JPH02223020A - Production of perpendicular magnetic disk - Google Patents

Production of perpendicular magnetic disk

Info

Publication number
JPH02223020A
JPH02223020A JP4486089A JP4486089A JPH02223020A JP H02223020 A JPH02223020 A JP H02223020A JP 4486089 A JP4486089 A JP 4486089A JP 4486089 A JP4486089 A JP 4486089A JP H02223020 A JPH02223020 A JP H02223020A
Authority
JP
Japan
Prior art keywords
magnetic
disk substrate
disk
soft magnetic
magnetic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4486089A
Other languages
Japanese (ja)
Inventor
Kunio Hata
畑 邦夫
Kazumasa Hosono
和真 細野
Naoyuki Yamamoto
山本 尚之
Hitoshi Kanai
均 金井
Masaki Kameyama
正毅 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4486089A priority Critical patent/JPH02223020A/en
Publication of JPH02223020A publication Critical patent/JPH02223020A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To enhance the magnetic permeability of a soft magnetic layer and to improve recording and reproducing characteristics by providing a conductor in a disk substrate and forming the soft magnetic layer on the disk substrate in the state of generating a magnetic field in the radial direction of the disk substrate. CONSTITUTION:The conductor 14 is interposed between a pair of insulating disks 12 and 13 having apertures 12a, 13a at the center in such a manner that current can be supplied in a circumferential direction to form the disk substrate 11. The soft magnetic layer 22 having the high magnetic permeability is formed by a plating method, vapor deposition method or sputtering method on the disk substrate 11 in the state of generating the magnetic field in the radial direction of the disk substrate 11 by the current passing in the conductor 14. The soft magnetic layer which is imparted with the magnetic anisotropy having the axis of easy magnetization in the radial direction of the disk substrate 11 and is enhanced in the magnetic permeability in the circumferential direction is easily formed. The perpendicular magnetic disk having the excellent recording and reproducing characteristics is obtd. in this way.

Description

【発明の詳細な説明】 〔概 要〕 垂直磁気記録方式の磁気ディスク装置に用いて好適な垂
直磁気ディスクの製造方法に関し、簡単な方法によりデ
ィスク基板の半径方向に磁気容易軸が向くように磁気異
方性を付与した軟磁性層を容易に形成して、その軟磁性
層の透磁率を高めることを目的とし、 ディスク基板上に高透磁率な軟磁性層を形成した垂直磁
気ディスクの製造方法であって、それぞれ中心に開口を
有する一対の絶縁性円板間と、該両絶縁性円板間に介在
されてそれらの円周方向に電流を通電可能にした導電体
とにより上記ディスク基板を形成し、該ディスク基板内
の導電体に電流を流して前記ディスク基板の半径方向に
磁界を発生させた状態で、該ディスク基板上にめっき法
、蒸着法、或いはスパッタリング法により高透磁率の軟
磁性層を形成するように構成する。
[Detailed Description of the Invention] [Summary] This relates to a method for manufacturing a perpendicular magnetic disk suitable for use in a perpendicular magnetic recording type magnetic disk device. A method for manufacturing a perpendicular magnetic disk in which a soft magnetic layer with high permeability is formed on a disk substrate, with the aim of easily forming a soft magnetic layer imparted with anisotropy and increasing the magnetic permeability of the soft magnetic layer. The disk substrate is formed by a pair of insulating disks each having an opening in the center, and a conductor interposed between the two insulating disks to enable current to flow in the circumferential direction of the two insulating disks. A soft material with high magnetic permeability is formed on the disk substrate by plating, vapor deposition, or sputtering, with a current flowing through the conductor in the disk substrate to generate a magnetic field in the radial direction of the disk substrate. The structure is configured to form a magnetic layer.

[産業上の利用分野〕 本発明は垂直磁気記録方式の磁気ディスク装置に用いて
好適な垂直磁気ディスクの製造方法に係リ、特に記録再
生特性の良い二層膜構造の垂直磁気ディスクにおける軟
磁性層の形成方法に関するものである。
[Industrial Application Field] The present invention relates to a method for manufacturing a perpendicular magnetic disk suitable for use in a perpendicular magnetic recording type magnetic disk device, and in particular to a method for manufacturing a perpendicular magnetic disk having a double-layer structure with good recording and reproducing characteristics. The present invention relates to a method for forming layers.

