JP4254310B2 - Piezoelectric material and method for manufacturing multilayer piezoelectric element - Google Patents

Piezoelectric material and method for manufacturing multilayer piezoelectric element Download PDF

Info

Publication number
JP4254310B2
JP4254310B2 JP2003098160A JP2003098160A JP4254310B2 JP 4254310 B2 JP4254310 B2 JP 4254310B2 JP 2003098160 A JP2003098160 A JP 2003098160A JP 2003098160 A JP2003098160 A JP 2003098160A JP 4254310 B2 JP4254310 B2 JP 4254310B2
Authority
JP
Japan
Prior art keywords
piezoelectric material
piezoelectric
laminated
oxide
piezoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003098160A
Other languages
Japanese (ja)
Other versions
JP2004300009A (en
Inventor
弘貴 久保田
孝史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003098160A priority Critical patent/JP4254310B2/en
Priority to DE200410015853 priority patent/DE102004015853A1/en
Publication of JP2004300009A publication Critical patent/JP2004300009A/en
Application granted granted Critical
Publication of JP4254310B2 publication Critical patent/JP4254310B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • C04B35/493Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT containing also other lead compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • H10N30/053Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes by integrally sintering piezoelectric or electrostrictive bodies and electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead based oxides
    • H10N30/8554Lead zirconium titanate based
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piezoelectric material applicable to a laminated piezoelectric device having a large displacement and stable dielectric properties, and a method of manufacturing the laminated piezoelectric device. <P>SOLUTION: The piezoelectric material is composed to have a chemical formula (Pb<SB>1-x</SB>Ma<SB>x</SB>)<SB>1+d</SB>(Zr<SB>1-y</SB>Ti<SB>y</SB>)<SB>1-p-q</SB>(Y<SB>1/2</SB>Nb<SB>1/2</SB>)<SB>p</SB>(Mn<SB>1-z1-z2</SB>Mb<SB>z1</SB>Mc<SB>z2</SB>)<SB>q</SB>O<SB>3+d</SB>, wherein Ma contains Ba or Ca selected from Ba, Ca, and Sr; Mb is selected from Nb, Sb, and Ta; Mc is selected from W and Mo; d is -0.02&le;d&le;0.04; x is 0.01&le;x&le;0.20; y is 0.40&le;y&le;0.55; p is 0.005&le;p&le;0.05; q is 0.001&le;q(1-z1-z2)&le;0.02; and 0.7&le;(1-z1-z2)/(z1+2 z2)&le;1.5 (wherein z1 and z2 are each 0 or a positive number, and at least one of them is not 0). <P>COPYRIGHT: (C)2005,JPO&amp;NCIPI

