JPH1116120A - Thin-film magnetic head and magnetic recording and reproduction device - Google Patents

Thin-film magnetic head and magnetic recording and reproduction device

Info

Publication number
JPH1116120A
JPH1116120A JP16559097A JP16559097A JPH1116120A JP H1116120 A JPH1116120 A JP H1116120A JP 16559097 A JP16559097 A JP 16559097A JP 16559097 A JP16559097 A JP 16559097A JP H1116120 A JPH1116120 A JP H1116120A
Authority
JP
Japan
Prior art keywords
magnetic
film
thin
layer
magnetic head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16559097A
Other languages
Japanese (ja)
Inventor
Katsumi Hoshino
勝美 星野
Reiko Arai
礼子 荒井
Matahiro Komuro
又洋 小室
Moriaki Fuyama
盛明 府山
Hiroshi Fukui
宏 福井
Gen Oikawa
玄 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16559097A priority Critical patent/JPH1116120A/en
Publication of JPH1116120A publication Critical patent/JPH1116120A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the recording magnetic field intensity at a high frequency from lowering without the execution of a heat treatment after plating by forming two-layered films laminated with a magnetic layer having a high saturation magnetic flux density and a magnetic layer having a low magnetostriction constant by changing current density from a plating bath having bivalent Ni and Fe metal ions. SOLUTION: The lower magnetic film 12 consisting of a 'Permalloy (R)' thin-film contg. nitrogen, a magnetic gap layer 13 consisting of Al2 O3 , an insulating film 14 consisting of a photoresist, a coil 15 consisting of Cu and an insulating film 16 are successively formed on a substrate 11. Next, the upper magnetic films 17 of the two-layered films consisting of the magnetic layer having the high saturation magnetic flux density and the magnetic layer having the low magnetostriction constant are formed by changing the current density by using a flame plating method on the insulating film 16. The protective film 18 consisting of the Al2 O3 is formed thereon. As a result, the magnetic domain structure may be optimized even without the execution of the heat treatment and the max. recording frequency may be made >=100 MHz.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高い磁気記録密度
に対応した磁気ヘッド及び磁気記録再生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic head and a magnetic recording / reproducing apparatus compatible with a high magnetic recording density.

【0002】[0002]

【従来の技術】磁気ディスク装置の高記録密度化に伴
い、高い保磁力の媒体に記録できる薄膜磁気ヘッドが要
求されている。そのためには、磁気ヘッドのコア材料と
して、高い飽和磁束密度を有し、かつ、高周波特性に優
れた材料を用いる必要がある。
2. Description of the Related Art With the increase in recording density of magnetic disk devices, a thin film magnetic head capable of recording on a medium having a high coercive force has been required. For that purpose, it is necessary to use a material having a high saturation magnetic flux density and excellent high-frequency characteristics as a core material of the magnetic head.

【0003】現在、上記磁気ヘッドのコアは、フレーム
めっき法で作製される。該めっき法で作製される磁気コ
ア材料は、パーマロイ(78wt%Ni−Fe合金)が
公知である。しかし、この材料は、飽和磁束密度が1.
0T と低い。そのほか、めっき法で作製されるコア材
料としては、例えば、特開昭62−256989号あるいは特開
平6−5423 号公報にみられるように、Co−Ni−Fe
系合金、あるいはCo−Fe系合金があげられる。これ
ら材料は1.5T 以上もの高い飽和磁束密度を有する
が、電気抵抗率が20μΩcmと低いため、高周波におけ
るうず電流損失が大きく、記録磁界強度が低下する問題
がある。
At present, the core of the magnetic head is manufactured by a frame plating method. As the magnetic core material produced by the plating method, permalloy (78 wt% Ni-Fe alloy) is known. However, this material has a saturation magnetic flux density of 1.
0T and low. In addition, as a core material produced by a plating method, for example, as shown in JP-A-62-256989 or JP-A-6-5423, Co-Ni-Fe
Alloys or Co-Fe alloys. These materials have a high saturation magnetic flux density of 1.5 T or more, but have a problem that the eddy current loss at high frequencies is large and the recording magnetic field strength is reduced because the electric resistivity is as low as 20 μΩcm.

【0004】特願平7−16666 号公報にみられるよう
に、1.4T以上の高い飽和磁束密度を有する、めっき
法で作製した40〜60wt%Ni−Fe合金がある。
この材料は、電気抵抗率が40μΩcm程度と高いため、
うず電流損失が抑えられ、高周波において記録磁界強度
が低下しない。しかし、磁歪定数が+30/107 以上
と高く、コア形状にした場合、応力により磁区構造が乱
れてしまい、磁気コアを形成後、熱処理を必要とする。
As disclosed in Japanese Patent Application No. Hei 7-16666, there is a 40-60 wt% Ni-Fe alloy which has a high saturation magnetic flux density of 1.4 T or more and is produced by plating.
Since this material has a high electrical resistivity of about 40 μΩcm,
Eddy current loss is suppressed, and the recording magnetic field intensity does not decrease at high frequencies. However, when the core has a magnetostriction constant as high as +30/10 7 or more, the magnetic domain structure is disturbed by stress, and heat treatment is required after the formation of the magnetic core.

【0005】また、電気化学、第62巻、第5号、45
3ページに記載の「電気めっき法による軟磁性FeP膜
の作製」(Preparetion of Soft Magnetic FeP Films b
y Means of Electrodeposition Method )にみられる
ように、FeP膜は、飽和磁束密度が1.4T と高く、
かつ、電気抵抗率が160μΩcmと高いため、高周波に
おけるうず電流損失が抑えられる。しかし、磁歪定数が
+10〜20/106と非常に高く、耐食性にも問題が
ある。
Also, Electrochemistry, Vol. 62, No. 5, 45
"Preparation of Soft Magnetic FeP Films b" on page 3
y Means of Electrodeposition Method), the FeP film has a high saturation magnetic flux density of 1.4T,
In addition, since the electrical resistivity is as high as 160 μΩcm, eddy current loss at high frequencies is suppressed. However, the magnetostriction constant is very high at +10 to 20/10 6, and there is a problem in corrosion resistance.