磁気ディスク装置に用いられる磁気ディスクとしては、
記録層における記録トラックに対して水平方向に情報を
磁化記録する水平磁気記録方式の磁気ディスクが広く用
いられているが、近来、情報記録の高密度化に伴って記
録層における記録トラックに対して垂直方向への磁化を
利用する垂直磁気記録方式の磁気ディスクが提案され、
これを実現する磁気ディスクとして高透磁率な軟磁性層
と垂直記録層とを積層した二層膜構造の垂直磁気ディス
クが実用化されつつある。
Magnetic disks used in magnetic disk devices include:
Horizontal magnetic recording magnetic disks are widely used, in which information is magnetized and recorded in the horizontal direction with respect to the recording tracks in the recording layer, but in recent years, with the increase in the density of information recording, A perpendicular magnetic recording method magnetic disk that uses magnetization in the perpendicular direction was proposed,
A perpendicular magnetic disk having a two-layer structure in which a soft magnetic layer with high magnetic permeability and a perpendicular recording layer are laminated is being put into practical use as a magnetic disk to realize this.

この垂直磁気ディスクにおける軟磁性層は、磁気ヘッド
からの記録磁界が垂直磁化記録層を垂直に通って磁化し
た後、該軟磁性層を経由して再び垂直磁化記録層を通っ
て磁気ヘッド側のリターンヨークへ帰還させる磁界経路
の役目を果たす磁気ヘッドの一部の機能を担っており、
その透磁率を高めることにより記録再生効率を向上し、
記録再生特性の優れた垂直磁気ディスクを得ることが必
要とされている。
In the soft magnetic layer of this perpendicular magnetic disk, the recording magnetic field from the magnetic head perpendicularly passes through the perpendicular magnetic recording layer and is magnetized, and then passes through the soft magnetic layer and again through the perpendicular magnetic recording layer to the magnetic head side. It plays a part of the function of the magnetic head, which serves as the magnetic field path for returning to the return yoke.
By increasing its magnetic permeability, recording and reproducing efficiency is improved,
There is a need to obtain a perpendicular magnetic disk with excellent recording and reproducing characteristics.

〔従来の技術〕[Conventional technology]

従来、上記した二層膜構造の垂直磁気ディスクを製造す
る方法としては、第7図に示すように例えばアルマイト
表面処理が施されたアルミニウム(A f )板、また
はガラス板等からなる非磁性のディスク基板l上に1μ
階程度の膜厚のNi−Fe等からなる軟磁性層(軟磁性
裏打ち層とも称する)2と、0.2μ−の膜厚の硬磁性
なCo−Crからなる垂直磁化記録層3を連続スパッタ
リング法により順に形成し、その垂直磁化記録層3の表
面に磁気ヘッドに対する摩擦、摩耗を低減するために保
護膜4及び潤滑膜5等を施した構成としている。
Conventionally, as shown in FIG. 7, the method for manufacturing the perpendicular magnetic disk with the above-mentioned two-layer film structure has been to use a non-magnetic magnetic disk made of, for example, an aluminum (A f ) plate with an alumite surface treatment, or a glass plate. 1μ on the disk substrate l
A soft magnetic layer (also referred to as a soft magnetic backing layer) 2 made of Ni-Fe or the like with a thickness of approximately 0.2 μm thick and a perpendicular magnetic recording layer 3 made of hard magnetic Co-Cr with a thickness of 0.2 μm are continuously sputtered. A protective film 4, a lubricant film 5, etc. are applied to the surface of the perpendicular magnetization recording layer 3 to reduce friction and wear against the magnetic head.

ところで上記した製造方法によって得られた垂直磁気デ
ィスクにおける軟磁性層2の透磁率は高々、数百〜50
0程度と極めて低く、充分な記録再生特性が得られず、
スパッタリング法を用いたNi−Fe等からなる軟磁性
層の形成方法では、これ以上に透磁率は高めることが困
難であった。
By the way, the magnetic permeability of the soft magnetic layer 2 in the perpendicular magnetic disk obtained by the above manufacturing method is several hundred to 50.
It is extremely low, around 0, and sufficient recording and reproducing characteristics cannot be obtained.
In the method of forming a soft magnetic layer made of Ni-Fe or the like using a sputtering method, it is difficult to increase the magnetic permeability further.

従って、薄膜磁気ヘッドのNi−Feからなる磁掻を電
解めっき法により形成することにより、その透磁率が高
められることに着目して、該電解めっき法により軟磁性
層を形成することも試みられている。
Therefore, focusing on the fact that the magnetic permeability of thin-film magnetic heads made of Ni-Fe can be increased by forming the Ni-Fe magnetic layer by electroplating, attempts have been made to form a soft magnetic layer by electroplating. ing.

