に、本例は、卑金属の電極材料を用いて実施例1と同様の積層型圧電素子を作製する例である。
即ち、まず、圧電材料として実施例1の試料E1を準備した。
この圧電材料を用いて実施例1と同様にしてスラリーを作製し、このスラリーを成形して未焼シートを作製した。次いで、未焼シートに銅とニッケルとの合金からなる電極材料を含んだ導電ペーストを印刷し、実施例1と同様に内部電極用の印刷層を設けた。なお、電極材料としては、銅とニッケルとの合金の他、銅又はニッケルを用いることもできる。
(Example 2)
Next, this example is an example in which a multilayer piezoelectric element similar to that of Example 1 is manufactured using a base metal electrode material.
That is, first, the sample E1 of Example 1 was prepared as a piezoelectric material.
Using this piezoelectric material, a slurry was prepared in the same manner as in Example 1, and this slurry was molded to prepare an unfired sheet. Next, a conductive paste containing an electrode material made of an alloy of copper and nickel was printed on the green sheet, and a printed layer for internal electrodes was provided in the same manner as in Example 1. As an electrode material, copper or nickel can be used in addition to an alloy of copper and nickel.

次いで、実施例1と同様にして、上記印刷層を設けた未焼シートを積層し、更に、上下端に内部電極層用の印刷層がない単なる未焼シートを載置し、熱圧着を行なって未焼積層体を作製した。
次に、この未焼積層体を加熱炉内に配置し、昇温速度50℃/hにて加熱を開始し、保持温度550℃にて37時間加熱した。このとき、雰囲気ガス供給装置から加熱炉内に雰囲気ガスとして窒素と水蒸気とを供給した。窒素は10000ml/minで供給し、水蒸気は加熱炉内の露点温度が70℃となるように供給した。
Next, in the same manner as in Example 1, the unfired sheets provided with the printed layers were laminated, and a simple unfired sheet having no printed layers for internal electrode layers was placed on the upper and lower ends, and thermocompression bonding was performed. Thus, an unfired laminate was produced.
Next, this unfired laminated body was placed in a heating furnace, started to be heated at a temperature rising rate of 50 ° C./h, and heated at a holding temperature of 550 ° C. for 37 hours. At this time, nitrogen and water vapor were supplied as atmospheric gases from the atmospheric gas supply device into the heating furnace. Nitrogen was supplied at 10,000 ml / min, and water vapor was supplied so that the dew point temperature in the heating furnace was 70 ° C.

その後、炉冷し、積層体を加熱炉から取り出して、焼成炉内で焼成した。
焼成は、昇温速度300℃/hにて加熱を開始し、最高保持温度970℃で2時間加熱することにより行った。そして、炉冷速度で降温し、炉室の温度が90℃まで冷却されたときに、積層体を取り出した。
また、上記の焼成の際には、雰囲気ガスとしてCO2(ベースガス)、Ar(不活性ガス)とCO(還元性ガス)とからなるAr−CO(CO濃度は10体積%)、及び酸素分圧を調整するためのO2(酸素ガス)をそれぞれ一定の流量で炉室内に導入した。
Thereafter, the furnace was cooled, the laminate was taken out from the heating furnace, and fired in a firing furnace.
Firing was performed by starting heating at a heating rate of 300 ° C./h and heating at a maximum holding temperature of 970 ° C. for 2 hours. Then, the temperature was lowered at the furnace cooling rate, and the laminate was taken out when the temperature in the furnace chamber was cooled to 90 ° C.
At the time of the firing, Ar 2 -CO (CO concentration is 10% by volume) composed of CO 2 (base gas), Ar (inert gas) and CO (reducing gas) as the atmospheric gas, and oxygen O 2 (oxygen gas) for adjusting the partial pressure was introduced into the furnace chamber at a constant flow rate.

室温から600℃近傍までは、炉外酸素分圧センサーで酸素分圧が10-12.9〜10-16.0atmになるように制御を行った。600℃以上からは、酸素分圧の制御を炉内酸素分圧センサに切り替えて行った。切り替え時の炉内酸素分圧センサの指示値は10-6.0〜10-14atmであった。切り替え後から最高保持温度までは、酸素分圧を直線的に上昇させ、最高保持温度では酸素分圧10-6.0〜10-8.0atmの範囲に保持して雰囲気制御を行う。
このようにして積層体を焼成して、積層型圧電素子を得た。
From room temperature to around 600 ° C., the oxygen partial pressure was controlled to be 10 −12.9 to 10 −16.0 atm by the oxygen partial pressure sensor outside the furnace. From 600 ° C. or higher, the oxygen partial pressure was controlled by switching to the in-furnace oxygen partial pressure sensor. The indicated value of the oxygen partial pressure sensor in the furnace at the time of switching was 10 −6.0 to 10 −14 atm. From the switching to the maximum holding temperature, the oxygen partial pressure is increased linearly, and at the maximum holding temperature, the oxygen partial pressure is maintained in the range of 10 −6.0 to 10 −8.0 atm to control the atmosphere.
Thus, the multilayer body was fired to obtain a multilayer piezoelectric element.