【0006】さらに、応用磁気学会誌、第20号,43
3ページに記載の「電析法による軟磁性FeP/M(M
=Ni,CoP)/FeP積層膜の磁歪制御にみるよう
に、二つのめっき浴槽から多層膜を形成した例がある。
しかし、この場合、界面に酸化層が形成される恐れがあ
り、膜の特性を安定するには注意を要する。
Further, Journal of the Japan Society of Applied Magnetics, No. 20, 43
"Soft magnetic FeP / M (M
= Ni, CoP) / FeP As shown in the control of the magnetostriction of the laminated film, there is an example in which a multilayer film is formed from two plating baths.
However, in this case, an oxide layer may be formed at the interface, and care must be taken to stabilize the characteristics of the film.

【0007】[0007]

【発明が解決しようとする課題】高い磁気記録密度を有
する磁気ディスク装置には、高い飽和磁束密度を有し、
かつ、高周波において記録磁界強度が低下しない材料を
用いた薄膜磁気ヘッドを用いることが必要である。めっ
き法で作製した40〜60wt%Ni−Fe合金は、
1.4T以上の高い飽和磁束密度、および40μΩcm程
度の高い電気抵抗率を有しており、高周波での記録磁界
強度は低下しない。しかし、磁歪が正に大きいため、め
っき後熱処理を有する必要があった。
A magnetic disk drive having a high magnetic recording density has a high saturation magnetic flux density,
In addition, it is necessary to use a thin-film magnetic head using a material that does not reduce the recording magnetic field strength at high frequencies. The 40-60 wt% Ni-Fe alloy produced by plating is
It has a high saturation magnetic flux density of 1.4 T or more and a high electrical resistivity of about 40 μΩcm, and the recording magnetic field strength at high frequencies does not decrease. However, since the magnetostriction was positively large, it was necessary to have a heat treatment after plating.

【0008】本発明の目的は、上述の薄膜磁気ヘッドの
問題点を解決した薄膜ヘッドを提供することにある。ま
た、それを用いた磁気記録再生装置を提供することにあ
る。
An object of the present invention is to provide a thin-film head which solves the above-mentioned problems of the thin-film magnetic head. Another object of the present invention is to provide a magnetic recording / reproducing apparatus using the same.

【0009】[0009]

【課題を解決するための手段】本発明者等は、薄膜磁気
ヘッドにおける磁気コア材料について、誠意研究を行っ
た結果、2価のNiおよびFe金属イオンを有するめっ
き浴から、電流密度を変化させることにより飽和磁束密
度の高い磁性層と、磁歪定数の低い磁性層を積層した2
層膜が形成され、これを磁気コアに用いた薄膜磁気ヘッ
ドは、100MHzの高い周波数においても記録磁界強度が低
下しないことを見い出し、本発明を完成するに至った。
Means for Solving the Problems The present inventors have conducted a sincere study on a magnetic core material in a thin-film magnetic head, and as a result, have changed the current density from a plating bath containing divalent Ni and Fe metal ions. By stacking a magnetic layer having a high saturation magnetic flux density and a magnetic layer having a low magnetostriction constant,
A thin film magnetic head having a layer film formed thereon and using the same as a magnetic core has found that the recording magnetic field intensity does not decrease even at a high frequency of 100 MHz, and has completed the present invention.

【0010】すなわち、2価のNiおよびFe金属イオ
ン濃度範囲がそれぞれ5〜20g/l,1.7 〜20g
/lであり、上記NiとFeの金属イオン濃度比が1〜
3である溶媒から成るめっき浴にあり、応力緩和剤とし
てチオ尿素が添加されためっき浴から電流密度を変化さ
せることにより、飽和磁束密度の高いNi−Fe−S磁
性層と磁歪定数の低いNi−Fe−S磁性層の2層膜を
形成する。このめっき2層膜を用いた磁気コアの磁区構
造は熱処理をしなくても適正化され、かつ、上記2層膜
を用いた薄膜磁気ヘッドは、飽和磁束密度の高い磁性層
の膜厚が0.5μm以上形成されると、100MHzの高
周波においても記録磁界強度は低下しない。
That is, the divalent Ni and Fe metal ion concentration ranges are 5 to 20 g / l and 1.7 to 20 g, respectively.
/ L, and the metal ion concentration ratio between Ni and Fe is 1 to 1.
3, a Ni—Fe—S magnetic layer having a high saturation magnetic flux density and a Ni having a low magnetostriction constant are obtained by changing the current density from the plating bath to which thiourea is added as a stress relaxation agent. Forming a two-layer film of an Fe-S magnetic layer; The magnetic domain structure of the magnetic core using the plated two-layer film is optimized without heat treatment, and the thin film magnetic head using the two-layer film has a thickness of the magnetic layer having a high saturation magnetic flux density of 0.5. When formed to a thickness of at least μm, the recording magnetic field intensity does not decrease even at a high frequency of 100 MHz.

【0011】また、2価のNiおよびFe金属イオン濃
度範囲がそれぞれ5〜20g/l,0.5〜2.7g/l
であり、上記NiとFeの金属イオン濃度比が6〜8で
ある溶媒から成るめっき浴であり、総量で0.7g/l
以下のCr,Mo,W金属イオンの少なくとも一つを含
んだめっき浴から電流密度を変化させることにより、飽
和磁束密度の高い磁性層と磁歪定数の低い磁性層の2層
膜を形成する。このめっき2層膜を用いた磁気コアの磁
区構造は熱処理をしなくても適正化される。
The divalent Ni and Fe metal ion concentration ranges are 5 to 20 g / l and 0.5 to 2.7 g / l, respectively.
And a plating bath composed of a solvent having a metal ion concentration ratio of Ni and Fe of 6 to 8 in a total amount of 0.7 g / l.
By changing the current density from a plating bath containing at least one of the following Cr, Mo, and W metal ions, a two-layer film of a magnetic layer having a high saturation magnetic flux density and a magnetic layer having a low magnetostriction constant is formed. The magnetic domain structure of the magnetic core using the plated two-layer film can be optimized without heat treatment.