しかし、前記軟磁性層を電解めっき法により形成した場
合、その透磁率は1000程度には向上するが、この程
度の透磁率ではなお充分な記録再生特性が得られず、そ
の透磁率を数倍以上に更に高める必要があった。
However, when the soft magnetic layer is formed by electrolytic plating, its magnetic permeability improves to about 1000, but sufficient recording and reproducing characteristics are still not obtained with this level of magnetic permeability, and the magnetic permeability is increased several times. There was a need to improve even further.

そこで透磁率の軟磁性層の透磁率を更に高めるために検
討した結果、電解めっきにより形成されたNi−Feか
らなる軟磁性層の磁気特性は等方的であることから、デ
ィスク基板の半径方向に磁気容易軸が向くように磁気的
に異方性が付与された軟磁性層を形成することができれ
ば、その円周方向、即ち記録トラック方向の透磁率を1
500以上に高められることが判明した。
Therefore, as a result of studies to further increase the magnetic permeability of the soft magnetic layer, it was found that the magnetic properties of the soft magnetic layer made of Ni-Fe formed by electrolytic plating are isotropic. If it is possible to form a soft magnetic layer that is magnetically anisotropic so that the magnetic easy axis is directed to
It turned out that it could be increased to more than 500.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記したような磁気異方性を付与したN
i−Feからなる軟磁性層を得る方法としては、■予め
磁気容易軸を付与する半径方向に多数の微小な筋傷等を
設け、そのディスク基板面に軟磁性層を形成する、■半
径方向に磁界を印加した状態のディスク基板面に軟磁性
層を形成する等の方法が考えられる。
However, N with magnetic anisotropy as described above
As a method for obtaining a soft magnetic layer made of i-Fe, there are two methods: (1) providing a large number of minute scratches in the radial direction that provide a magnetic easy axis, and forming a soft magnetic layer on the disk substrate surface; (2) forming a soft magnetic layer in the radial direction. A possible method is to form a soft magnetic layer on the surface of the disk substrate while a magnetic field is applied thereto.

ところが、■についてはディスク基板面の円周方向に多
数の掻きキズ等を形成することは比較的容易であるが、
これが半径方向にキズの深さ、キズ形成のピッチ等を一
様に形成するとなると極めて困難である。また■につい
ては同心円形状のマグネット等を用いて基板面の半径方
向に磁界を印加することが考えられるが、何れの成膜方
法においてもマグネットに対する基板取り付は機構が大
掛かりとなり、実用化が難しい等の問題があった。
However, regarding (2), it is relatively easy to form many scratches etc. in the circumferential direction of the disk substrate surface;
It is extremely difficult to form scratches with uniform depth, pitch, etc. in the radial direction. Regarding (■), it is possible to apply a magnetic field in the radial direction of the substrate surface using a concentric magnet, but in any film formation method, the mechanism for attaching the substrate to the magnet is large-scale, making it difficult to put it into practical use. There were other problems.

本発明は上記した従来の実状に鑑み、ディスク基板の半
径方向に磁気容易軸が向(ように磁気異方性を付与した
軟磁性層を容易に形成して、その軟磁性層の透磁率を高
め、記録再生特性の向上を図った新規な磁気ディスクの
製造方法を提供することを目的とするものである。
In view of the above-mentioned conventional situation, the present invention has been developed to easily form a soft magnetic layer with magnetic anisotropy such that the magnetic easy axis is oriented in the radial direction of the disk substrate, and to increase the magnetic permeability of the soft magnetic layer. The object of the present invention is to provide a method for manufacturing a new magnetic disk with improved recording and reproducing characteristics.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記した目的を達成するため、ディスク基板上
に高透磁率な軟磁性層を形成した垂直磁気ディスクの製
造方法であって、それぞれ中心に開口を有する一対の絶
縁性円板間と、該両絶縁性円板間に介在されてそれらの
円周方向に電流を通電可能にした導電体とにより上記デ
ィスク基板を形成し、該ディスク基板内の導電体に電流
を流して前記ディスク基板の半径方向に磁界を発生させ
た状態で、該ディスク基板上にめっき法、蒸着法、或い
はスパッタリング法により高透磁率の軟磁性層を形成す
るように構成する。
In order to achieve the above-mentioned object, the present invention provides a method for manufacturing a perpendicular magnetic disk in which a soft magnetic layer with high magnetic permeability is formed on a disk substrate, the method comprising: a pair of insulating disks each having an opening in the center; The disk substrate is formed by a conductor interposed between the two insulating disks and capable of passing a current in the circumferential direction thereof, and a current is passed through the conductor in the disk substrate to cause the disk substrate to be heated. A soft magnetic layer with high magnetic permeability is formed on the disk substrate by plating, vapor deposition, or sputtering while a magnetic field is generated in the radial direction.