本例においては、上記のごとく、電極材料として、比較的低融点のCuとNiとの合金を用いて積層型圧電素子を作製しているが、圧電材料として実施例1の上記試料E1を用いているため、電極材料と圧電材料との同時焼成が可能であった。
即ち、本例において作製した積層型圧電素子は、最高保持温度970℃という低温で焼成を行っているにもかかわらず、圧電層が充分に焼結されていた。また、CuやNiは、比較的安価であるため、本例の積層型圧電素子は低コストで作製することができる。
In this example, as described above, a laminated piezoelectric element is produced using an alloy of Cu and Ni having a relatively low melting point as the electrode material. However, the sample E1 of Example 1 is used as the piezoelectric material. Therefore, simultaneous firing of the electrode material and the piezoelectric material was possible.
That is, in the multilayer piezoelectric element produced in this example, the piezoelectric layer was sufficiently sintered despite being fired at a low temperature of 970 ° C. Further, since Cu and Ni are relatively inexpensive, the multilayer piezoelectric element of this example can be manufactured at low cost.

実施例1にかかる、積層型圧電素子の斜視図。1 is a perspective view of a multilayer piezoelectric element according to Example 1. FIG. 実施例1にかかる、(a)積層型圧電素子の圧電層の平面図、及び(b)ダミー部を構成するセラミック層の平面図。2A is a plan view of a piezoelectric layer of a multilayer piezoelectric element according to Example 1, and FIG. 2B is a plan view of a ceramic layer constituting a dummy portion. 実施例1にかかる、圧電層の積層状態を示す斜視展開図。FIG. 3 is a perspective developed view showing a stacked state of piezoelectric layers according to the first embodiment. 実施例1にかかる、試料E1を圧電材料として用いて作製した積層型圧電素子の圧電層の電子顕微鏡(SEM)写真であって、(a)焼成温度1000℃で焼成したときの写真、及び(b)焼成温度1050℃で焼成した写真を示す説明図。It is an electron microscope (SEM) photograph of the piezoelectric layer of the multilayer piezoelectric element manufactured using the sample E1 according to Example 1 as a piezoelectric material, (a) a photograph when fired at a firing temperature of 1000 ° C., and ( b) Explanatory drawing which shows the photograph baked with the calcination temperature of 1050 degreeC. 実施例1にかかる、試料C2を圧電材料として用いて作製した積層型圧電素子の圧電層の電子顕微鏡(SEM)写真であって、(a)焼成温度1000℃で焼成したときの写真、及び(b)焼成温度1050℃で焼成した写真を示す説明図。It is an electron microscope (SEM) photograph of the piezoelectric layer of the laminated piezoelectric element produced using the sample C2 as the piezoelectric material according to Example 1, and (a) a photograph when fired at a firing temperature of 1000 ° C., and b) Explanatory drawing which shows the photograph baked with the calcination temperature of 1050 degreeC.

符号の説明Explanation of symbols

1 積層型圧電素子
11 圧電層
21、22 内部電極層
DESCRIPTION OF SYMBOLS 1 Multilayer piezoelectric element 11 Piezoelectric layer 21, 22 Internal electrode layer

Claims (6)