【0012】さらに、本発明は同一めっき浴槽から形成
されるため、界面に酸化膜などが形成される恐れはな
く、良好な膜が容易に作製できる。
Further, since the present invention is formed from the same plating bath, there is no possibility that an oxide film or the like is formed at the interface, and a good film can be easily produced.

【0013】また、上記薄膜磁気ヘッドと多層磁気抵抗
効果素子を組み合わせた磁気ヘッドを用いることによ
り、高い磁気記録密度を有した磁気記録再生装置が得ら
れる。
Further, by using a magnetic head in which the above-mentioned thin film magnetic head and a multilayer magnetoresistive element are combined, a magnetic recording / reproducing apparatus having a high magnetic recording density can be obtained.

【0014】[0014]

【発明の実施の形態】以下に本発明の一実施例を挙げ、
図表を参照しながらさらに具体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below.
This will be described more specifically with reference to the figures and tables.

【0015】〔実施例1〕基板は、Ni−Fe(80n
m)/Cr(30nm)をスパッタしたガラス基板を用
い、表1に示すめっき浴から190Oeの直流磁界中で
膜を作製した。
[Example 1] A substrate was made of Ni-Fe (80n
Using a glass substrate sputtered with m) / Cr (30 nm), a film was formed from a plating bath shown in Table 1 in a DC magnetic field of 190 Oe.

【0016】[0016]

【表1】 [Table 1]

【0017】ここで、浴温は30℃、pHは3.0 と
し、電流密度を変化させた。図1に、電流密度を変化さ
せたときのめっき膜の組成変化を示す。
Here, the bath temperature was 30 ° C., the pH was 3.0, and the current density was changed. FIG. 1 shows the composition change of the plating film when the current density is changed.

【0018】図1のように、電流密度の増加にともな
い、Ni組成及びS組成は減少し、Fe組成は増加す
る。図2及び図3には、上記めっき膜の電気抵抗率ρ,
磁歪定数λs及び飽和磁束密度Bsと電流密度との関係
を示す。
As shown in FIG. 1, as the current density increases, the Ni composition and the S composition decrease, and the Fe composition increases. 2 and 3 show the electrical resistivity ρ,
The relationship between the magnetostriction constant λs, the saturation magnetic flux density Bs, and the current density is shown.

【0019】図にみるように、電気抵抗率は電流密度に
よらず60μΩcmとほぼ一定である。磁歪定数および飽
和磁束密度は、Ni−Fe組成に依存しており、電流密
度の増加に伴い高くなる。この結果、電流密度が23m
A/cm2 のとき、飽和磁束密度は高くなり、電流密度が
7mA/cm2 付近で磁歪はほぼゼロとなる。この結果、
電流密度を変化させることにより、飽和磁束密度の高い
磁性層と磁歪の低い磁性層を積層させた2層めっき膜が
形成できる。次に、電流密度を変化させて、磁性層の膜
厚を3.0μm と一定にし、2層膜の膜厚比を変化させ
た。図4に膜全体の磁歪定数と飽和磁束密度の高い磁性
層の膜厚との関係を示す。このように、磁歪定数は2層
膜の膜厚比により決定される。これらの膜をフレームめ
っきして磁気コア形状にし、磁区構造を評価したとこ
ろ、磁歪定数が+20/107 以下の領域において、熱
処理無しに磁化がトラック幅方向に向き、適正化され
る。
As shown in the figure, the electrical resistivity is almost constant at 60 μΩcm regardless of the current density. The magnetostriction constant and the saturation magnetic flux density depend on the Ni—Fe composition, and increase as the current density increases. As a result, the current density was 23 m
When the current density is A / cm 2 , the saturation magnetic flux density becomes high, and the magnetostriction becomes almost zero when the current density is around 7 mA / cm 2 . As a result,
By changing the current density, a two-layer plating film in which a magnetic layer having a high saturation magnetic flux density and a magnetic layer having a low magnetostriction are laminated can be formed. Next, the current density was changed to keep the thickness of the magnetic layer constant at 3.0 μm, and the thickness ratio of the two-layer film was changed. FIG. 4 shows the relationship between the magnetostriction constant of the entire film and the thickness of the magnetic layer having a high saturation magnetic flux density. Thus, the magnetostriction constant is determined by the thickness ratio of the two-layer film. These film frame plating on the magnetic core shape was evaluated for magnetic domain structure, magnetostriction constant in Tasu20/10 7 following areas, magnetization without heat treatment direction in the track width direction, it is optimized.

【0020】次に、上記2層膜を用いた磁気ヘッドを作
製した。図5に薄膜磁気ヘッドの断面を示す。基板11
には、表面を十分に研磨,洗浄したセラミックス基板を
用いた。基板11上に、下部磁性膜12として、厚さ
2.8μm の窒素を含んだパーマロイ(78wt%Ni
−Fe)薄膜を高周波スパッタリング法で作製した。こ
の窒素を含んだNi−Fe膜の磁気特性は、保磁力が
0.5Oe 、飽和磁束密度が1.0T、磁歪定数が−1.
0/107 であった。
Next, a magnetic head using the two-layer film was manufactured. FIG. 5 shows a cross section of the thin-film magnetic head. Substrate 11
A ceramic substrate whose surface was sufficiently polished and cleaned was used. A 2.8 μm thick nitrogen-containing permalloy (78 wt% Ni) was formed on the substrate 11 as the lower magnetic film 12.
-Fe) A thin film was produced by a high frequency sputtering method. The magnetic characteristics of the Ni-Fe film containing nitrogen include a coercive force of 0.5 Oe, a saturation magnetic flux density of 1.0 T and a magnetostriction constant of -1.
It was 0/10 7 .

【0021】上記下部磁性膜12をイオンミリングによ
り、所定の形状にパターニング後、Al23からなる磁
気ギャップ膜13をスパッタし、イオンミリング法によ
りパターニングを行った。
After patterning the lower magnetic film 12 into a predetermined shape by ion milling, a magnetic gap film 13 made of Al 2 O 3 was sputtered and patterned by ion milling.