〔作 用〕[For production]

本発明の製造方法では、ディスク基板に内蔵した電導体
に電流を流すと、前記ディスク基板の半径方向に磁界を
発生させることができる。従って、このような磁界発生
中のディスク基板面上にNi−Fe等からなる軟磁性層
をめっき法、或いは蒸着法、スパッタリング法等により
形成することによって、ディスク基板の半径方向を磁気
容易軸とする磁気異方性が付与され、かつ円周方向に透
磁率の高められた軟磁性層が容易に形成できる。その結
果、記録再生特性の優れた垂直磁気ディスクが得られる
In the manufacturing method of the present invention, a magnetic field can be generated in the radial direction of the disk substrate by passing a current through the conductor built into the disk substrate. Therefore, by forming a soft magnetic layer made of Ni-Fe or the like by plating, vapor deposition, sputtering, etc. on the disk substrate surface where such a magnetic field is being generated, the radial direction of the disk substrate can be aligned with the magnetic easy axis. A soft magnetic layer having magnetic anisotropy and increased permeability in the circumferential direction can be easily formed. As a result, a perpendicular magnetic disk with excellent recording and reproducing characteristics can be obtained.

前記ディスク基板の半径方向に発生(印加)させる磁界
の強さHは、形成される軟磁性層の保持力Hcよりも少
し太き(すれば良く、そのような磁界の強さHとなるよ
うに通電する電流値を制御する。
The strength H of the magnetic field generated (applied) in the radial direction of the disk substrate should be slightly thicker than the coercive force Hc of the soft magnetic layer to be formed. Controls the current value applied to the

〔実施例] 以下図面を用いて本発明の実施例について詳細に説明す
る。
[Examples] Examples of the present invention will be described in detail below with reference to the drawings.

第1図及び第2図は本発明に係る垂直磁気ディスクの製
造方法に用いるディスク基板の一実施例を示す分解斜視
図及び一体化した斜視図である。
1 and 2 are an exploded perspective view and an integrated perspective view showing one embodiment of a disk substrate used in the method of manufacturing a perpendicular magnetic disk according to the present invention.

まず本発明の製造方法に用いるディスク基板11は、第
1図に示すように中心にそれぞれ円孔12a。
First, the disk substrate 11 used in the manufacturing method of the present invention has a circular hole 12a at its center, as shown in FIG.

13aを有するガラス、或いはセラミック等からなる、
例えば1lIIII程度の厚さの一対の絶縁性円板12
及び13間に、該絶縁性円板12、または13と略同形
状で、厚さが0.5mm程度の銅(Cu)、或いはチタ
ン(Ti)等からなり、かつ一部を電気的に分断する半
径方向の微細幅(0,5mm幅程度)で除去したリング
状の導電板14を挟んで第2図に示す、ように一体化さ
れ、かつその導電板14の両端部は例えば前記−方の絶
縁性円板12の中心円孔12aの内周側よりその表面の
内周縁部に設けた通電端子12b、 12cに接続され
た構成としている。
13a, made of glass, ceramic, etc.
For example, a pair of insulating discs 12 with a thickness of about 1lIII
and 13, the insulating disc 12 or 13 has approximately the same shape, is made of copper (Cu), titanium (Ti), etc., and has a thickness of approximately 0.5 mm, and is partially electrically separated. The conductive plate 14 is integrated as shown in FIG. The inner peripheral side of the central circular hole 12a of the insulating disc 12 is connected to the current-carrying terminals 12b and 12c provided on the inner peripheral edge of the surface thereof.

本実施例ではこのような構成のディスク基板11を用い
、第4図(a)に示すようにそのディスク基板11上(
前記通電端子12b、 12c部分を除く)にスパッタ
リング法等により2000人の膜厚のNi−Feからな
るめっき用下地膜21を被着形成する。
In this embodiment, the disk substrate 11 having such a configuration is used, and as shown in FIG. 4(a), on the disk substrate 11 (
A plating base film 21 made of Ni--Fe and having a thickness of 2000 mm is deposited on the current-carrying terminals 12b and 12c (excluding the portions of the current-carrying terminals 12b and 12c) by sputtering or the like.