Description

【0001】
【技術分野】
本発明は,Mnを含むチタン酸ジルコン酸鉛系圧電材料及びこの圧電材料を用いた積層型圧電体素子の製造方法に関する。
【0002】
【従来技術】
従来,アクチュエータ用積層型圧電体素子に使用する圧電材料として,PbZrO3−PbTiO3−Pb(Y1/2Nb1/2)O3系圧電材料において,Pbの一部をSrで置換し,かつSb,Nb,W,La,Ta,Bi,Nd,Prから選ばれた少なくとも一つの元素とMnを置換した組成の化合物からなるものが知られている。
【0003】
【特許文献1】
特開昭62−46961号公報
【0004】
【解決しようとする課題】
しかしながら,上記圧電材料を用いて作製した積層型圧電体素子の変位量は,アクチュエータの用途によっては必ずしも十分でない場合があった。
また,上記圧電材料は,ドナー元素であるSb,Nb,W等と共にアクセプタ元素であるMnを添加しているが,必ずしもドナー元素とアクセプタ元素の比率が適正とならない場合がある。このため,上記圧電材料から作製した積層型圧電体素子は,誘電特性の経時変化が大きく,特性が安定しないという問題があった。
【0005】
上記問題点において,チタン酸ジルコン酸鉛系圧電材料にMnを添加することは,誘電損失を低下させ,機械的品質係数を向上させるため,エネルギーの損失に伴う発熱の抑制につながることが知られている。
このため,チタン酸ジルコン酸鉛系圧電材料にMnを無添加とすることによって誘電特性の経時変化を抑制することが可能であると思われるが,Mnによる発熱抑制効果を犠牲にしなければならず,現実的ではない。
従って,Mnを含有するチタン酸ジルコン酸鉛系圧電材料において,何らかの誘電特性安定対策を講じる必要があった。
【0006】
本発明は,かかる従来の問題点に鑑みてなされたもので,変位量が大で,誘電特性が安定した積層型圧電体素子に適用可能な圧電材料とこの圧電材料を用いた積層型圧電体素子の製造方法を提供するものである。
【0007】
【課題の解決手段】
第1の発明は,化学式(Pb1-xMax1+d(Zr1-yTiy1-p-q(Y1/2Nb1/2p(Mn1-z1-z2Mbz1Mcz2q3+dで表される圧電材料(ただしMaは,Ba,Ca,Srから選択する少なくとも1種以上の元素であって,BaまたはCaのいずれかを含む。MbはNb,Sb,Taから選択する少なくとも1種以上の元素。McはW,Moから選択する少なくとも1種以上の元素。)であって,
−0.02≦d≦0.04,
0.01≦x≦0.20,
0.40≦y≦0.55,
0.005≦p≦0.05,
0.001≦q・(1−z1−z2)≦0.02,
0.7≦(1−z1−z2)/(z1+2・z2)≦1.5(ただしz1,z2は0または正の数で,少なくとも一方は0でない。)
であることを特徴とする圧電材料にある(請求項1)。
【0008】
第2の発明は,化学式(Pb1-xMax1+d(Zr1-yTiy1-p-q(Y1/2Nb1/2p(Mn1-z2z2q3+dで表される圧電材料(ただしMaは,Ba,Ca,Srから選択する少なくとも1種以上の元素であって,Baを含む。)であって,
−0.02≦d≦0.04,
0.01≦x≦0.20,
0.40≦y≦0.55,
0.25≦z2≦0.40,
0.005≦p≦0.05,
0.001≦q・(1−z2)≦0.02であることを特徴とする圧電材料にある(請求項2)。
【0009】
第1,第2の発明の作用効果につき説明する。
従来技術にかかる材料では,圧電材料中のPbの一部を置換する元素がPbとほぼ同じイオン半径のSrのみであり,ペロブスカイト結晶格子に与える歪みが十分でなかったのではないかという点に着目し,本発明にかかる圧電材料では,Pbの一部を置換する元素として,少なくともイオン半径がPbより大きいBaまたはPbよりイオン半径が小さいCaを選択した。すなわち,Pbの12配位イオン半径は1.49Åで,Ba,Ca,Srの12配位イオン半径はそれぞれ1.61Å,1.34Å,1.44Åである
【0010】
従って,第1,第2の発明にかかる圧電材料は,ペロブスカイト結晶格子内に従来より大きな歪みが導入されるため,より大きな圧電効果を発揮する。
そのため,第1,第2の発明にかかる材料から積層型圧電体素子を作製した場合は,大きな変位量を発揮することができる。
【0011】
また,従来技術にかかる材料では,ドナー元素とアクセプタ元素の比率が必ずしも適正でなく,これらの原子価の補償が不十分なため生成する酸素欠陥が,誘電特性の経時変化に悪影響を及ぼしているのではないかという点に着目し,本発明にかかる圧電材料では,ドナー元素であるSb,Nb,W,Moとアクセプタ元素であるMnの比率を適正範囲に設定した。これにより,圧電材料中の結晶格子における酸素欠陥の生成量を低減させて,誘電特性の経時変化を抑制することができる。
【0012】
また,第3の発明は,圧電層と内部電極層とを交互に積層してなる積層型圧電体素子を製造するに当たり,
請求項1または2にかかる圧電材料のBET比表面積が1.6〜8m2/gとなるよう調整すると共に化学式(1−β−γ)PbO・βWO3・γMoO3(0.005≦β+γ≦0.27,ただしβ≧0,γ≧0。)で表される助剤酸化物を添加して混合物を作製し,
上記混合物を成形して未焼シートを作製し,該未焼シートに内部電極層用の電極材料を含有するペーストからなる印刷層を設け,
その後上記印刷層を設けた未焼シートを複数枚積層して未焼積層体となし,該未焼積層体を焼成することを特徴とする積層型圧電体素子の製造方法にある(請求項4)。
【0013】
第3の発明にかかる製造方法にて作製した積層型圧電体素子は,第1や第2の発明にかかる圧電材料からなる圧電層を有するため,変位量が大きく,誘電特性の経時変化が抑制された圧電層を有する。
また,圧電層は上述した助剤酸化物を含んでおり,助剤酸化物の存在が圧電層における母材となる第1や第2の発明にかかる圧電材料の焼結状態に影響を与えて,未焼積層体の低温焼結が可能となる。
【0014】
更に,第3の発明では,圧電材料の比表面積を上述した範囲内に制御する。これにより,圧電材料の周囲に助剤酸化物を均一に存在させて,圧電層における液相焼結を可能とする。従って,第1や第2の発明にかかる圧電材料の性能を生かした状態でより低温の焼結を実現することができる。
低温焼結が可能となれば,内部電極層としてより安価な電極材料(Cu,Ag,Pd含有量が10%以下のAg−Pd合金等)を用いることができ,材料コストの低減を図ることができる。
【0015】
以上,本発明によれば,変位量が大で,誘電特性が安定した積層型圧電体素子に適用可能な圧電材料とこの圧電材料を用いた積層型圧電体素子の製造方法を提供することができる。
【0016】
【発明の実施の形態】
第1の発明において,d<−0.02である場合は焼結温度が高くなるおそれがある。d>0.04である場合は変位性能が低下するおそれがある。
x<0.01である場合は変位性能が低下するおそれがある。x>0.20である場合は圧電材料のキュリー温度が低下し(概ね200℃以下),使用可能な温度範囲が狭く,実用性に欠ける圧電材料となってしまうおそれがある。
y<0.40,y>0.55である場合は変位性能が低下するおそれがある。
p<0.005,p>0.05である場合は変位性能が低下するおそれがある。更にp>0.05である場合は焼結温度が高くなるおそれがある。
【0017】
q・(1−z1−z2)<0.001である場合はMn添加による性能向上効果(誘電損失を低下させ,機械的品質係数の向上)が得難くなるおそれがある。また,q・(1−z1−z2)>0.02である場合は変位性能が低下するおそれがある。
(1−z1−z2)/(z1+2・z2)<0.7である場合は変位性能が低下するおそれがある。(1−z1−z2)/(z1+2・z2)>1.5である場合は誘電特性の経時変化が大きくなるおそれがある。
【0018】
また,第1の発明にかかる圧電材料の化学式の「Pb1-xMax」にかかる項は圧電材料の結晶格子(ペロブスカイト構造である)でPbがMaという元素で置換されていることを意味するが,Maとして複数の元素を選択した場合,複数の元素を合わせた合計のモル分率がxとなる。
すなわち,MaがBa,Sr,Caからなる場合は,「Pb1-xBalSrmCan」でl+m+n=xとなる。化学式の他の項で複数の元素を選択する場合についても同様である。
【0019】
また,Maは,Ba,Ca,Srから選択する少なくとも1種以上の元素であって,BaまたはCaのいずれかを含むため,Maとして選択可能な元素の組み合わせは,Baのみ,Caのみ,Ba及びCa,Ba及びSr,Ca及びSr,BaとCaとSrである。Sr単独をMaの元素としても本発明にかかる効果は得られない。
【0020】
第2の発明において,z2<0.25である場合は誘電特性の経時変化が大きくなるおそれがある。z2>0.4である場合は変位性能が低下するおそれがある。
q・(1−z2)<0.001である場合はMn添加による性能向上効果(誘電損失を低下させ,機械的品質係数の向上)が得難くなるおそれがある。また,q・(1−z2)>0.02である場合は変位性能が低下するおそれがある。
その他のパラメータについては第1の発明と同様である。
【0021】
また,第1の発明又は第2の発明の圧電材料に,化学式(1−β−γ)PbO・βWO3・γMoO3(0.005≦β+γ≦0.27,ただしβ≧0,γ≧0。)で表される助剤酸化物を添加してなる圧電材料であって,上記助剤酸化物の圧電材料100重量%に対する添加量αは,0.05〜5重量%(外%)であることが好ましい(請求項3)。
【0022】
ここで,助剤酸化物は,上記化学式となるように配合したPb酸化物とW酸化物および/またはMo酸化物を固溶させた複合酸化物のほか,上記化学式となるように配合したPb酸化物とW酸化物および/またはMo酸化物の混合物や該混合物を部分的に固溶させたものであっても差し支えない。助剤酸化物中にPb酸化物とW酸化物および/またはMo酸化物が残っていたとしても,これらは焼結の過程で固溶が進行し,助剤酸化物として機能するからである。
【0023】
請求項3にかかる助剤酸化物を用いることで,第1,第2の発明にかかる圧電材料の焼成温度を下げて,より安価な電極材料(Cu,Ag,Pd含有量が10%以下のAg−Pd合金等)を用いて積層型圧電体素子を作製することができる。よってコスト安な積層型圧電体素子の製造に向く圧電材料を得ることができる。
β+γ<0.005,β+γ>0.27である場合は,焼成温度低下の効果が得難くなるおそれがある。
α<0.05重量%である場合は,焼結温度低下効果が得難くなるおそれがある。α>5重量%は変位性能が低下するおそれがある。変位に寄与しない助剤酸化物が圧電材料中に増えるためである。
【0024】
また,第3の発明は,第1または第2の発明にかかる圧電材料を用い,請求項3にかかる助剤酸化物を混ぜて作製した圧電層を有する積層型圧電体素子を作製する方法である。