【0022】次に、ホトレジストからなる絶縁膜14を
塗布、露光,現像,熱処理により、所定の形状にパター
ニングした。絶縁膜14上に、Cuからなるコイル15
をめっき法により作製後、絶縁膜16を形成、所定の形
状にパターニングした。絶縁膜16上に、フレームめっ
き法を用い、電流密度を変化させることにより、厚さが
3.0μm の上部磁性膜17を形成した。
Next, an insulating film 14 made of a photoresist was patterned into a predetermined shape by coating, exposing, developing and heat-treating. On the insulating film 14, a coil 15 made of Cu
Was formed by plating, and an insulating film 16 was formed and patterned into a predetermined shape. An upper magnetic film 17 having a thickness of 3.0 μm was formed on the insulating film 16 by changing the current density using a frame plating method.

【0023】ここで、上部磁性膜は、電流密度を23A
/cm2 として高飽和磁束密度を有する磁性層を形成し、
電流密度を7A/cm2 として低磁歪定数を有する磁性層
を形成した2層膜とした。上部コアの熱処理は行わなか
った。最後に、Al23からなる保護膜18を形成し
た。
The upper magnetic film has a current density of 23 A
/ Cm 2 to form a magnetic layer having a high saturation magnetic flux density,
The current density was set to 7 A / cm 2 to form a two-layer film having a magnetic layer having a low magnetostriction constant. No heat treatment of the upper core was performed. Finally, a protective film 18 made of Al 2 O 3 was formed.

【0024】上記の薄膜磁気ヘッドを用い、70MHz
時のオーバーライト特性と高い飽和磁束密度を有する磁
性層の膜厚との関係を調べた結果を図6に示す。
Using the above thin film magnetic head, 70 MHz
FIG. 6 shows the result of examining the relationship between the overwrite characteristics at the time and the thickness of the magnetic layer having a high saturation magnetic flux density.

【0025】ここで、膜厚が2.0μm のヘッドは、磁
区構造が適正化しなかったため、熱処理を行っている。
磁気記録媒体には、残留磁束密度2500OeのCo−
Cr−Pt系合金からなる材料を用いた。また、磁気ヘ
ッドのトラック幅は2.0 μmとした。図のように、飽
和磁束密度の高い磁性層の膜厚は0.5μm 以上でほぼ
一定となり、高い飽和磁束密度を有する磁性層厚は0.
5μmあれば十分である。
Here, the head having a thickness of 2.0 μm is subjected to heat treatment because the magnetic domain structure has not been optimized.
The magnetic recording medium has a residual magnetic flux density of 2500 Oe, Co-
A material made of a Cr-Pt alloy was used. The track width of the magnetic head was 2.0 μm. As shown in the figure, the thickness of the magnetic layer having a high saturation magnetic flux density is substantially constant at 0.5 μm or more, and the thickness of the magnetic layer having a high saturation magnetic flux density is 0.5 μm.
5 μm is sufficient.

【0026】次に飽和磁束密度の高い磁性層の膜厚を
0.5μm とした磁気ヘッドの記録磁界強度の周波数依
存性を図7に示す。比較のために、上部コアを飽和磁束
密度が1.6T 、電気抵抗率が45μΩcmである46w
t%Ni−Fe単層膜を用い、熱処理を施した磁気ヘッ
ドを示す。
FIG. 7 shows the frequency dependence of the recording magnetic field strength of a magnetic head in which the thickness of the magnetic layer having a high saturation magnetic flux density is 0.5 μm. For comparison, the upper core is made of 46 watts having a saturation magnetic flux density of 1.6 T and an electric resistivity of 45 μΩcm.
A magnetic head that has been heat-treated using a t% Ni—Fe single layer film is shown.

【0027】図のように、本発明の薄膜磁気ヘッドは、
熱処理無しで、100MHzの高周波においても高い記
録磁界を有する。これは、磁歪が低くなった効果と、膜
の電気抵抗率が60μΩcmと高くなった効果であると考
える。
As shown in the figure, the thin film magnetic head of the present invention
It has a high recording magnetic field even at a high frequency of 100 MHz without heat treatment. This is considered to be the effect of reducing the magnetostriction and the effect of increasing the electrical resistivity of the film to 60 μΩcm.

【0028】本実施例では、上部磁性膜のみを2層膜と
した結果について述べたが、下部磁性膜も同様に2層膜
とすることによって、更に高い効果が得られる。
In this embodiment, the result in which only the upper magnetic film is a two-layer film has been described. However, a higher effect can be obtained by similarly forming the lower magnetic film as a two-layer film.

【0029】〔実施例2〕基板は、Ni−Fe(80n
m)/Cr(30nm)をスパッタしたガラス基板を用
い、表2に示すめっき浴から190Oeの直流磁界中で
膜を作製した。
Example 2 A substrate was made of Ni--Fe (80 n
m) / Cr (30 nm) was sputtered from a plating bath shown in Table 2 in a DC magnetic field of 190 Oe to form a film.

【0030】[0030]

【表2】 [Table 2]

【0031】ここで、浴温は30℃、pHは3.0と
し、電流密度を変化させた。図8にめっき膜の組成と電
流密度の関係を示す。また、図9及び図10には、磁歪
λs,電気抵抗率ρおよび飽和磁束密度Bsと電流密度
の関係を示す。
Here, the bath temperature was 30 ° C., the pH was 3.0, and the current density was changed. FIG. 8 shows the relationship between the composition of the plating film and the current density. 9 and 10 show the relationship between magnetostriction λs, electrical resistivity ρ, saturation magnetic flux density Bs, and current density.