次に第3図に示すように前記通電端子12b、 12C
を電流源35と接続した状態の前記ディスク基板11を
基板ホルダ34に取付けて、例えば硫酸ニッケル(Nt
SOn ・6HzO)と硫酸第一鉄(FeSO4・7H
zO)を主成分とするNi−Feめっき液32が満たさ
れためっき槽31内のめっき電極33と対向して配置す
る。
Next, as shown in FIG. 3, the energizing terminals 12b and 12C
The disk substrate 11 connected to the current source 35 is attached to the substrate holder 34, and the disk substrate 11 is connected to the current source 35.
SOn ・6HzO) and ferrous sulfate (FeSO4・7H
The plating electrode 33 is placed opposite to a plating electrode 33 in a plating tank 31 filled with a Ni-Fe plating solution 32 whose main component is Ni--Fe plating solution 32.

そして前記導電板14の再通電端子12b、 12cに
所定の電流を流して前記ディスク基板11の半径方向に
磁界を発生させた状態で、更に前記めっき下地膜(陰極
)21とめっき電極(陽極)33間に、例えば4〜5■
の電圧を印加して電流密度が6A/dm”のめっき条件
によって、第4図(a)に示すように該下地膜21上に
3μmの膜厚のNi−Feめっき膜を形成する。このめ
っき時における前記ディスク基板11は必要に応じて回
転させてもよい。
Then, while a predetermined current is applied to the re-energizing terminals 12b and 12c of the conductive plate 14 to generate a magnetic field in the radial direction of the disk substrate 11, the plating base film (cathode) 21 and the plating electrode (anode) 33 days, for example 4 to 5 days
As shown in FIG. 4(a), a Ni--Fe plating film with a thickness of 3 μm is formed on the base film 21 under the plating conditions of applying a voltage of 6 A/dm and a current density of 6 A/dm. The disk substrate 11 may be rotated as necessary.

かくすれば、磁界中での成膜により前記ディスク基板2
1の半径方向に容易軸が向くように磁気異方性が付与さ
れるため、その円周方向、即ち記録トラック方向に20
c0程度の極めて高い透磁率を有するNi−Feめっき
膜からなる軟磁性層22が容易に得られる。
In this way, the disk substrate 2 can be formed by forming a film in a magnetic field.
Since magnetic anisotropy is imparted so that the easy axis points in the radial direction of
A soft magnetic layer 22 made of a Ni-Fe plating film having an extremely high magnetic permeability of about c0 can be easily obtained.

なお、前記再通電端子12b、 12cを介して導電板
14の円周方向に流す電流値は、例えばディスク基板1
1の半径方向に発生する磁界が20エルステ・ンド(O
e)程度、またはそれ以上と、形成される軟磁性層22
の保磁力IIsよりも少し大きくなるように設定すれば
よい。
Note that the value of the current flowing in the circumferential direction of the conductive plate 14 via the re-energizing terminals 12b and 12c is, for example,
The magnetic field generated in the radial direction of
e) degree or more, the soft magnetic layer 22 formed
The coercive force IIs may be set to be slightly larger than the coercive force IIs.

従って、かかる方法により形成された軟磁性層22上に
、第4図(b)に示すように従来例と同様のCo−Cr
からなる0、2μmの膜厚の垂直磁化記録層23をスパ
ッタリング法等により形成し、その表面に更に保護膜2
4及び潤滑膜25を形成することによって、記録再生特
性の優れた垂直磁気ディスクが完成する。
Therefore, on the soft magnetic layer 22 formed by this method, as shown in FIG.
A perpendicular magnetization recording layer 23 with a thickness of 0.2 μm is formed by sputtering or the like, and a protective film 2 is further formed on its surface.
4 and the lubricating film 25, a perpendicular magnetic disk with excellent recording and reproducing characteristics is completed.

第5図及び第6図は本発明に係る垂直磁気ディスクの製
造方法に用いるディスク基板の他の実施例を示す分解斜
視図及び−磁化した斜視図であり、第1図及び第2図と
同等部分には同一符号を付した。
5 and 6 are an exploded perspective view and a magnetized perspective view showing other embodiments of the disk substrate used in the method of manufacturing a perpendicular magnetic disk according to the present invention, and are equivalent to FIGS. 1 and 2. Parts are given the same reference numerals.