一般式(1):(Pb1-xMax)(Zr1-y-zTiySbz)1-p-q(Y1/2Nb1/2)p(Mn1-B1-B2B1SbB2)q3で示される化合物と、Sb23及び/又はSb25とを含有する圧電材料(ただし、MaはBa、La、Sr、及びCeから選ばれる1種以上)であって、
該圧電材料は、上記一般式(1)で表される化合物1molに対してSb23及び/又はSb25を0.7mol%以下含有し、
0.04≦x≦0.1
0.44≦y≦0.48
0≦z≦0.01
0≦p≦0.02
0.003≦q≦0.01
0≦B1≦0.34
0≦B2≦0.5
であることを特徴とする圧電材料。
Formula (1) :( Pb 1-x Ma x) (Zr 1-yz Ti y Sb z) 1-pq (Y 1/2 Nb 1/2) p (Mn 1-B1-B2 W B1 Sb B2) and a compound represented by q O 3, Sb 2 O 3 and / or Sb 2 O 5 and the piezoelectric material containing (although, Ma is Ba, La, Sr, and one or more selected from Ce) a,
The piezoelectric material contains 0.7 mol% or less of Sb 2 O 3 and / or Sb 2 O 5 with respect to 1 mol of the compound represented by the general formula (1).
0.04 ≦ x ≦ 0.1
0.44 ≦ y ≦ 0.48
0 ≦ z ≦ 0.01
0 ≦ p ≦ 0.02
0.003 ≦ q ≦ 0.01
0 ≦ B1 ≦ 0.34
0 ≦ B2 ≦ 0.5
A piezoelectric material characterized by
請求項1において、上記一般式(1)におけるMaは、必須成分のSrと、Ba、La、又はCeとからなることを特徴とする圧電材料。   2. The piezoelectric material according to claim 1, wherein Ma in the general formula (1) is composed of Sr as an essential component and Ba, La, or Ce. 請求項2において、上記一般式(1)のMaにおいては、Ba、La、又はCeとSrとは、Pbに対する置換割合が略同比率であることを特徴とする圧電材料。   3. The piezoelectric material according to claim 2, wherein in the Ma of the general formula (1), Ba, La, or Ce and Sr have substantially the same substitution ratio with respect to Pb. 請求項1〜3のいずれか一項において、上記圧電材料は、上記一般式(1)で表される化合物100重量部に対して、PbOを0.05〜2重量部、及びWO3を0.001〜0.038重量部含有することを特徴とする圧電材料。 4. The piezoelectric material according to claim 1, wherein the piezoelectric material has 0.05 to 2 parts by weight of PbO and 0 to 3 of WO 3 with respect to 100 parts by weight of the compound represented by the general formula (1). A piezoelectric material containing 0.001 to 0.038 parts by weight. 圧電層と内部電極層とを交互に積層してなる積層型圧電素子の製造方法であって、
請求項1〜4のいずれか一項に記載の圧電材料を含むシート形成材料を準備し、該シート形成材料を成形して未焼シートを作製し、該未焼シートに内部電極層用の電極材料を含有するペーストからなる印刷層を設け、
その後上記印刷層を設けた未焼シートを複数枚積層して未焼積層体となし、該未焼積層体を焼成することを特徴とする積層型圧電素子の製造方法。
A method for producing a laminated piezoelectric element in which piezoelectric layers and internal electrode layers are alternately laminated,
A sheet forming material containing the piezoelectric material according to claim 1 is prepared, and the sheet forming material is molded to produce an unfired sheet. An electrode for an internal electrode layer is formed on the unfired sheet. Provide a printing layer made of paste containing the material,
Thereafter, a plurality of unfired sheets provided with the printed layer are laminated to form an unfired laminate, and the unfired laminate is fired.
請求項5において、上記未焼積層体の焼成は、温度850℃〜1000℃で行うことを特徴とする積層型圧電素子の製造方法。   6. The method for manufacturing a multilayer piezoelectric element according to claim 5, wherein the firing of the green laminate is performed at a temperature of 850 ° C. to 1000 ° C.
JP2005088039A 2005-03-25 2005-03-25 Manufacturing method of piezoelectric material and laminated piezoelectric element Withdrawn JP2006265059A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005088039A JP2006265059A (en) 2005-03-25 2005-03-25 Manufacturing method of piezoelectric material and laminated piezoelectric element
DE200610013200 DE102006013200A1 (en) 2005-03-25 2006-03-22 Piezoelectric material for multilayer piezoelectric element e.g., for actuators in fuel injectors, has specific molar concentration of an antinomy oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005088039A JP2006265059A (en) 2005-03-25 2005-03-25 Manufacturing method of piezoelectric material and laminated piezoelectric element

Publications (1)

Publication Number Publication Date
JP2006265059A true JP2006265059A (en) 2006-10-05

Family

ID=37085201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005088039A Withdrawn JP2006265059A (en) 2005-03-25 2005-03-25 Manufacturing method of piezoelectric material and laminated piezoelectric element

Country Status (2)