【0032】図8のように、電流密度を変化させること
によりめっき膜組成が変化する。これに伴い、膜の諸特
性が図9,図10のように変化する。その結果、電流密
度を変化させることにより、飽和磁束密度の高い磁性層
と磁歪の低い磁性層を積層させた2層膜が形成できる。
電流密度を10mA/cm2として、飽和磁束密度が1.6T
と高い磁性層を0.5μm形成した上に、電流密度を2
5mA/cm2として、磁歪定数がほぼゼロである磁性層
を2.5μm 形成した2層膜を、フレームめっき法によ
り作製し、磁区構造を評価したところ、磁化がトラック
幅方向に向き、適正化された。
As shown in FIG. 8, the plating film composition changes by changing the current density. Accordingly, various characteristics of the film change as shown in FIGS. As a result, by changing the current density, a two-layer film in which a magnetic layer having a high saturation magnetic flux density and a magnetic layer having a low magnetostriction are laminated can be formed.
When the current density is 10 mA / cm 2 and the saturation magnetic flux density is 1.6 T
And a magnetic layer with a high current density of 0.5 μm.
When a magnetic layer having a magnetostriction constant of almost zero and a magnetic layer of 2.5 μm was formed at 5 mA / cm 2 , a two-layer film was formed by a frame plating method, and the magnetic domain structure was evaluated. Was done.

【0033】本実施例では、Ni−Feに添加する金属
としてCrを用いたが、Mo,Wを用いても同様な効果
が得られる。これらの2層膜は、磁歪定数が低いため、
熱処理を行わなくても磁区構造は適正化される。また、
電気抵抗率は45〜50μΩcmと46wt%Ni−Fe
単層膜と同程度以上であるため、上部磁性膜の熱処理を
行わなくても高い記録周波数に対応できる。
In this embodiment, Cr is used as the metal to be added to Ni--Fe, but the same effect can be obtained by using Mo and W. These two-layer films have low magnetostriction constants,
Even without heat treatment, the domain structure is optimized. Also,
The electric resistivity is 45-50 μΩcm and 46 wt% Ni-Fe
Since the thickness is equal to or higher than that of the single-layer film, it is possible to cope with a high recording frequency without heat treatment of the upper magnetic film.

【0034】〔実施例3〕実施例1で示した薄膜磁気ヘ
ッドを用い、記録再生分離型ヘッドを作製した。磁気ヘ
ッドの構造を以下に示す。図11は、上記磁気ヘッドの
一部分を切断した場合の斜視図である。
[Embodiment 3] Using the thin-film magnetic head shown in Embodiment 1, a recording / reproducing separation type head was manufactured. The structure of the magnetic head is shown below. FIG. 11 is a perspective view when a part of the magnetic head is cut.

【0035】磁気抵抗効果膜21をシールド層22,2
3で挟んだ部分が再生ヘッドとして働く。また、シール
ド層23は、記録ヘッドの下部磁極もかねており、コイ
ル24を挟むシールド層23,上部磁極25の部分が記
録ヘッドとして働く。この記録ヘッドは、実施例1に記
載の薄膜磁気ヘッドである。また、電極27には、Cr
/Cu/Crという多層構造の材料を用いた。以下にこ
のヘッドの作製方法を示す。
The magnetoresistive film 21 is formed of the shield layers 22 and 2
The portion sandwiched between 3 functions as a reproducing head. The shield layer 23 also functions as the lower magnetic pole of the recording head, and the portion of the shield layer 23 and the upper magnetic pole 25 sandwiching the coil 24 functions as a recording head. This recording head is the thin-film magnetic head described in the first embodiment. In addition, the electrode 27
A material having a multilayer structure of / Cu / Cr was used. Hereinafter, a method for manufacturing this head will be described.

【0036】Al23・TiCを主成分とする焼結体を
スライダ用の基板26とした。シールド層22,23に
はスパッタリング法で形成した窒素を含んだパーマロイ
を用いた。各磁性膜の膜厚は、以下のようにした。上下
のシールド層22,23は2.0μm、上部磁極25は
3.0μm、各層間のギャップ材としてはスパッタリン
グで形成したAl23を用いた。ギャップ層の膜厚は、
シールド層と磁気抵抗効果素子間で0.2μm、記録磁
極間では0.4μmとした。
A sintered body mainly composed of Al 2 O 3 .TiC was used as a substrate 26 for the slider. Permalloy containing nitrogen formed by a sputtering method was used for the shield layers 22 and 23. The thickness of each magnetic film was as follows. The upper and lower shield layers 22 and 23 were 2.0 μm, the upper pole 25 was 3.0 μm, and Al 2 O 3 formed by sputtering was used as a gap material between the layers. The thickness of the gap layer is
The thickness was 0.2 μm between the shield layer and the magnetoresistive element, and 0.4 μm between the recording magnetic poles.

【0037】磁気抵抗効果膜21には、スピンバルブ膜
を用いた。コイル24には膜厚1μmのCuを使用し
た。以上述べた構造の磁気ヘッドで、記録再生を行った
ところ、最高記録周波数が100MHz以上の高周波記
録再生が可能であることがわかった。これは、磁気ヘッ
ドに、本発明による磁気ヘッドを用いたためであると考
えられる。
As the magnetoresistive film 21, a spin valve film was used. Cu having a thickness of 1 μm was used for the coil 24. When recording and reproduction were performed with the magnetic head having the above-described structure, it was found that high-frequency recording and reproduction with a maximum recording frequency of 100 MHz or more was possible. This is probably because the magnetic head according to the present invention was used for the magnetic head.

【0038】本実施例では、上部シールド層23は、ス
パッタリング法を用いているが、めっき法を用いて形成
することもできる。また、2層めっき膜にすることによ
り、更に高い効果が得られる。
In this embodiment, the upper shield layer 23 is formed by a sputtering method, but may be formed by a plating method. Further, by using a two-layer plating film, a higher effect can be obtained.

【0039】さらに、本実施例では、記録ヘッドの下部
コアと再生ヘッドの上部シールドを兼用しているが、別
々に形成することも可能である。
Further, in the present embodiment, the lower core of the recording head and the upper shield of the reproducing head are also used, but they can be formed separately.