更に,第3の発明では圧電材料が所定の表面積となるよう調整するが,仮にBET比表面積が1.6m2/g未満である場合は圧電材料の焼結温度が高くなるおそれがある。8m2/gより大きい場合は,助剤酸化物の圧電材料への固溶が進行しすぎるために変位性能が低下するおそれがある。
その他圧電材料や助剤酸化物については上述した第1,第2の発明にかかる記載と同様である。
【0025】
上記BET比表面積とはBET法で測定した比表面積である。
比表面積の測定法に材料の表面に吸着占有面積の判った分子を液体窒素の温度で吸着させ,その量から試料の比表面積を求める方法があり,特に不活性気体の低温低湿物理吸着による測定をBET法という。
【0026】
第3の発明にかかる製造方法では,予め請求項1や2にかかる組成からなる圧電材料を作製して,そこに別途上述した組成の助剤酸化物を混ぜている。
圧電材料のBET比表面積を上述した範囲とするための処理は,圧電材料単独の状態で行ってもよいし,助剤酸化物と混合した後に行ってもよい。
【0027】
すなわち,まず所定の組成比となるように出発原料を秤量し,該出発原料を仮焼した後,所定のBET比表面積となるまで粉砕する。その後,助剤酸化物を加えて混合物となす。
または,出発原料を仮焼し,その後助剤酸化物を加えて粉砕する。
【0028】
また,出発原料を仮焼,粉砕して得られた圧電材料の微粉は,助剤酸化物との反応性が高いため,助剤酸化物の圧電材料への固溶を極力抑えるために,圧電材料を粉砕した後,400〜700℃で予焼して得られた粉に,助剤酸化物,溶剤,バインダー,可塑剤,分散剤を添加して成形することもできる。
【0029】
また,本発明における積層型圧電体素子の製造方法において,圧電材料が所定のBET比表面積となるように調整する際は,ボールミルや媒体攪拌ミル等を用いて粉砕し,粒径を微粒化することによって行うことが好ましい。
【0030】
また,圧電材料と助剤酸化物からなる混合物を成形する際は,該混合物にバインダー等を加えたスラリーを調製し,通常知られたドクターブレード法によって未焼シートを作製することができる。その後,未焼シートに電極材料を含有するペーストを印刷して印刷層を設ける。
上記印刷層を設けた未焼シートを所望の枚数積層して,圧着し,未焼積層体を作製する。この未焼積層体を脱脂,焼成し,その後内部電極層と電気的に導通させる側面電極等を設けた後,分極処理などを施すことで,積層型圧電体素子を得ることができる。
【0031】
また,ここで記載した手順は積層型圧電体素子でよく知られた製造方法であり,これ以外の方法で圧電体素子を作製する場合に関して第3の発明を適用することもできる。
なお,内部電極層は,後述する実施例1で示した部分電極構成(積層方向に直交する断面での面積が圧電層よりも小さい。)の他,全面電極構成(圧電層と略等しい面積を備える。)として作製することもできる。
【0032】
また,上記積層型圧電体素子は,誘電特性が安定した圧電材料からなる圧電層を持つ。誘電特性が安定することで,変位の過渡特性のばらつきが小さくなる。そのため,電圧を印加した際の圧電層の伸び速度,すなわち圧電アクチュエータとして用いた場合,アクチュエータの伸び速度が略一定となる。
【0033】
このような圧電アクチュエータを自動車エンジン等の内燃機関における燃料噴射用のインジェクタの駆動源として使用することで,燃料の噴射量のばらつきを減らして,燃焼状態制御をより精密に行うことができる。この点で,第1,第2の発明にかかる圧電材料は,燃料噴射インジェクタの駆動源の圧電アクチュエータの圧電層の構成材料として好適である。第3の発明で製造した積層型圧電体素子も燃料噴射インジェクタの駆動源として好適である。
【0034】
【実施例】
以下に図面を用いて本発明の実施例について説明する。
(実施例1)
本例では,本発明にかかる圧電材料から積層型圧電体素子を作製し,その性能を評価する。
本例にかかる圧電材料は,化学式(Pb1-xMax1+d(Zr1-yTiy1-p-q(Y1/2Nb1/2p(Mn1-z1-z2Mbz1Mcz2q3+dで表される圧電材料(ただしMaは,Ba,Ca,Srから選択する少なくとも1種以上の元素であって,BaまたはCaのいずれかを含む。MbはNb,Sb,Taから選択する少なくとも1種以上の元素。McはW,Moから選択する少なくとも1種以上の元素。)であって,
−0.02≦d≦0.04,
0.01≦x≦0.20,
0.40≦y≦0.55,
0.005≦p≦0.05,
0.001≦q・(1−z1−z2)≦0.02,
0.7≦(1−z1−z2)/(z1+2・z2)≦1.5
(ただしz1,z2は0または正の数で,少なくとも一方は0でない)である。
【0035】
または,本例にかかる圧電材料は,化学式(Pb1-xMax1+d(Zr1-yTiy1-p-q(Y1/2Nb1/2p(Mn1-z2z2q3+dで表される圧電材料(ただしMaは,Ba,Ca,Srから選択する少なくとも1種以上の元素であって,Baを含む。)であって,
−0.02≦d≦0.04,
0.01≦x≦0.20,
0.40≦y≦0.55,
0.25≦z2≦0.40,
0.005≦p≦0.05,
0.001≦q・(1−z2)≦0.02である。
【0036】
以下,詳細に説明する。
本例は,本発明にかかる試料1〜14と比較試料C1〜C3とを用いて本発明にかかる圧電材料や本発明にかかる製造方法から得た積層型圧電体素子の性能について評価する。
すなわち,試料1〜14は,化学式(Pb1-xMax1+d(Zr1-yTiy1-p-q(Y1/2Nb1/2p(Mn1-z1-z2Mbz1Mcz2q3+dの置換元素であるMa,Mb,Mcの種類と組成比(x,y,z1,z2,p,q,d)を表1のとおりに変更して得た圧電材料である。
【0037】
比較試料C1は,(1−z1−z2)/(z1+2・z2)が0.54であり本発明外の組成である。比較試料C2はMb,Mcにかかる元素を含んでおらず,本発明外の組成である。比較試料C3は(1−z1−z2)/(z1+2・z2)が2であり本発明外の組成である。
これらの圧電材料から図1〜図3に示すごとき積層型圧電体素子1を作製し,圧電特性を調べた。
【0038】
ここで作製した積層型圧電体素子1は,図1〜図3に示すごとく,圧電層11の層間に内部電極層21,22を交互に正負となるように作製してなる。図2(a)に示すごとく,一方の内部電極層21は圧電層11に対し控え部119を残して,図1に示すごとく,一方の側面101に露出するように配設され,他方の内部電極層22は他方の側面102に露出するように配設されている。
そして,圧電体素子1の側面101,102には,露出した内部電極層21,22の端部を導通させるように側面電極31が設けてなる。
また,圧電体素子1の積層方向の中央部分は内部電極層21,22に通電することで伸張する駆動部111であり,該駆動部111を挟持するセラミック層12は,少なくとも一方の面は,図2(b)に示すごとく,内部電極層21,22と接していなくて,よって内部電極層21,22に通電しても伸張しないダミー部112となる。
【0039】
次に,圧電材料と積層型圧電体素子の具体的な製造方法について説明する。
圧電材料の各構成原子を含む出発原料としてPbO,SrCO3,BaCO3,CaCO3,ZrO2,TiO2,Y23,Nb25,Sb23,WO3,MoO3を使用し,表1に示す所望の組成となるよう,すなわち,目的組成における各構成原子の比と出発原料における各構成原子の比が同じになるように秤量した。
【0040】
秤量した原料を湿式混合し,乾燥後800℃で5時間仮焼し,これを媒体攪拌ミルにより湿式粉砕し,BET比表面積が2.5〜3m2/gの粉砕物を得た。これに溶剤,バインダー,可塑剤,分散剤を加えてボールミルにより混合してスラリーを得た。
ドクターブレード装置を用いて,上記スラリーから厚み100μmの未焼シートを成形した。この未焼シートに銀/パラジウム=7/3(重量比)からなる電極材料を含んだ導電ペーストを印刷して内部電極層用の印刷層を設けた。
【0041】
上記印刷層を設けた未焼シートを図3に示すように21枚積層し,更に,上下端に内部電極層用の印刷層がない単なる未焼シートを載置し,熱圧着を行なって未焼積層体を作製した。
次いで,未焼積層体を電気炉において脱脂し,その後850℃〜1100℃で焼成し,全面研磨して7×7×1.8mmの積層焼結体を得た。
更に,上記積層焼結体の側面に内部電極層を一層おきに導通させるため一対の側面電極を焼き付けた後,130℃,2kV/mmの印加電界で30分間分極し,48時間室温にて放置した。
以上により,積層型圧電体素子を得た。
【0042】
積層型圧電体素子の性能測定について説明する。
得られた積層型圧電体素子のインピーダンス−周波数特性をインピーダンスアナライザーにより測定し,基本振動における共振周波数frと反共振周波数faとの差を求め,これが飽和し始める焼成温度を表2に示した。
【0043】
そして,上記温度において焼成した各積層型圧電体素子の変位量と静電容量の経時変化をそれぞれ調べた。
変位量の測定法については,まず,積層型圧電体素子に500Nの荷重をかけながら150Vの電圧を印加し,その時の積層型圧電体素子の変位をレーザー変位計により測定した。測定点は2点で,2点の平均値をその素子の変位量とした。また,上記変位量の測定は室温で行うが,予め積層型圧電体素子を駆動している状態で20分程度エージングした後に測定を行った。
【0044】
また,静電容量の経時変化については,積層型圧電体素子を分極後,48時間室温にて放置した後にLCRメータで1kHzでの静電容量Q1を測定し,更に1週間経過後に静電容量Q2を測定し,Q1とQ2の変化率を計算により求めた。
上記測定結果を記載した表2から明らかなように,試料1〜14にかかる本発明の圧電材料を用いて作製した積層型圧電体素子では,比較試料C1〜C3に比べて,変位量が大きくなっていると共に,静電容量の経時変化が小さくなって改善された。すなわち誘電特性が安定したことがわかった。
【0045】
本例にかかる圧電材料(試料1〜14)は,圧電材料を構成するペロブスカイト結晶格子のPbの一部を置換する元素として,少なくともイオン半径がPbより大きいBa,またはPbよりイオン半径が小さいCaを選択している(表1参照)。圧電材料を構成するペロブスカイト結晶格子内に大きな歪みが導入され,より大きな圧電効果を発揮する。そのため,本例にかかる試料1〜14にかかる圧電材料から図1〜図3に示すごとき積層型圧電体素子を作製した場合は,大きな変位量を得ることができる(表2参照)。
【0046】
また,試料1〜14にかかる圧電材料では,ドナー元素であるSb,Nb,W,Moとアクセプタ元素であるMnの比率を適正範囲に設定した。これにより,圧電材料中のペロブスカイト結晶格子における酸素欠陥の生成量を低減して,誘電特性の経時変化を抑制することができる。
【0047】
以上,本例によれば,変位量が大で,誘電特性が安定した積層圧電体素子に適用可能な圧電材料とこの圧電材料を用いた積層型圧電体素子の製造方法を提供することができる。
【0048】
【表1】