これらの図で示す実施例が第1図及び第2図の例と異な
る点は、中心にそれぞれ円孔12a、 13aを有する
ガラス、或いはセラミック等からなる、例えば1llI
I程度の厚さの一対の絶縁性円vi12及び13間に、
図示のように銅(Cu)等からなる渦巻形状の導電コイ
ル42を挟んで第6図に示すように一体化し、かつその
導電コイル42の両端部は例えば前記一方の絶縁性円板
12表面の外周縁部と内周縁部に設けた通電端子43a
、 43bに接続された構成のディスク基板41を用い
る点である。
The embodiment shown in these figures is different from the examples shown in FIGS. 1 and 2 because it is made of glass or ceramic, for example, with circular holes 12a and 13a in the center.
Between a pair of insulating circles vi12 and 13 with a thickness of about I,
As shown in the figure, they are integrated as shown in FIG. 6 with a spiral conductive coil 42 made of copper (Cu) or the like sandwiched therebetween, and both ends of the conductive coil 42 are connected to the surface of the one insulating disk 12, for example. Current-carrying terminals 43a provided on the outer peripheral edge and the inner peripheral edge
, 43b is used.

そして前記第3図及び第4図(a)、 (b)による実
施例と同様に、上記ディスク基板41上(前記通電端子
43a、 43b部分を除()にスパッタリング法等に
よりめっき用下地膜を被着形成した後、前記導電コイル
42の通電端子43a、 43bを電流源と接続した状
態で所定の電流を流して前記ディスク基板41の半径方
向に磁界を発生させた状態で、前記めっき下地膜上に電
解めっき法により3μ陽の膜厚のNt−Feめっき膜を
形成することによっても、前記実施例と同様にディスク
基板41の半径方向に容易軸が向(ように磁気異方性が
付与され、その円周方向(記録トラック方向)に200
0程度の極めて高い透磁率を有するNi−Feめっき膜
からなる軟磁性層を容易に得ることができる。
Then, similarly to the embodiments shown in FIGS. 3 and 4(a) and (b), a plating base film is formed on the disk substrate 41 (excluding the current-carrying terminals 43a and 43b) by sputtering or the like. After the plating is formed, the plating base film is coated with the current-carrying terminals 43a and 43b of the conductive coil 42 connected to a current source and a predetermined current flowing to generate a magnetic field in the radial direction of the disk substrate 41. By forming an Nt-Fe plating film with a thickness of 3μ by electrolytic plating on the disk substrate 41, magnetic anisotropy can be imparted so that the easy axis is oriented in the radial direction of the disk substrate 41, as in the previous embodiment. 200 in the circumferential direction (recording track direction)
A soft magnetic layer made of a Ni-Fe plated film having an extremely high magnetic permeability of about 0 can be easily obtained.

従って、このようにして形成された軟磁性層上に、従来
例と同様にCo−Crからなる0、2μ厘の膜厚の垂直
磁化記録層をスパッタリング法等により形成し、その表
面に更に保護膜及び潤滑膜を形成することにより、前記
実施例と同様に記録再生特性の優れた垂直磁気ディスク
が得られる。
Therefore, on the soft magnetic layer thus formed, a perpendicular magnetization recording layer made of Co-Cr with a thickness of 0.2 μm is formed by sputtering or the like, as in the conventional example, to further protect the surface. By forming the film and the lubricating film, a perpendicular magnetic disk with excellent recording and reproducing characteristics can be obtained, similar to the embodiments described above.

なお、以上の実施例ではディスク基板の半径方向に磁界
を発生させた状態で電解めっき法により高い透磁率のN
1−Feめっき膜からなる軟磁性層を形成する場合の例
について説明したが、この電解めっき法の他に蒸着法、
或いはスパッタリング法により同様な磁界発生中でNi
−Feからなる軟磁性層を形成した場合にもその透磁率
を1500以上に高めることが可能となり、このような
高透磁率の軟磁性層を有する二層膜構造の垂直磁気ディ
スクを形成することによって記録再生効率及び記録再生
特性が向上する。
In addition, in the above embodiment, N with high magnetic permeability was formed by electrolytic plating while a magnetic field was generated in the radial direction of the disk substrate.
An example of forming a soft magnetic layer made of a 1-Fe plating film has been described, but in addition to this electrolytic plating method, vapor deposition method,
Alternatively, Ni can be grown in a similar magnetic field by sputtering.
- Even when a soft magnetic layer made of Fe is formed, it is possible to increase the magnetic permeability to 1500 or more, and it is possible to form a perpendicular magnetic disk with a two-layer structure having such a soft magnetic layer with high magnetic permeability. This improves recording/reproducing efficiency and recording/reproducing characteristics.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明に係る二層膜構
造の垂直磁気ディスクの製造方法によれば、ディスクの
円周方向(記録トラック方向)に透磁率の高い軟磁性層
を容易に形成することができる優れた利点を有し、記録
再生効率の高い、優れた記録再生特性を存する垂直磁気
ディスクを得ることが可能となる。
As is clear from the above description, according to the method for manufacturing a perpendicular magnetic disk with a double-layer film structure according to the present invention, a soft magnetic layer with high magnetic permeability can be easily formed in the circumferential direction of the disk (recording track direction). It becomes possible to obtain a perpendicular magnetic disk having excellent advantages such as high recording and reproducing efficiency and excellent recording and reproducing characteristics.