【0040】〔実施例4〕実施例3で述べた本発明の磁
気ヘッドを用い、磁気ディスク装置を作製した。図12
に磁気ディスク装置の構造の概略図を示す。
Embodiment 4 A magnetic disk drive was manufactured using the magnetic head of the present invention described in Embodiment 3. FIG.
1 shows a schematic diagram of the structure of the magnetic disk drive.

【0041】磁気記録媒体31の記録層には、残留磁束
密度2500OeのCo−Cr−Pt系合金からなる材
料を用いた。磁気ヘッド33の記録ヘッドのトラック幅
は2.5μm 、再生ヘッドのトラック幅は2μmとし
た。磁気ヘッド33における記録ヘッドの磁気コア材料
は、従来のパーマロイを用いた記録ヘッドと比較して、
高抵抗,高飽和磁束密度を有し、かつ、磁極の磁区構造
が良好であるため、高周波に対応した磁気ディスク装置
を作製することができる。本発明の磁気ヘッドは、最高
記録周波数が100MHz以上である磁気記録再生装置
に有効である。
For the recording layer of the magnetic recording medium 31, a material made of a Co-Cr-Pt alloy having a residual magnetic flux density of 2500 Oe was used. The track width of the recording head of the magnetic head 33 was 2.5 μm, and the track width of the reproducing head was 2 μm. The magnetic core material of the recording head in the magnetic head 33 is different from that of the conventional recording head using permalloy.
Since it has a high resistance, a high saturation magnetic flux density, and a good magnetic domain structure of the magnetic poles, it is possible to manufacture a magnetic disk device compatible with high frequencies. The magnetic head of the present invention is effective for a magnetic recording / reproducing apparatus having a maximum recording frequency of 100 MHz or more.

【0042】[0042]

【発明の効果】上述のように、下部磁性膜と、下部磁性
膜上に形成され一端が下部磁性膜の一端に接しており、
他端が下部磁性膜の他端に磁気ギャップを介して対向
し、磁気回路を形成する上部磁性膜と、両磁性膜の間に
電気的に絶縁された膜を介して、磁気コアと交差する所
定巻回数のコイルからなる薄膜磁気ヘッドであり、上部
磁性膜が電気めっき法によって形成された薄膜磁気ヘッ
ドにおいて、電流密度を変化させた高飽和磁束密度磁性
層/低磁歪磁性層の2層膜を用いることにより、熱処理
を行わなくても磁区構造は適正化され、最高記録周波数
が100MHz以上である磁気ヘッドが作製できる。
As described above, the lower magnetic film and one end formed on the lower magnetic film are in contact with one end of the lower magnetic film.
The other end is opposed to the other end of the lower magnetic film via a magnetic gap, and intersects the magnetic core via an upper magnetic film forming a magnetic circuit and an electrically insulated film between the two magnetic films. A thin-film magnetic head comprising a coil having a predetermined number of turns, wherein a two-layer film of a high saturation magnetic flux density magnetic layer / a low magnetostrictive magnetic layer having a changed current density in a thin film magnetic head having an upper magnetic film formed by electroplating. The magnetic domain structure can be optimized without heat treatment, and a magnetic head having a maximum recording frequency of 100 MHz or more can be manufactured.

【0043】さらに、上記磁気ヘッドを用いることによ
り、高性能磁気記録再生装置を得ることができる。
Further, by using the above-mentioned magnetic head, a high-performance magnetic recording / reproducing apparatus can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Ni−Fe−S組成と電流密度の関係を示すグ
ラフ。
FIG. 1 is a graph showing a relationship between a Ni—Fe—S composition and a current density.

【図2】磁歪定数,電気抵抗率と電流密度の関係を示す
グラフ。
FIG. 2 is a graph showing the relationship between magnetostriction constant, electrical resistivity and current density.

【図3】飽和磁束密度と電流密度の関係を示すグラフ。FIG. 3 is a graph showing a relationship between a saturation magnetic flux density and a current density.

【図4】めっき2層膜における磁歪定数と高飽和磁束密
度磁性層厚との関係を示すグラフ。
FIG. 4 is a graph showing the relationship between the magnetostriction constant and the thickness of a high saturation magnetic flux density magnetic layer in a plated two-layer film.

【図5】薄膜磁気ヘッドの断面図。FIG. 5 is a sectional view of a thin-film magnetic head.

【図6】本発明の2層めっき膜を用いた薄膜磁気ヘッド
における、オーバーライトと高飽和磁束密度磁性層厚と
の関係を示すグラフ。
FIG. 6 is a graph showing the relationship between overwriting and the thickness of a high saturation magnetic flux density magnetic layer in a thin-film magnetic head using a two-layer plating film of the present invention.

【図7】本発明の2層めっき膜を用いた薄膜磁気ヘッド
におけるオーバーライトと記録周波数との関係を示すグ
ラフ。
FIG. 7 is a graph showing the relationship between overwrite and recording frequency in a thin-film magnetic head using a two-layer plating film of the present invention.

【図8】Ni−Fe−Crめっき膜組成と電流密度の関
係を示すグラフ。
FIG. 8 is a graph showing the relationship between the composition of the Ni—Fe—Cr plating film and the current density.

【図9】磁歪定数,電気抵抗率と電流密度の関係を示す
グラフ。
FIG. 9 is a graph showing the relationship between magnetostriction constant, electric resistivity, and current density.

【図10】飽和磁束密度と電流密度の関係を示すグラ
フ。
FIG. 10 is a graph showing a relationship between a saturation magnetic flux density and a current density.

【図11】本発明の薄膜磁気ヘッドを用いた磁気ヘッド
の概略図。
FIG. 11 is a schematic diagram of a magnetic head using the thin-film magnetic head of the present invention.

【図12】本発明の薄膜磁気ヘッドを用いた磁気ディス
ク装置の概略図。
FIG. 12 is a schematic diagram of a magnetic disk drive using the thin-film magnetic head of the present invention.