Figure 0004254310
【0049】
【表2】
Figure 0004254310
【0050】
(実施例2)
本例は,圧電材料に助剤酸化物を添加して圧電層とした積層型圧電体素子の性能について,比較例と共に評価する。
まず,助剤酸化物の原料としてPbO,WO3,MoO3を使用し,表3に示す所望の組成となるよう,すなわち,目的組成における各構成原子の比と出発原料における各構成原子の比が同じになるように秤量した。
【0051】
これらを乾式混合した後,大気中500℃で2時間仮焼成し,PbOとWO3及び/又はMoO3の一部を反応させて助剤酸化物の仮焼粉を得た。この仮焼粉を湿式粉砕後乾燥して,BET比表面積が1.5〜2m2/gの試料15〜19となる助剤酸化物を得た。
なお,比較試料C4の助剤酸化物は,MoO3を含んでおらず,WO3の量が多く,請求項3,4の発明にかかる助剤酸化物ではない。
【0052】
圧電材料は表1にかかる試料1を用いた。試料1にかかる組成が得られるように原料を調合し,800℃で5時間仮焼し,媒体攪拌ミルにより湿式粉砕し,BET比表面積が2.7m2/gの粉砕物からなる圧電材料を得た。
上記圧電材料に,表3に示す配合比率となるよう上記助剤酸化物を添加し,更に溶剤,バインダー,可塑剤,分散剤を加えてボールミルにより混合し,得られたスラリーからドクターブレード装置を用いて厚み100μmの未焼シートを成形した。以降は先の実施例1と同様の要領で,積層型圧電体素子の作製ならびに評価を行って,結果を表3に記載した。
【0053】
表3から明らかなように,助剤酸化物の圧電材料100重量%に対する添加量αを0.05〜5重量%(外%)とすることで,焼成温度を25〜100℃低下させることができた。また,比較試料C4にかかる材料は焼成温度の低下効果を持たなかった。
【0054】
以上の評価から,化学式(1−β−γ)PbO・βWO3・γMoO3(0.005≦β+γ≦0.27,ただしβ≧0,γ≧0。)で表される助剤酸化物を圧電材料100重量%に対して0.05〜5重量%(外%)加えることで焼成温度低下効果が得られることが分かった。
【0055】
【表3】
Figure 0004254310
【0056】
(実施例3)
本例は,圧電材料のBET比表面積の違いと積層型圧電体素子の性能について評価する。
圧電材料は表1の試料1を使用する。表1に記載した組成となるように原料を調合し,800℃で5時間仮焼して仮焼粉を得た。この仮焼粉を湿式粉砕する際に,粉砕装置,粉砕メディア径,粉砕時間等の粉砕条件を変えることにより,BET比表面積が1.5〜12m2/gの粉砕物からなる試料20〜23の圧電材料を作製した。
また,比較試料C5,C6として,組成の同じ圧電材料であるが,BET比表面積が低いもの,高いものをそれぞれ準備した。
【0057】
各試料や比較試料にそれぞれ助剤酸化物として表3の試料15を0.5重量%加え,更に溶剤,バインダー,可塑剤,分散剤を加えてボールミルにより混合し,得られたスラリーからドクターブレード装置を用いて厚み100μmの未焼シートを成形した。以降は先の実施例1と同様の要領で積層型圧電体素子の作製ならびに評価を行って,表4に記載した。
【0058】
表4から明らかなように,圧電材料の比表面積を1.6〜8m2/gとすることで,圧電材料の特性をほぼ維持した状態で,低温焼結化が可能となることがわかった。
【0059】
なお,本実施例では,圧電材料の粉砕物に助剤酸化物を加えているが,出発原料を仮焼して得られた圧電材料に助剤酸化物を加えて,圧電材料と共に粉砕しても差し支えない。
また,圧電材料の粉砕によって得られる微粉は,助剤酸化物との反応性が高いため,助剤酸化物の圧電材料への固溶を極力抑えるために,圧電材料を粉砕した後,400〜700℃で予焼して得られた粉に助剤酸化物,溶剤,バインダー,可塑剤,分散剤を添加して成形することもできる。
【0060】
【表4】
Figure 0004254310