従って、このような二層膜構造の垂直磁気ディスクの製
造方法に適用して極めて有利である。
Therefore, it is extremely advantageous to apply this method to a method of manufacturing a perpendicular magnetic disk having a double layer structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る垂直磁気ディスクの製造方法に用
いるディスク基板の一実施例 を説明する分解斜視図、 第2図は本発明に係る垂直磁気ディスクの製造方法に用
いるディスク基板の一体構成 を示す斜視図、 第3図は本発明に係る電解めっきによる軟磁性層の形成
方法を説明するための装置構 成断面図、 第4図(a)、 (b)は本発明の垂直磁気ディスクの
製造方法の一実施例を順に説明する工程 図、 第5図は本発明に係る垂直磁気ディスクの製造方法に用
いるディスク基板の他の実施 例を説明する分解斜視図、 第6図は本発明に係る垂直磁気ディスクの製造方法に用
いる他のディスク基板の一体 構成を示す斜視図、 第7図は従来の垂直磁気ディスクの製造方法を説明する
ための要部断面図である。 導電コイルをそれぞれ示す。 第1図〜第6図において、 11.41はディスク基板、12.13は絶縁性円板、
12a、13aは中心円孔、12b、 12c及び43
a43bは通電端子、14は導電体、21はめっき用下
地膜、22は軟磁性層、23は垂直磁化記録層、24は
保護膜、25は潤滑膜、31はめっき槽、32はめっき
液、33はめっき電極、34は基板ホルダ、35は電流
源、42はMefi/lrtM−a−yt=ts章辷不
茎#arPyF’x力)kGntiKt*’A’1li
t1′軸9り第3図 ントぞ(ガつもh:FFIt・sデー7カ蟇端受をn’
Its秀窄吟倉T捜Iツ第1図 滞4巻θ/r/l観γ3E+−,I’iL 13デン7
7J!!1fFffil!1第2図 (b) 不発朝nヤJJj惰Z71髪遣加tt−ト1.L:説明
VS工社図第4図 オAド甑呼、屓こ、1f3乏【−けh、)眉?5n77
JJi!Eをi!咽″丁Sづ針汚孕欅丹オゼm第5図 従来、l−¥直n気デ)77dは幻云を饋敷津舒超面ば
第7図 、2季ミ→ンく!戸す内肩ら51乞づう−3に「−珂9
1,3イマコ内うメセス7ジ睦引オシε【〉Fンt4シ
チイ1ぎQσ第6図
FIG. 1 is an exploded perspective view illustrating an embodiment of a disk substrate used in the method of manufacturing a perpendicular magnetic disk according to the present invention, and FIG. 2 is an integrated configuration of a disk substrate used in the method of manufacturing a perpendicular magnetic disk according to the present invention. FIG. 3 is a cross-sectional view of an apparatus configuration for explaining the method of forming a soft magnetic layer by electrolytic plating according to the present invention, and FIGS. 4(a) and (b) are perpendicular magnetic disks of the present invention. 5 is an exploded perspective view illustrating another embodiment of a disk substrate used in the method for manufacturing a perpendicular magnetic disk according to the present invention; FIG. FIG. 7 is a perspective view showing an integrated configuration of another disk substrate used in the method of manufacturing a perpendicular magnetic disk. FIG. 7 is a sectional view of a main part for explaining the conventional method of manufacturing a perpendicular magnetic disk. Each shows a conductive coil. In Figures 1 to 6, 11.41 is a disk substrate, 12.13 is an insulating disk,
12a, 13a are central circular holes, 12b, 12c and 43
a43b is a current-carrying terminal, 14 is a conductor, 21 is a plating base film, 22 is a soft magnetic layer, 23 is a perpendicular magnetization recording layer, 24 is a protective film, 25 is a lubricating film, 31 is a plating tank, 32 is a plating solution, 33 is a plating electrode, 34 is a substrate holder, 35 is a current source, 42 is Mefi/lrtM-a-yt=tsChapterLabium#arPyF'xforce)kGntiKt*'A'1li
t1' axis 9 Figure 3.
Its Hidezo Ginkura T Search I Tsu Figure 1 Su Volume 4 θ/r/l View γ3E+-, I'iL 13 Den 7
7J! ! 1fFfffil! 1 Figure 2 (b) Misfire morning nya JJj inertia Z71 hair addition tt-to 1. L: Explanation VS Kosha Diagram 4 O A Do Koshiki call, 屓KO, 1f3 scarcity [-keh,) eyebrows? 5n77
JJi! E for i! 77d is a phantom cloud. Inner shoulder 51 request -3 to ``-K9
1,3 Imako Inner Meses 7 Ji Mutsuhiki Osi ε [〉Fnt4 Shichii 1gi Qσ Fig.6