【符号の説明】[Explanation of symbols]

11…基板、12…下部磁性膜、13…磁気ギャップ
膜、14,16…絶縁膜、15,24…コイル、17,
25…上部磁性膜、18…保護膜、21…磁気抵抗効果
膜、22,23…シールド層、26…基体、27…電
極、31…磁気記録媒体、32…磁気記録媒体駆動部、
33…磁気ヘッド、34…磁気ヘッド駆動部、35…記
録再生信号処理系。
11: substrate, 12: lower magnetic film, 13: magnetic gap film, 14, 16: insulating film, 15, 24: coil, 17,
25: Upper magnetic film, 18: Protective film, 21: Magnetoresistance effect film, 22, 23: Shield layer, 26: Base, 27: Electrode, 31: Magnetic recording medium, 32: Magnetic recording medium drive unit,
33: a magnetic head; 34: a magnetic head drive unit; 35: a recording / reproducing signal processing system.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 府山 盛明 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 福井 宏 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 及川 玄 神奈川県小田原市国府津2880番地 株式会 社日立製作所ストレージシステム事業部内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor, Moriaki Fuyama 1-280, Higashi-Koigakubo, Kokubunji-shi, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd. Inside the Central Research Laboratory of the Works (72) Inventor Gen Oikawa 2880 Kozu, Odawara-shi, Kanagawa Storage Systems Division, Hitachi, Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】下部磁性膜と、下部磁性膜上に形成され一
端が下部磁性膜の一端に接しており、他端が下部磁性膜
の他端に磁気ギャップを介して対向し、磁気回路を形成
する上部磁性膜と、両磁性膜の間に電気的に絶縁された
膜を介して、磁気コアと交差する所定巻回数のコイルか
らなる薄膜磁気ヘッドにおいて、上部磁性膜あるいは下
部磁性膜の少なくとも一方が、同一のめっき浴から電流
密度を変化させて形成されたNiとFeとの合金を主成
分とした2層の磁性膜からなる薄膜磁気ヘッドであり、
上記2層の磁性膜における磁気ギャップに面した磁性層
の飽和磁束密度が高いことを特徴とする薄膜磁気ヘッ
ド。
A lower magnetic film formed on the lower magnetic film, one end of which is in contact with one end of the lower magnetic film, and the other end of which faces the other end of the lower magnetic film via a magnetic gap; In a thin-film magnetic head comprising a coil having a predetermined number of turns intersecting a magnetic core via an upper magnetic film to be formed and a film electrically insulated between the two magnetic films, at least the upper magnetic film or the lower magnetic film One is a thin-film magnetic head composed of two magnetic films mainly composed of an alloy of Ni and Fe formed by changing the current density from the same plating bath,
A thin film magnetic head characterized in that the magnetic layer facing the magnetic gap in the two magnetic films has a high saturation magnetic flux density.
【請求項2】請求項1に記載の薄膜磁気ヘッドにおい
て、上記2層の磁性膜の磁気ギャップに近い磁性層の厚
さが0.5μm以上であることを特徴とする薄膜磁気ヘ
ッド。
2. The thin-film magnetic head according to claim 1, wherein the thickness of the magnetic layer near the magnetic gap of the two magnetic films is 0.5 μm or more.
【請求項3】請求項1または2に記載の2層の磁性膜を
用いた薄膜磁気ヘッドにおいて、上記2層の磁性膜の磁
気ギャップから遠い磁性層の磁歪定数が負、または、磁
気ギャップに面した磁性層の磁歪定数より低いことを特
徴とする薄膜磁気ヘッド。
3. A thin-film magnetic head using a two-layer magnetic film according to claim 1 or 2, wherein a magnetic layer far from the magnetic gap of the two-layer magnetic film has a negative magnetostriction constant or a magnetic gap having a negative value. A thin-film magnetic head characterized by having a magnetostriction constant lower than that of a magnetic layer facing the thin-film magnetic head.
【請求項4】請求項1,2または3に記載の薄膜磁気ヘ
ッドにおいて、上記2層の磁性膜が、Ni−Fe−Sの
組成変調膜であることを特徴とする薄膜磁気ヘッド。
4. The thin-film magnetic head according to claim 1, wherein said two-layer magnetic film is a composition modulation film of Ni—Fe—S.
【請求項5】請求項4に記載の薄膜磁気ヘッドにおい
て、2価のNi金属イオンおよび2価のFe金属イオン
の濃度範囲がそれぞれ5〜20g/l,1.7 〜20g
/lであり、上記、NiとFeのイオン比が1〜3であ
る溶媒からなり、かつ、応力緩和剤としてチオ尿素が添
加され、さらに界面活性剤が添加されためっき浴を用い
て、電流密度を変化させて形成された2層の磁性膜を上
部磁性膜あるいは下部磁性膜の少なくとも一方に形成さ
せたことを特徴とする薄膜磁気ヘッド。
5. The thin-film magnetic head according to claim 4, wherein the concentration ranges of the divalent Ni metal ion and the divalent Fe metal ion are 5 to 20 g / l and 1.7 to 20 g, respectively.
/ L, a plating bath containing a solvent in which the ion ratio of Ni to Fe is 1 to 3 and in which thiourea is added as a stress relaxing agent and further a surfactant is added. A thin-film magnetic head characterized in that two magnetic films formed by changing the density are formed on at least one of an upper magnetic film and a lower magnetic film.
【請求項6】請求項1,2または3に記載の薄膜磁気ヘ
ッドにおいて、上記2層の磁性膜が、Ni−FeにC
r,Mo,Wのうち少なくとも一つの元素を含む合金の
組成変調膜であることを特徴とする薄膜磁気ヘッド。
6. The thin-film magnetic head according to claim 1, wherein said two-layer magnetic film comprises Ni--Fe
A thin-film magnetic head comprising a composition modulation film of an alloy containing at least one of r, Mo, and W.
【請求項7】請求項6に記載の薄膜磁気ヘッドにおい
て、2価のNi金属イオンおよび2価のFe金属イオン
の濃度範囲がそれぞれ5〜20g/l,0.5〜2.7g
/lであり、上記、NiとFeのイオン比が6〜8であ
る溶媒からなり、かつ、応力緩和剤,界面活性剤と、総
量で0.7g/l 以下のCr,Mo,Wの金属イオンの
少なくとも一つが添加されためっき浴を用いて、電流密
度を変化させて形成された2層の磁性膜を上部磁性膜あ
るいは下部磁性膜の少なくとも一方に形成させたことを
特徴とする薄膜磁気ヘッド。
7. The thin-film magnetic head according to claim 6, wherein the concentration ranges of the divalent Ni metal ion and the divalent Fe metal ion are 5 to 20 g / l and 0.5 to 2.7 g, respectively.
/ L, a stress relaxing agent, a surfactant, and a metal of Cr, Mo, W having a total amount of 0.7 g / l or less, comprising a solvent having an ion ratio of Ni to Fe of 6 to 8 as described above. A two-layer magnetic film formed by changing a current density by using a plating bath to which at least one of ions is added is formed on at least one of an upper magnetic film and a lower magnetic film. head.
【請求項8】請求項1〜7のいずれかに記載の薄膜磁気
ヘッドと多層磁気抵抗効果素子とを組み合わせた複合型
磁気ヘッド。
8. A composite magnetic head comprising a combination of the thin-film magnetic head according to claim 1 and a multilayer magnetoresistive element.
【請求項9】請求項8に記載の磁気ヘッドを搭載した磁
気記録再生装置。
9. A magnetic recording / reproducing apparatus equipped with the magnetic head according to claim 8.
JP16559097A 1997-06-23 1997-06-23 Thin-film magnetic head and magnetic recording and reproduction device Pending JPH1116120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16559097A JPH1116120A (en) 1997-06-23 1997-06-23 Thin-film magnetic head and magnetic recording and reproduction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16559097A JPH1116120A (en) 1997-06-23 1997-06-23 Thin-film magnetic head and magnetic recording and reproduction device