【図面の簡単な説明】
【図1】実施例1における,積層型圧電体素子の斜視図。
【図2】実施例1における,積層型圧電体素子の圧電層の平面図。
【図3】実施例1における,圧電層の積層状態を示す斜視展開図。
【符号の説明】
1...積層型圧電体素子,
11...圧電層,
21,22...内部電極層,[0001]
【Technical field】
The present invention relates to a lead zirconate titanate piezoelectric material containing Mn and a method for manufacturing a multilayer piezoelectric element using this piezoelectric material.
[0002]
[Prior art]
Conventionally, PbZrO 3 —PbTiO 3 —Pb (Y 1/2 Nb 1/2 ) O 3 based piezoelectric material is used as the piezoelectric material used for the multilayer piezoelectric element for actuator, and a part of Pb is replaced with Sr. Also known is a compound comprising a compound in which Mn is substituted with at least one element selected from Sb, Nb, W, La, Ta, Bi, Nd, and Pr.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. Sho 62-46961
[Problems to be solved]
However, the displacement amount of the laminated piezoelectric element manufactured using the piezoelectric material is not always sufficient depending on the application of the actuator.
Further, although the piezoelectric material includes Mn as an acceptor element together with donor elements such as Sb, Nb, and W, the ratio of the donor element to the acceptor element may not always be appropriate. For this reason, the multilayer piezoelectric element manufactured from the above-described piezoelectric material has a problem that the change in dielectric characteristics with time is large and the characteristics are not stable.
[0005]
In the above problems, it is known that adding Mn to lead zirconate titanate-based piezoelectric materials leads to suppression of heat generation due to energy loss because it lowers dielectric loss and improves mechanical quality factor. ing.
For this reason, it seems that it is possible to suppress the time-dependent change of dielectric characteristics by adding no Mn to the lead zirconate titanate piezoelectric material, but the heat generation suppression effect by Mn must be sacrificed. , Not realistic.
Therefore, it is necessary to take some measures for stabilizing the dielectric characteristics of the lead zirconate titanate piezoelectric material containing Mn.
[0006]
The present invention has been made in view of such conventional problems. A piezoelectric material applicable to a laminated piezoelectric element having a large amount of displacement and stable dielectric characteristics, and a laminated piezoelectric body using this piezoelectric material. An element manufacturing method is provided.
[0007]
[Means for solving problems]
A first aspect of the present invention is the chemical formula (Pb 1-x Ma x) 1 + d (Zr 1-y Ti y) 1-pq (Y 1/2 Nb 1/2) p (Mn 1-z1-z2 Mb z1 Mc z2) q O piezoelectric material (except Ma represented by 3 + d is, Ba, Ca, and at least one element selected from Sr, .mb containing either Ba or Ca is Nb, Sb , At least one element selected from Ta. Mc is at least one element selected from W and Mo.)
−0.02 ≦ d ≦ 0.04
0.01 ≦ x ≦ 0.20,
0.40 ≦ y ≦ 0.55
0.005 ≦ p ≦ 0.05,
0.001 ≦ q · (1-z1-z2) ≦ 0.02,
0.7 ≦ (1-z1-z2) / (z1 + 2 · z2) ≦ 1.5 (where z1 and z2 are 0 or a positive number, at least one is not 0)
The piezoelectric material is characterized in that (Claim 1).
[0008]
The second invention has the formula (Pb 1-x Ma x) 1 + d (Zr 1-y Ti y) 1-pq (Y 1/2 Nb 1/2) p (Mn 1-z2 W z2) q O A piezoelectric material represented by 3 + d (where Ma is at least one element selected from Ba, Ca, and Sr, and includes Ba).
−0.02 ≦ d ≦ 0.04
0.01 ≦ x ≦ 0.20,
0.40 ≦ y ≦ 0.55
0.25 ≦ z2 ≦ 0.40,
0.005 ≦ p ≦ 0.05,
The piezoelectric material is characterized in that 0.001 ≦ q · (1−z2) ≦ 0.02.
[0009]
The operational effects of the first and second inventions will be described.
In the material according to the prior art, the element that replaces a part of Pb in the piezoelectric material is only Sr having the same ionic radius as Pb, and the strain applied to the perovskite crystal lattice may not be sufficient. Paying attention, in the piezoelectric material according to the present invention, at least Ba having an ion radius larger than Pb or Ca having an ion radius smaller than Pb was selected as an element for substituting a part of Pb. That is, the 12-coordinate ion radius of Pb is 1.49Å, and the 12-coordinate ion radii of Ba, Ca, and Sr are 1.61Å, 1.34Å, and 1.44Å, respectively.
Accordingly, the piezoelectric materials according to the first and second inventions exhibit a greater piezoelectric effect because a larger strain is introduced into the perovskite crystal lattice than before.
Therefore, when a laminated piezoelectric element is manufactured from the materials according to the first and second inventions, a large amount of displacement can be exhibited.
[0011]
Moreover, in the materials according to the prior art, the ratio of the donor element to the acceptor element is not always appropriate, and the oxygen vacancies generated due to insufficient compensation of these valences adversely affect the time-dependent change in dielectric properties. In the piezoelectric material according to the present invention, the ratio of donor elements Sb, Nb, W, Mo and acceptor element Mn was set within an appropriate range. As a result, the amount of oxygen defects generated in the crystal lattice in the piezoelectric material can be reduced, and the change in dielectric characteristics over time can be suppressed.
[0012]
In addition, when the third invention manufactures a laminated piezoelectric element in which piezoelectric layers and internal electrode layers are alternately laminated,
The BET specific surface area of the piezoelectric material according to claim 1 or 2 is adjusted to be 1.6 to 8 m 2 / g, and the chemical formula (1-β-γ) PbO · βWO 3 · γMoO 3 (0.005 ≦ β + γ ≦ 0.27, where β ≧ 0 and γ ≧ 0)) to add an auxiliary oxide represented by
Forming the above mixture to produce a green sheet, and providing the green sheet with a printed layer made of a paste containing an electrode material for the internal electrode layer,
Thereafter, a plurality of unfired sheets provided with the printed layer are laminated to form an unfired laminated body, and the unfired laminated body is fired. ).
[0013]
The multilayer piezoelectric element manufactured by the manufacturing method according to the third invention has a piezoelectric layer made of the piezoelectric material according to the first and second inventions, and therefore has a large displacement and suppresses changes in dielectric characteristics over time. A piezoelectric layer.
In addition, the piezoelectric layer contains the above-described auxiliary oxide, and the presence of the auxiliary oxide affects the sintered state of the piezoelectric material according to the first and second inventions which becomes the base material in the piezoelectric layer. Thus, low-temperature sintering of the green laminate is possible.
[0014]
Furthermore, in the third invention, the specific surface area of the piezoelectric material is controlled within the above-described range. This allows the auxiliary oxide to be uniformly present around the piezoelectric material and enables liquid phase sintering in the piezoelectric layer. Therefore, lower temperature sintering can be realized in a state where the performance of the piezoelectric material according to the first and second inventions is utilized.
If low-temperature sintering is possible, a cheaper electrode material (such as an Ag—Pd alloy having a Cu, Ag, Pd content of 10% or less) can be used as the internal electrode layer, and the material cost can be reduced. Can do.
[0015]
As described above, according to the present invention, it is possible to provide a piezoelectric material applicable to a laminated piezoelectric element having a large amount of displacement and stable dielectric characteristics, and a method for manufacturing a laminated piezoelectric element using this piezoelectric material. it can.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
In the first invention, if d <−0.02, the sintering temperature may increase. If d> 0.04, the displacement performance may be reduced.
If x <0.01, the displacement performance may be reduced. When x> 0.20, the Curie temperature of the piezoelectric material is lowered (approximately 200 ° C. or lower), the usable temperature range is narrow, and there is a possibility that the piezoelectric material lacks practicality.
If y <0.40, y> 0.55, the displacement performance may be reduced.
If p <0.005, p> 0.05, the displacement performance may be reduced. Further, when p> 0.05, the sintering temperature may be increased.
[0017]
When q · (1−z1−z2) <0.001, it is difficult to obtain a performance improvement effect (decrease in dielectric loss and improvement in mechanical quality factor) by addition of Mn. Further, when q · (1−z1−z2)> 0.02, the displacement performance may be deteriorated.
When (1−z1−z2) / (z1 + 2 · z2) <0.7, the displacement performance may be deteriorated. When (1−z1−z2) / (z1 + 2 · z2)> 1.5, the change in dielectric characteristics with time may increase.
[0018]
Further, terms relating to "Pb 1-x Ma x" in the formula piezoelectric material according to the first invention means that Pb is substituted with an element of Ma in the crystal lattice of the piezoelectric material (a perovskite structure) However, when a plurality of elements are selected as Ma, the total molar fraction including the plurality of elements is x.
That is, when Ma is Ba, Sr, consisting of Ca, the "Pb 1-x Ba l Sr m Ca n " in l + m + n = x. The same applies to the case of selecting a plurality of elements in other terms of the chemical formula.
[0019]
In addition, Ma is at least one element selected from Ba, Ca, and Sr, and includes either Ba or Ca. Therefore, combinations of elements that can be selected as Ma are Ba only, Ca only, and Ba. And Ca, Ba and Sr, Ca and Sr, Ba, Ca and Sr. Even if Sr alone is used as the element of Ma, the effect according to the present invention cannot be obtained.
[0020]
In the second invention, when z2 <0.25, there is a possibility that the change with time in the dielectric characteristics becomes large. When z2> 0.4, the displacement performance may be reduced.
When q · (1−z2) <0.001, it is difficult to obtain the performance improvement effect (reduction of dielectric loss and improvement of mechanical quality factor) by addition of Mn. Further, when q · (1−z2)> 0.02, the displacement performance may be deteriorated.
Other parameters are the same as in the first invention.
[0021]
In addition, the piezoelectric material of the first invention or the second invention has the chemical formula (1-β-γ) PbO · βWO 3 · γMoO 3 (0.005 ≦ β + γ ≦ 0.27, where β ≧ 0, γ ≧ 0). )), And an additive amount α of the auxiliary oxide with respect to 100 wt% of the piezoelectric material is 0.05 to 5 wt% (outside%). It is preferable that it is present (claim 3).
[0022]
Here, the auxiliary oxide includes Pb oxide blended to have the above chemical formula and Pb blended to have the above chemical formula in addition to a composite oxide in which W oxide and / or Mo oxide are solid-dissolved. A mixture of an oxide and a W oxide and / or Mo oxide or a solution obtained by partially dissolving the mixture may be used. This is because even if Pb oxide and W oxide and / or Mo oxide remain in the auxiliary oxide, they proceed as a solid solution during the sintering process and function as auxiliary oxide.
[0023]
By using the auxiliary oxide according to claim 3, the firing temperature of the piezoelectric material according to the first and second inventions is lowered, and a more inexpensive electrode material (Cu, Ag, Pd content is 10% or less) A laminated piezoelectric element can be manufactured using an Ag—Pd alloy or the like. Therefore, it is possible to obtain a piezoelectric material suitable for manufacturing a low-cost laminated piezoelectric element.
When β + γ <0.005, β + γ> 0.27, there is a possibility that it is difficult to obtain the effect of lowering the firing temperature.
If α <0.05% by weight, the sintering temperature lowering effect may be difficult to obtain. If α> 5% by weight, the displacement performance may be reduced. This is because auxiliary oxides that do not contribute to displacement increase in the piezoelectric material.
[0024]
According to a third aspect of the present invention, there is provided a method for producing a multilayer piezoelectric element having a piezoelectric layer produced by mixing the auxiliary oxide according to the third aspect using the piezoelectric material according to the first or second aspect. is there.
Further, in the third invention, the piezoelectric material is adjusted to have a predetermined surface area. However, if the BET specific surface area is less than 1.6 m 2 / g, the sintering temperature of the piezoelectric material may be increased. If it is larger than 8 m 2 / g, the displacement performance may be deteriorated because the auxiliary oxide is excessively dissolved in the piezoelectric material.
Other piezoelectric materials and auxiliary oxides are the same as those described in the first and second inventions.
[0025]
The BET specific surface area is a specific surface area measured by the BET method.
There is a method for measuring the specific surface area by adsorbing molecules with a known adsorption area on the surface of the material at the temperature of liquid nitrogen and determining the specific surface area of the sample from the amount, especially measurement by low-temperature and low-humidity physical adsorption of an inert gas. Is called the BET method.
[0026]
In the manufacturing method according to the third aspect of the present invention, a piezoelectric material having the composition according to claims 1 and 2 is prepared in advance, and the auxiliary oxide having the composition described above is separately mixed therewith.
The treatment for setting the BET specific surface area of the piezoelectric material in the above-described range may be performed in the state of the piezoelectric material alone or after mixing with the auxiliary oxide.
[0027]
That is, first, the starting material is weighed so as to have a predetermined composition ratio, the starting material is calcined, and then pulverized until a predetermined BET specific surface area is obtained. Thereafter, the auxiliary oxide is added to form a mixture.
Alternatively, the starting material is calcined, and then an auxiliary oxide is added and pulverized.
[0028]
In addition, since the fine powder of the piezoelectric material obtained by calcining and pulverizing the starting material is highly reactive with the auxiliary oxide, the piezoelectric oxide is used in order to minimize the solid solution of the auxiliary oxide in the piezoelectric material. After pulverizing the material, auxiliary oxides, solvents, binders, plasticizers, and dispersants may be added to the powder obtained by pre-baking at 400 to 700 ° C. to form the material.
[0029]
Further, in the method for manufacturing a laminated piezoelectric element according to the present invention, when the piezoelectric material is adjusted to have a predetermined BET specific surface area, it is pulverized using a ball mill, a medium stirring mill, or the like to reduce the particle size. Is preferably performed.
[0030]
Further, when a mixture comprising a piezoelectric material and an auxiliary oxide is formed, a slurry obtained by adding a binder or the like to the mixture can be prepared, and an unfired sheet can be produced by a generally known doctor blade method. Thereafter, a paste containing an electrode material is printed on the green sheet to provide a printed layer.