Country Link
JP (1) JP2006265059A (en)
DE (1) DE102006013200A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009252786A (en) * 2008-04-01 2009-10-29 Seiko Epson Corp Oxide source material solution, oxide film, piezoelectric element, method for forming oxide film and method for manufacturing piezoelectric element
JP2014529902A (en) * 2011-08-30 2014-11-13 エプコス アクチエンゲゼルシャフトEpcos Ag Piezoelectric device and method for manufacturing piezoelectric device
CN113929454A (en) * 2021-09-07 2022-01-14 成都宏科电子科技有限公司 Antiferroelectric high-energy-density ceramic powder, preparation method thereof and capacitor containing antiferroelectric high-energy-density ceramic powder
CN113979747A (en) * 2021-11-18 2022-01-28 厦门乃尔电子有限公司 Modified lead zirconate titanate piezoelectric ceramic with additional bismuth antimonate and preparation method thereof
CN114665003A (en) * 2022-03-23 2022-06-24 湘潭大学 Flexible ferroelectric film containing defective dipole and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009252786A (en) * 2008-04-01 2009-10-29 Seiko Epson Corp Oxide source material solution, oxide film, piezoelectric element, method for forming oxide film and method for manufacturing piezoelectric element
JP2014529902A (en) * 2011-08-30 2014-11-13 エプコス アクチエンゲゼルシャフトEpcos Ag Piezoelectric device and method for manufacturing piezoelectric device
US9570669B2 (en) 2011-08-30 2017-02-14 Epcos Ag Piezoelectric component and method for producing a piezoelectric component
US10483454B2 (en) 2011-08-30 2019-11-19 Tdk Electronics Ag Piezoelectric component and method for producing a piezoelectric component
CN113929454A (en) * 2021-09-07 2022-01-14 成都宏科电子科技有限公司 Antiferroelectric high-energy-density ceramic powder, preparation method thereof and capacitor containing antiferroelectric high-energy-density ceramic powder
CN113979747A (en) * 2021-11-18 2022-01-28 厦门乃尔电子有限公司 Modified lead zirconate titanate piezoelectric ceramic with additional bismuth antimonate and preparation method thereof
CN114665003A (en) * 2022-03-23 2022-06-24 湘潭大学 Flexible ferroelectric film containing defective dipole and manufacturing method thereof

Also Published As

Publication number Publication date
DE102006013200A1 (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP4248581B2 (en) Piezoelectric structure element
KR100905886B1 (en) Piezoelectric ceramic composition and piezoelectric ceramic electronic component
JP4547632B2 (en) Piezoelectric ceramic composition and piezoelectric actuator
EP2104152A2 (en) Piezoelectric ceramic and piezoelectric element employing it
JP4727458B2 (en) Sintering aid for piezoelectric ceramics, BNT-BT piezoelectric ceramics, multilayer piezoelectric device, and method for producing BNT-BT piezoelectric ceramics
JP2009242167A (en) Piezoelectric ceramic and piezoelectric element using it
JP6259577B2 (en) Piezoelectric ceramics and piezoelectric element
JP4259030B2 (en) Multilayer piezoelectric ceramic element and multilayer piezoelectric electronic component using the same
JP3812936B2 (en) Ceramic material and piezoelectric element using the same
WO2017094882A1 (en) Dielectric porcelain composition, layered ceramic capacitor, and layered ceramic capacitor production method
JP2006265059A (en) Manufacturing method of piezoelectric material and laminated piezoelectric element
JP4992234B2 (en) Multilayer piezoelectric ceramic element and manufacturing method thereof
JP5392603B2 (en) Method for manufacturing piezoelectric ceramic electronic component
JP2013219250A (en) Piezoelectric ceramic electronic part, and manufacturing method thereof
WO2015046434A1 (en) Multilayer piezoelectric ceramic electronic component and method for manufacturing multilayer piezoelectric ceramic electronic component
JP4462438B2 (en) Piezoelectric ceramic composition, multilayer piezoelectric element, and method for producing multilayer piezoelectric element
JP5158516B2 (en) Piezoelectric ceramic composition and piezoelectric element
JP2005179161A (en) Piezoelectric ceramic and its manufacturing method, laminated piezoelectric device and its manufacturing method, and injection system
JP4492022B2 (en) Multilayer piezoelectric ceramic element
JP5190894B2 (en) Piezoelectric or dielectric ceramic composition, piezoelectric device and dielectric device
CN116589277A (en) Piezoelectric ceramic, ceramic electronic component, and method for manufacturing piezoelectric ceramic
JP4254310B2 (en) Piezoelectric material and method for manufacturing multilayer piezoelectric element
JP5103859B2 (en) Multilayer piezoelectric ceramic element and manufacturing method thereof
CN113402274B (en) Piezoelectric composition and electronic component
JP4930676B2 (en) Piezoelectric ceramic composition, multilayer piezoelectric element, and method for producing multilayer piezoelectric element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070620

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090721