Claims (1)

【特許請求の範囲】[Claims] ディスク基板(11)上に高透磁率な軟磁性層(22)
を形成した垂直磁気ディスクの製造方法であって、それ
ぞれ中心に開口(12a、13a)を有する一対の絶縁
性円板(12、13)間と、該両絶縁性円板間に介在さ
れてそれらの円周方向に電流を通電可能にした導電体(
14)とにより上記ディスク基板(11)を形成し、該
ディスク基板(11)内の導電体(14)に電流を流し
て前記ディスク基板(11)の半径方向に磁界を発生さ
せた状態で、該ディスク基板(11)上にめっき法、蒸
着法、或いはスパッタリング法により高透磁率の軟磁性
層(22)を形成することを特徴とする垂直磁気ディス
クの製造方法。
High permeability soft magnetic layer (22) on the disk substrate (11)
A method for manufacturing a perpendicular magnetic disk in which: a pair of insulating disks (12, 13) each having an opening (12a, 13a) in the center; A conductor that allows current to flow in the circumferential direction (
14) to form the disk substrate (11), and with a current flowing through the conductor (14) in the disk substrate (11) to generate a magnetic field in the radial direction of the disk substrate (11), A method for manufacturing a perpendicular magnetic disk, characterized in that a soft magnetic layer (22) with high magnetic permeability is formed on the disk substrate (11) by a plating method, a vapor deposition method, or a sputtering method.
JP4486089A 1989-02-22 1989-02-22 Production of perpendicular magnetic disk Pending JPH02223020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4486089A JPH02223020A (en) 1989-02-22 1989-02-22 Production of perpendicular magnetic disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4486089A JPH02223020A (en) 1989-02-22 1989-02-22 Production of perpendicular magnetic disk

Publications (1)

Publication Number Publication Date
JPH02223020A true JPH02223020A (en) 1990-09-05

Family

ID=12703238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4486089A Pending JPH02223020A (en) 1989-02-22 1989-02-22 Production of perpendicular magnetic disk

Country Status (1)

Country Link
JP (1) JPH02223020A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05210844A (en) * 1990-12-26 1993-08-20 Nippon Digital Equip Kk Manufacture of magnetic sound recording disk

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05210844A (en) * 1990-12-26 1993-08-20 Nippon Digital Equip Kk Manufacture of magnetic sound recording disk

Similar Documents

Publication Publication Date Title
US5489488A (en) Soft magnetic film with compositional modulation and method of manufacturing the film
JPH04129009A (en) Thin-film magnetic reading-writing head
US4244788A (en) Transducer-plated magnetically anisotropic metallic recording films, and associated techniques
JPH02223020A (en) Production of perpendicular magnetic disk
JPH02214023A (en) Production of perpendicular magnetic disk
JPH07105027B2 (en) Perpendicular magnetic recording medium
JPH0323972B2 (en)
JPH0785442A (en) Vertical magnetic recording medium
US20030085131A1 (en) Electro-deposition of high saturation magnetization Fe-Ni-Co films
JPS5868226A (en) Magnetic recording medium
JPS61240429A (en) Magnetic recording medium
JPS6126927A (en) Magnetic recording medium
JPH1116120A (en) Thin-film magnetic head and magnetic recording and reproduction device
JPH0317829A (en) Production of perpendicular magnetic disk
JPH05258274A (en) Perpendicular magnetic recording medium and its production
JPS62291719A (en) Magnetic recording medium
JPH05258275A (en) Perpendicular magnetic recording medium and its production
JPH0581662A (en) Production of perpendicular magnetic recording medium
JPS63108535A (en) Production of perpendicular magnetic recording medium
JP2909766B2 (en) Magnetic recording media
JPH103611A (en) Thin film magnetic head and magnetic recording/ reproducing device
JPS6252362B2 (en)
JPH0724097B2 (en) Perpendicular magnetic recording medium
JPH0740342B2 (en) Magnetic recording medium and manufacturing method thereof
JPH02143921A (en) Apparatus for producing thin soft magnetic film