A desired number of unfired sheets provided with the printed layer are laminated and pressure-bonded to produce an unfired laminate. A laminated piezoelectric element can be obtained by degreasing and firing the unfired laminated body, and then providing a side electrode or the like that is electrically connected to the internal electrode layer, followed by polarization treatment.
[0031]
The procedure described here is a manufacturing method well known for multilayer piezoelectric elements, and the third invention can also be applied to the case of manufacturing piezoelectric elements by other methods.
In addition to the partial electrode configuration (the area in the cross section orthogonal to the stacking direction is smaller than that of the piezoelectric layer) shown in Example 1 described later, the internal electrode layer has an entire surface electrode configuration (area substantially equal to the piezoelectric layer). Can also be prepared.
[0032]
The multilayer piezoelectric element has a piezoelectric layer made of a piezoelectric material having stable dielectric characteristics. By stabilizing the dielectric characteristics, variation in the transient characteristics of the displacement is reduced. Therefore, when the piezoelectric layer is used as a piezoelectric actuator when a voltage is applied, that is, when used as a piezoelectric actuator, the elongation rate of the actuator is substantially constant.
[0033]
By using such a piezoelectric actuator as a drive source for an injector for fuel injection in an internal combustion engine such as an automobile engine, variation in the fuel injection amount can be reduced and combustion state control can be performed more precisely. In this respect, the piezoelectric material according to the first and second inventions is suitable as a constituent material of the piezoelectric layer of the piezoelectric actuator of the drive source of the fuel injection injector. The laminated piezoelectric element manufactured in the third aspect of the invention is also suitable as a drive source for the fuel injection injector.
[0034]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
Example 1
In this example, a laminated piezoelectric element is manufactured from the piezoelectric material according to the present invention, and its performance is evaluated.
The piezoelectric material according to this embodiment has the formula (Pb 1-x Ma x) 1 + d (Zr 1-y Ti y) 1-pq (Y 1/2 Nb 1/2) p (Mn 1-z1-z2 Mb z1 Mc z2 ) q O 3 + d piezoelectric material (where Ma is at least one element selected from Ba, Ca and Sr and contains either Ba or Ca. Mb is Nb) , Sb, Ta, at least one element selected from the group consisting of W and Mo.
−0.02 ≦ d ≦ 0.04
0.01 ≦ x ≦ 0.20,
0.40 ≦ y ≦ 0.55
0.005 ≦ p ≦ 0.05,
0.001 ≦ q · (1-z1-z2) ≦ 0.02,
0.7 ≦ (1-z1-z2) / (z1 + 2 · z2) ≦ 1.5
(Where z1 and z2 are 0 or a positive number, at least one is not 0).
[0035]
Or, a piezoelectric material according to this embodiment has the formula (Pb 1-x Ma x) 1 + d (Zr 1-y Ti y) 1-pq (Y 1/2 Nb 1/2) p (Mn 1-z2 W z2) q O piezoelectric material (except Ma represented by 3 + d is, Ba, Ca, and at least one element selected from Sr, a containing Ba.),
−0.02 ≦ d ≦ 0.04
0.01 ≦ x ≦ 0.20,
0.40 ≦ y ≦ 0.55
0.25 ≦ z2 ≦ 0.40,
0.005 ≦ p ≦ 0.05,
0.001 ≦ q · (1-z2) ≦ 0.02.
[0036]
This will be described in detail below.
In this example, the performance of the multilayer piezoelectric element obtained from the piezoelectric material according to the present invention or the manufacturing method according to the present invention is evaluated using the samples 1 to 14 according to the present invention and the comparative samples C1 to C3.
That is, samples 1 to 14, the chemical formula (Pb 1-x Ma x) 1 + d (Zr 1-y Ti y) 1-pq (Y 1/2 Nb 1/2) p (Mn 1-z1-z2 Mb z1 Mc z2) q O 3 + d Ma substituted element, Mb, the type and composition ratio of Mc (x, y, z1, z2, p, q, d) were obtained by changing as shown in Table 1 Piezoelectric material.
[0037]
The comparative sample C1 has a composition (1−z1−z2) / (z1 + 2 · z2) of 0.54 and is outside the scope of the present invention. Comparative sample C2 does not contain elements related to Mb and Mc and has a composition outside the present invention. In Comparative Sample C3, (1-z1-z2) / (z1 + 2 · z2) is 2, which is a composition outside the present invention.
A laminated piezoelectric element 1 as shown in FIGS. 1 to 3 was fabricated from these piezoelectric materials, and the piezoelectric characteristics were examined.
[0038]
As shown in FIGS. 1 to 3, the multilayer piezoelectric element 1 manufactured here is manufactured so that the internal electrode layers 21 and 22 are alternately positive and negative between the layers of the piezoelectric layer 11. As shown in FIG. 2 (a), one internal electrode layer 21 is disposed so as to be exposed on one side face 101 as shown in FIG. The electrode layer 22 is disposed so as to be exposed on the other side surface 102.
Then, side electrodes 31 are provided on the side surfaces 101 and 102 of the piezoelectric element 1 so that the exposed ends of the internal electrode layers 21 and 22 are electrically connected.
The central portion of the piezoelectric element 1 in the stacking direction is a drive unit 111 that expands when the internal electrode layers 21 and 22 are energized, and at least one surface of the ceramic layer 12 that sandwiches the drive unit 111 is As shown in FIG. 2B, the dummy portion 112 is not in contact with the internal electrode layers 21 and 22 and thus does not expand even when the internal electrode layers 21 and 22 are energized.
[0039]
Next, a specific method for manufacturing the piezoelectric material and the multilayer piezoelectric element will be described.
PbO, SrCO 3 , BaCO 3 , CaCO 3 , ZrO 2 , TiO 2 , Y 2 O 3 , Nb 2 O 5 , Sb 2 O 3 , WO 3 and MoO 3 are used as starting materials containing each constituent atom of the piezoelectric material. The composition was weighed so that the desired composition shown in Table 1 was obtained, that is, the ratio of each constituent atom in the target composition was the same as that in each starting material.
[0040]
The weighed raw materials were wet-mixed, dried and calcined at 800 ° C. for 5 hours, and wet-pulverized with a medium stirring mill to obtain a pulverized product having a BET specific surface area of 2.5 to 3 m 2 / g. A solvent, a binder, a plasticizer, and a dispersant were added to this and mixed by a ball mill to obtain a slurry.
Using a doctor blade device, a green sheet having a thickness of 100 μm was formed from the slurry. A conductive layer containing an electrode material made of silver / palladium = 7/3 (weight ratio) was printed on the green sheet to provide a printed layer for an internal electrode layer.
[0041]
As shown in FIG. 3, 21 unfired sheets provided with the above printed layers were stacked, and a simple unfired sheet having no printed layers for the internal electrode layers was placed on the upper and lower ends, and thermocompression bonding was performed. A fired laminate was produced.
Next, the unfired laminated body was degreased in an electric furnace, then fired at 850 ° C. to 1100 ° C., and polished on the entire surface to obtain a 7 × 7 × 1.8 mm laminated sintered body.
Further, a pair of side electrodes were baked in order to make the internal electrode layer conductive every other side of the laminated sintered body, then polarized for 30 minutes at an applied electric field of 130 ° C. and 2 kV / mm, and left at room temperature for 48 hours. did.
Thus, a multilayer piezoelectric element was obtained.
[0042]
The performance measurement of the multilayer piezoelectric element will be described.
The impedance-frequency characteristics of the obtained multilayer piezoelectric element were measured with an impedance analyzer, the difference between the resonance frequency fr and the anti-resonance frequency fa in the fundamental vibration was determined, and the firing temperature at which this began to saturate is shown in Table 2.
[0043]
Then, the amount of displacement and capacitance change with time of each laminated piezoelectric element fired at the above temperature were examined.
Regarding the method of measuring the displacement, first, a voltage of 150 V was applied to the multilayer piezoelectric element while applying a load of 500 N, and the displacement of the multilayer piezoelectric element at that time was measured with a laser displacement meter. There were two measurement points, and the average value of the two points was used as the displacement of the element. The displacement was measured at room temperature, but was measured after aging for about 20 minutes in a state where the laminated piezoelectric element was driven in advance.
[0044]
As for the change in capacitance with time, the polarization of the laminated piezoelectric element was allowed to stand at room temperature for 48 hours, and then the capacitance Q1 at 1 kHz was measured with an LCR meter. Q2 was measured and the rate of change between Q1 and Q2 was obtained by calculation.
As can be seen from Table 2 describing the measurement results, the stacked piezoelectric element manufactured using the piezoelectric material of the present invention according to Samples 1 to 14 has a larger displacement than Comparative Samples C1 to C3. In addition, the change in capacitance with time was reduced and improved. That is, it was found that the dielectric characteristics were stable.
[0045]
The piezoelectric material according to the present example (samples 1 to 14) is an element that replaces a part of Pb of the perovskite crystal lattice constituting the piezoelectric material. At least Ba having an ionic radius larger than Pb, or Ca having an ionic radius smaller than Pb. (See Table 1). A large strain is introduced into the perovskite crystal lattice constituting the piezoelectric material, and a greater piezoelectric effect is exhibited. Therefore, when the laminated piezoelectric element as shown in FIGS. 1 to 3 is manufactured from the piezoelectric materials according to the samples 1 to 14 according to this example, a large displacement can be obtained (see Table 2).
[0046]
In the piezoelectric materials according to Samples 1 to 14, the ratio of donor elements Sb, Nb, W, Mo and acceptor element Mn was set within an appropriate range. As a result, the amount of oxygen defects generated in the perovskite crystal lattice in the piezoelectric material can be reduced, and the change in dielectric characteristics over time can be suppressed.
[0047]
As described above, according to this example, it is possible to provide a piezoelectric material applicable to a laminated piezoelectric element having a large amount of displacement and stable dielectric characteristics, and a method for manufacturing a laminated piezoelectric element using this piezoelectric material. .
[0048]
[Table 1]
Figure 0004254310
[0049]
[Table 2]
Figure 0004254310
[0050]
(Example 2)
In this example, the performance of a laminated piezoelectric element having a piezoelectric layer obtained by adding an auxiliary oxide to a piezoelectric material is evaluated together with a comparative example.
First, PbO, WO 3 , and MoO 3 are used as raw materials for the auxiliary oxide, so that the desired composition shown in Table 3 is obtained, that is, the ratio of each constituent atom in the target composition to the ratio of each constituent atom in the starting material. Were weighed to be the same.
[0051]
After these were dry-mixed, they were calcined at 500 ° C. for 2 hours in the atmosphere, and PbO was reacted with a part of WO 3 and / or MoO 3 to obtain a calcined powder of auxiliary oxide. This calcined powder was wet pulverized and dried to obtain auxiliary oxides to be samples 15 to 19 having a BET specific surface area of 1.5 to 2 m 2 / g.
Note that the auxiliary oxide of the comparative sample C4 does not contain MoO 3 , has a large amount of WO 3 , and is not an auxiliary oxide according to the third and fourth aspects of the invention.
[0052]
Sample 1 according to Table 1 was used as the piezoelectric material. A raw material was prepared so that the composition according to Sample 1 was obtained, calcined at 800 ° C. for 5 hours, wet pulverized with a medium stirring mill, and a piezoelectric material composed of a pulverized product having a BET specific surface area of 2.7 m 2 / g. Obtained.
Add the above-mentioned auxiliary oxide to the piezoelectric material so as to have the blending ratio shown in Table 3, and then add a solvent, binder, plasticizer, and dispersing agent and mix them by a ball mill. An unsintered sheet having a thickness of 100 μm was formed. Thereafter, the laminated piezoelectric element was manufactured and evaluated in the same manner as in Example 1, and the results are shown in Table 3.
[0053]
As is apparent from Table 3, the firing temperature can be lowered by 25 to 100 ° C. by setting the additive amount α of the auxiliary oxide to 100 wt% of the piezoelectric material to 0.05 to 5 wt% (outside%). did it. Moreover, the material concerning the comparative sample C4 did not have the effect of lowering the firing temperature.
[0054]
From the above evaluation, the auxiliary oxide represented by the chemical formula (1-β-γ) PbO · βWO 3 · γMoO 3 (0.005 ≦ β + γ ≦ 0.27, where β ≧ 0, γ ≧ 0) is obtained. It was found that the firing temperature lowering effect can be obtained by adding 0.05 to 5% by weight (outside%) with respect to 100% by weight of the piezoelectric material.
[0055]
[Table 3]
Figure 0004254310
[0056]
(Example 3)
In this example, the difference in the BET specific surface area of the piezoelectric material and the performance of the multilayer piezoelectric element are evaluated.
Sample 1 in Table 1 is used as the piezoelectric material. The raw materials were prepared so as to have the composition shown in Table 1, and calcined at 800 ° C. for 5 hours to obtain calcined powder. When the calcined powder is wet pulverized, samples 20 to 23 made of a pulverized product having a BET specific surface area of 1.5 to 12 m 2 / g are obtained by changing the pulverizing conditions such as the pulverizing apparatus, the pulverizing media diameter, and the pulverizing time. The piezoelectric material was manufactured.
Further, as comparative samples C5 and C6, piezoelectric materials having the same composition but having a low BET specific surface area and a high one were prepared.
[0057]
Add 0.5% by weight of sample 15 in Table 3 as an auxiliary oxide to each sample and comparative sample, add solvent, binder, plasticizer and dispersant and mix by ball mill. Doctor blade from the resulting slurry An unbaked sheet having a thickness of 100 μm was formed using the apparatus. Thereafter, the production and evaluation of the laminated piezoelectric element were performed in the same manner as in Example 1, and are shown in Table 4.
[0058]
As is apparent from Table 4, it was found that by setting the specific surface area of the piezoelectric material to 1.6 to 8 m 2 / g, low-temperature sintering can be performed while maintaining the characteristics of the piezoelectric material. .
[0059]
In this embodiment, the auxiliary oxide is added to the pulverized material of the piezoelectric material. However, the auxiliary oxide is added to the piezoelectric material obtained by calcining the starting material and pulverized together with the piezoelectric material. There is no problem.
In addition, since the fine powder obtained by pulverizing the piezoelectric material has high reactivity with the auxiliary oxide, after the piezoelectric material is pulverized in order to suppress the dissolution of the auxiliary oxide in the piezoelectric material as much as possible, 400 to An auxiliary oxide, a solvent, a binder, a plasticizer, and a dispersant may be added to the powder obtained by pre-baking at 700 ° C. to mold the powder.
[0060]
[Table 4]
Figure 0004254310