Publications (1)

Publication Number Publication Date
JPH1116120A true JPH1116120A (en) 1999-01-22

Family

ID=15815253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16559097A Pending JPH1116120A (en) 1997-06-23 1997-06-23 Thin-film magnetic head and magnetic recording and reproduction device

Country Status (1)

Country Link
JP (1) JPH1116120A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6466416B1 (en) 1999-08-11 2002-10-15 Nec Corporation Magnetic head, method for making the same and magnetic recording/reproducing device using the same
US6687082B1 (en) 1999-10-06 2004-02-03 Nec Corporation Magnetic head and manufacturing method thereof and magnetic recording and reproducing apparatus
US6791794B2 (en) 2000-09-28 2004-09-14 Nec Corporation Magnetic head having an antistripping layer for preventing a magnetic layer from stripping
US6795271B2 (en) 2000-01-05 2004-09-21 Nec Corporation Recording head, recording head manufacturing method, combined head and magnetic recording/reproduction apparatus
US7274541B2 (en) 2000-03-31 2007-09-25 Hitachi Global Storage Technologies Japan, Ltd. Magnetic thin film head, the fabrication method, and magnetic disk

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6466416B1 (en) 1999-08-11 2002-10-15 Nec Corporation Magnetic head, method for making the same and magnetic recording/reproducing device using the same
US7023659B2 (en) 1999-09-30 2006-04-04 Nec Corporation Magnetic head having an antistripping layer for preventing a magnetic layer from stripping
US6687082B1 (en) 1999-10-06 2004-02-03 Nec Corporation Magnetic head and manufacturing method thereof and magnetic recording and reproducing apparatus
US6795271B2 (en) 2000-01-05 2004-09-21 Nec Corporation Recording head, recording head manufacturing method, combined head and magnetic recording/reproduction apparatus
US7173793B2 (en) 2000-01-05 2007-02-06 Nec Corporation Recording head, recording head manufacturing method, combined head and magnetic recording/reproduction apparatus
US7274541B2 (en) 2000-03-31 2007-09-25 Hitachi Global Storage Technologies Japan, Ltd. Magnetic thin film head, the fabrication method, and magnetic disk
US6791794B2 (en) 2000-09-28 2004-09-14 Nec Corporation Magnetic head having an antistripping layer for preventing a magnetic layer from stripping

Similar Documents

Publication Publication Date Title
US5157570A (en) Magnetic pole configuration for high density thin film recording head
US5995342A (en) Thin film heads having solenoid coils
KR100319035B1 (en) Thin film magnetic head and recording reproducing separate type magnetic head, and magnetic recording reproducing apparatus using them
US6195232B1 (en) Low-noise toroidal thin film head with solenoidal coil
KR100273050B1 (en) Magnetic head
JP3112850B2 (en) Soft magnetic thin film containing Co-Ni-Fe as a main component, method of manufacturing the same, magnetic head and magnetic storage device using the same
US6721147B2 (en) Longitudinally biased magnetoresistance effect magnetic head and magnetic reproducing apparatus
US5108837A (en) Laminated poles for recording heads
GB2268617A (en) Thin film magnetic head
EP0344278B1 (en) Laminated poles for recording heads
US6120920A (en) Magneto-resistive effect magnetic head
JPH1116120A (en) Thin-film magnetic head and magnetic recording and reproduction device
JP3294742B2 (en) Magnetoresistive head
JP2502965B2 (en) Thin film magnetic head
JPH103611A (en) Thin film magnetic head and magnetic recording/ reproducing device
JP2003101100A (en) Magnetoresistive effect head, and magnetic recording and reproducing device
JPH06195637A (en) Thin film magnetic head
JPH10188220A (en) Soft magnetic alloy thin film, magnetic head and magnetic recording and reproducing device
JPH1125420A (en) Thin film magnetic head, its manufacture and magnetic recording and reproducing device using the head
JPH0845035A (en) Thin film magnetic head
JP2816150B2 (en) Composite magnetic head
JPH10188221A (en) Magnetic plating film, thin-film magnetic head and magnetic recording and reproducing device
JPH0817022A (en) Production of combined thin-film magnetic head
JPH07287819A (en) Magnetorsistive thin film magnetic head and its production
JP2000132815A (en) Magnetoresistance effect type head and magnetic recording and reproducing device