[Brief description of the drawings]
FIG. 1 is a perspective view of a multilayer piezoelectric element in Example 1. FIG.
2 is a plan view of a piezoelectric layer of a multilayer piezoelectric element in Example 1. FIG.
3 is a perspective development view showing a stacked state of piezoelectric layers in Example 1. FIG.
[Explanation of symbols]
1. . . Laminated piezoelectric element,
11. . . Piezoelectric layer,
21,22. . . Internal electrode layer,

Claims (4)

化学式(Pb1-xMax1+d(Zr1-yTiy1-p-q(Y1/2Nb1/2p(Mn1-z1-z2Mbz1Mcz2q3+dで表される圧電材料(ただしMaは,Ba,Ca,Srから選択する少なくとも1種以上の元素であって,BaまたはCaのいずれかを含む。MbはNb,Sb,Taから選択する少なくとも1種以上の元素。McはW,Moから選択する少なくとも1種以上の元素。)であって,
−0.02≦d≦0.04,
0.01≦x≦0.20,
0.40≦y≦0.55,
0.005≦p≦0.05,
0.001≦q・(1−z1−z2)≦0.02,
0.7≦(1−z1−z2)/(z1+2・z2)≦1.5(ただしz1,z2は0または正の数で,少なくとも一方は0でない。)
であることを特徴とする圧電材料。
Formula (Pb 1-x Ma x) 1 + d (Zr 1-y Ti y) 1-pq (Y 1/2 Nb 1/2) p (Mn 1-z1-z2 Mb z1 Mc z2) q O 3+ Piezoelectric material represented by d (where Ma is at least one element selected from Ba, Ca and Sr and contains either Ba or Ca. Mb is at least selected from Nb, Sb and Ta) One or more elements, Mc is at least one element selected from W and Mo.)
−0.02 ≦ d ≦ 0.04
0.01 ≦ x ≦ 0.20,
0.40 ≦ y ≦ 0.55
0.005 ≦ p ≦ 0.05,
0.001 ≦ q · (1-z1-z2) ≦ 0.02,
0.7 ≦ (1-z1-z2) / (z1 + 2 · z2) ≦ 1.5 (where z1 and z2 are 0 or a positive number, at least one is not 0)
A piezoelectric material characterized by
化学式(Pb1-xMax1+d(Zr1-yTiy1-p-q(Y1/2Nb1/2p(Mn1-z2z2q3+dで表される圧電材料(ただしMaは,Ba,Ca,Srから選択する少なくとも1種以上の元素であって,Baを含む。)であって,
−0.02≦d≦0.04,
0.01≦x≦0.20,
0.40≦y≦0.55,
0.25≦z2≦0.40,
0.005≦p≦0.05,
0.001≦q・(1−z2)≦0.02であることを特徴とする圧電材料。
Represented by the chemical formula (Pb 1-x Ma x) 1 + d (Zr 1-y Ti y) 1-pq (Y 1/2 Nb 1/2) p (Mn 1-z2 W z2) q O 3 + d A piezoelectric material (where Ma is at least one element selected from Ba, Ca, and Sr and includes Ba),
−0.02 ≦ d ≦ 0.04
0.01 ≦ x ≦ 0.20,
0.40 ≦ y ≦ 0.55
0.25 ≦ z2 ≦ 0.40,
0.005 ≦ p ≦ 0.05,
A piezoelectric material, wherein 0.001 ≦ q · (1−z2) ≦ 0.02.
請求項1または2に記載の圧電材料に,化学式(1−β−γ)PbO・βWO3・γMoO3(0.005≦β+γ≦0.27,ただしβ≧0,γ≧0。)で表される助剤酸化物を添加してなる圧電材料であって,上記助剤酸化物の圧電材料100重量%に対する添加量αは,0.05〜5重量%(外%)であることを特徴とする圧電材料。 The piezoelectric material according to claim 1 or 2 is represented by the chemical formula (1-β-γ) PbO · βWO 3 · γMoO 3 (0.005 ≦ β + γ ≦ 0.27, where β ≧ 0, γ ≧ 0). A piezoelectric material obtained by adding an auxiliary oxide, wherein the addition amount α of the auxiliary oxide with respect to 100 wt% of the piezoelectric material is 0.05 to 5 wt% (outside%). Piezoelectric material. 圧電層と内部電極層とを交互に積層してなる積層型圧電体素子を製造するに当たり,
請求項1または2にかかる圧電材料のBET比表面積が1.6〜8m2/gとなるよう調整すると共に化学式(1−β−γ)PbO・βWO3・γMoO3(0.005≦β+γ≦0.27,ただしβ≧0,γ≧0。)で表される助剤酸化物を添加して混合物を作製し,
上記混合物を成形して未焼シートを作製し,該未焼シートに内部電極層用の電極材料を含有するペーストからなる印刷層を設け,
その後上記印刷層を設けた未焼シートを複数枚積層して未焼積層体となし,該未焼積層体を焼成することを特徴とする積層型圧電体素子の製造方法。
In manufacturing a laminated piezoelectric element in which piezoelectric layers and internal electrode layers are alternately laminated,
The BET specific surface area of the piezoelectric material according to claim 1 or 2 is adjusted to be 1.6 to 8 m 2 / g, and the chemical formula (1-β-γ) PbO · βWO 3 · γMoO 3 (0.005 ≦ β + γ ≦ 0.27, where β ≧ 0 and γ ≧ 0)) to add an auxiliary oxide represented by
Forming the above mixture to produce a green sheet, and providing the green sheet with a printed layer made of a paste containing an electrode material for the internal electrode layer,
Thereafter, a plurality of unfired sheets provided with the printed layer are laminated to form an unfired laminate, and the unfired laminate is fired.
JP2003098160A 2003-04-01 2003-04-01 Piezoelectric material and method for manufacturing multilayer piezoelectric element Expired - Fee Related JP4254310B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003098160A JP4254310B2 (en) 2003-04-01 2003-04-01 Piezoelectric material and method for manufacturing multilayer piezoelectric element
DE200410015853 DE102004015853A1 (en) 2003-04-01 2004-03-31 Piezoelectric material for producing stacked piezoelectric components e.g. for fuel injectors in vehicles, comprises a mixed oxide of lead, zirconium, titanium, yttrium, niobium, manganese and other metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003098160A JP4254310B2 (en) 2003-04-01 2003-04-01 Piezoelectric material and method for manufacturing multilayer piezoelectric element

Publications (2)

Publication Number Publication Date
JP2004300009A JP2004300009A (en) 2004-10-28
JP4254310B2 true JP4254310B2 (en) 2009-04-15

Family

ID=33028259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003098160A Expired - Fee Related JP4254310B2 (en) 2003-04-01 2003-04-01 Piezoelectric material and method for manufacturing multilayer piezoelectric element

Country Status (2)

Country Link
JP (1) JP4254310B2 (en)
DE (1) DE102004015853A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4873327B2 (en) * 2005-06-03 2012-02-08 株式会社村田製作所 Piezoelectric element
CN113603477A (en) * 2021-07-20 2021-11-05 中科传感(佛山)科技有限公司 Perovskite type high-temperature thermal sensitive ceramic resistor material and preparation method thereof

Also Published As

Publication number Publication date
DE102004015853A1 (en) 2004-10-21
JP2004300009A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
CN100453501C (en) Piezoelectric porcelain composition and piezoelectric ceramic electronic component
JP4248581B2 (en) Piezoelectric structure element
KR100557520B1 (en) Ceramic material and piezoelectric element using the same
US8674589B2 (en) Piezoelectric ceramics and multi-layered piezoelectric ceramic components
CN103579494B (en) Piezoelectric device and its manufacture method
CN101547875B (en) Piezoelectric porcelain and piezoelectric element
KR20040010144A (en) Method for manufacturing monolithic piezoelectric component and monolithic piezoelectric component
JP4727458B2 (en) Sintering aid for piezoelectric ceramics, BNT-BT piezoelectric ceramics, multilayer piezoelectric device, and method for producing BNT-BT piezoelectric ceramics
JP3812936B2 (en) Ceramic material and piezoelectric element using the same
CN111662082B (en) Piezoelectric ceramic, method for producing same, and piezoelectric element
JP5506731B2 (en) Method for manufacturing piezoelectric element
WO2010098033A1 (en) Dielectric ceramic and laminated ceramic capacitor
JP5815404B2 (en) Piezoelectric body / electrostrictive body, piezoelectric / electrostrictive ceramic composition, piezoelectric element / electrostrictive element, and piezoelectric motor
JP2006265059A (en) Manufacturing method of piezoelectric material and laminated piezoelectric element
JP4254310B2 (en) Piezoelectric material and method for manufacturing multilayer piezoelectric element
JP4321526B2 (en) Dielectric porcelain composition and electronic component using the same
JP2002068836A (en) Piezoelectric ceramic composition and piezoelectric ceramic device using the same
JP4535721B2 (en) Piezoelectric ceramic, multilayer piezoelectric element, and injection device
JP2006269813A (en) Process for producing piezoelectric ceramics and piezoelectric element
JP3781317B2 (en) Piezoelectric ceramic material
KR100414333B1 (en) Piezoelectric ceramic compact and piezoelectric ceramic device
WO2024070849A1 (en) Lead-free piezoelectric composition and piezoelectric element
JP5103859B2 (en) Multilayer piezoelectric ceramic element and manufacturing method thereof
WO2024070626A1 (en) Lead-free piezoelectric composition, and piezoelectric element
JP2006193413A (en) Method of manufacturing piezoelectric porcelain and piezoelectric element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees