JPH0221675A - Substrate for thin film thermopile use - Google Patents
Substrate for thin film thermopile useInfo
- Publication number
- JPH0221675A JPH0221675A JP63171393A JP17139388A JPH0221675A JP H0221675 A JPH0221675 A JP H0221675A JP 63171393 A JP63171393 A JP 63171393A JP 17139388 A JP17139388 A JP 17139388A JP H0221675 A JPH0221675 A JP H0221675A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- thin film
- green sheet
- ceramic green
- kneaded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 36
- 239000010409 thin film Substances 0.000 title claims abstract description 24
- 239000000919 ceramic Substances 0.000 claims abstract description 39
- 239000000463 material Substances 0.000 abstract description 13
- 238000006243 chemical reaction Methods 0.000 abstract description 6
- 238000000034 method Methods 0.000 abstract description 3
- 239000011230 binding agent Substances 0.000 abstract description 2
- 239000001913 cellulose Substances 0.000 abstract description 2
- 229920002678 cellulose Polymers 0.000 abstract description 2
- 238000010304 firing Methods 0.000 abstract description 2
- 230000035945 sensitivity Effects 0.000 abstract description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 2
- 238000000465 moulding Methods 0.000 abstract 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract 1
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052593 corundum Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- BYFGZMCJNACEKR-UHFFFAOYSA-N aluminium(i) oxide Chemical compound [Al]O[Al] BYFGZMCJNACEKR-UHFFFAOYSA-N 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 206010011224 Cough Diseases 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、薄膜サーモパイルに用いられる基板の改良に
関し、特に熱伝導構造が改良されたものに関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an improvement in a substrate used in a thin film thermopile, and particularly to one having an improved heat conduction structure.
従来より、絶縁性基板上に薄膜状の熱電体を形成してな
る薄膜サーモパイルが周知である。(例えば、特開昭6
1−259580号、特開昭577172号等)。2. Description of the Related Art Thin film thermopiles, which are formed by forming a thin film thermoelectric material on an insulating substrate, have been well known. (For example, JP-A No. 6
1-259580, JP-A-577172, etc.).
ところで、絶縁性基板は、通常、ガラスやセラミックス
等より構成されているが、その上に形成される薄膜状の
熱電体の特性を安定化するには、表面が平滑であること
が要求される。安価であり、しかもこの要求を満たすも
のとして、従来よりA2.01等の非常に緻密なセラミ
ックス材が用いられている。By the way, insulating substrates are usually made of glass, ceramics, etc., but in order to stabilize the characteristics of the thin film-like thermoelectric body formed on it, it is required that the surface be smooth. . Conventionally, extremely dense ceramic materials such as A2.01 have been used as materials that are inexpensive and meet this requirement.
〔発明が解決しようとする技術的課題〕しかしながら、
Aj!、O,のような非常に緻密な焼結体よりなる基板
を用いた場合には、緻密であるが故に基板の熱伝導の影
響を無視することができない、すなわち、基板の熱伝導
性が高いため、熱源から放射されたエネルギが基板側へ
逃げやすく、熱電変換効率も充分ではなかった。また、
熱伝導性が高いため、応答怒度の点でも充分なものとは
ならなかった。[Technical problem to be solved by the invention] However,
Aj! When using a substrate made of a very dense sintered body such as Therefore, the energy radiated from the heat source easily escapes to the substrate side, and the thermoelectric conversion efficiency is not sufficient. Also,
Due to its high thermal conductivity, the response intensity was also not sufficient.
よって、本発明の目的は、熱電変換効率に優れ、かつ高
感度のサーモパイルを得ることが可能なサーモパイル用
基板を提供することにある。Therefore, an object of the present invention is to provide a thermopile substrate that has excellent thermoelectric conversion efficiency and can obtain a highly sensitive thermopile.
本発明の薄膜サーモバイル用基板は、薄膜状熱電体が形
成される部分が緻密なセラミックスよりなり、残りの部
分のうち、少なくとも上記緻密なセラミックスと接触す
る部分が多孔質セラミックスよりなることを特徴とする
。The thin film thermoelectric substrate of the present invention is characterized in that the portion where the thin film thermoelectric body is formed is made of dense ceramics, and of the remaining portion, at least the portion that contacts the dense ceramics is made of porous ceramics. shall be.
一般に、熱電変換効率を示す指標として、次式で表され
る性能指数Zが用いられている。Generally, a figure of merit Z expressed by the following formula is used as an index indicating thermoelectric conversion efficiency.
性能指数Z−α8/(ρ・K)
上記の式において、αはゼーベック係数を、ρは比抵抗
を、Kは熱伝導率を示す、この式に表される性能指数Z
が大きい程、熱電変換効率が高いことを示す、性能指数
Zを大きくするには、ゼーベック係数αを大きくするか
、あるいは比抵抗ρおよび熱伝導率Kを小さくする必要
がある。Figure of merit Z - α8/(ρ・K) In the above formula, α is the Seebeck coefficient, ρ is the specific resistance, and K is the thermal conductivity. The figure of merit Z expressed in this formula is
In order to increase the figure of merit Z, which indicates that the larger the value is, the higher the thermoelectric conversion efficiency is, it is necessary to increase the Seebeck coefficient α or to decrease the specific resistance ρ and the thermal conductivity K.
ゼーベック係数αおよび比抵抗ρは、共に薄板状の熱電
体の特性により決定される。他方、熱伝導率には、薄膜
状熱電体だけでなく、該熱電体を支持している基板によ
っても影響される。これは、薄膜状熱電体で得られた熱
量が、基板側に伝導されるからである。すなわち、基板
の熱伝導率が結果的にサーモバイルの熱電特性に影響を
及ぼしている。Both the Seebeck coefficient α and the specific resistance ρ are determined by the characteristics of the thin plate-like thermoelectric body. On the other hand, thermal conductivity is influenced not only by the thin film thermoelectric body but also by the substrate supporting the thermoelectric body. This is because the amount of heat obtained by the thin film thermoelectric material is conducted to the substrate side. That is, the thermal conductivity of the substrate ultimately affects the thermoelectric properties of the thermomobile.
従って、熱伝導率の小さい基板を用いることが望ましい
、しかしながら、薄膜サーモパイルでは、上述した通り
、薄膜の形成される部分が平滑でなければならない、そ
のため、熱伝導率の大きなAl2O,のような緻密な焼
結体よりなる基板を用いざるを得なかった。Therefore, it is desirable to use a substrate with low thermal conductivity. However, in thin film thermopiles, as mentioned above, the part on which the thin film is formed must be smooth, so a dense substrate such as Al2O with high thermal conductivity is used. Therefore, it was necessary to use a substrate made of a sintered body.
そこで、本願発明者たちは、多孔質セラミックスよりな
る基板を用いて熱伝導率を低め、かつ薄膜状熱電体の形
成される部分を従来通りの緻密なセラミックスより構成
すれば、前述の問題点を解消し得ることを見出し、本願
発明を成すに至ったものである。Therefore, the inventors of the present application have proposed that the above-mentioned problems can be solved by lowering the thermal conductivity by using a substrate made of porous ceramics, and by configuring the part where the thin film thermoelectric body is formed from dense ceramics as in the past. We have discovered that this problem can be solved, and have come to form the present invention.
すなわち、本願発明では、薄膜の形成される部分が緻密
なセラミックスで構成されており、従って表面が平滑に
保たれており、かつ残りの部分のうち少なくとも該緻密
なセラミックスと接触する部分が多孔質セラミックスに
より構成されているので、熱伝導率の低い薄膜サーモパ
イル用基板が実現されている。That is, in the present invention, the part where the thin film is formed is made of dense ceramics, so the surface is kept smooth, and at least the part of the remaining part that comes into contact with the dense ceramics is porous. Since it is made of ceramic, a thin film thermopile substrate with low thermal conductivity is realized.
Altosを主体とし、焼結助剤として5iO8および
MgOを添加し、さらにバインダーを加えてなる材料を
混練し、しかる後、該混線物より第1のセラミックグリ
ーンシートを成形する。A material consisting mainly of Altos, to which 5iO8 and MgO are added as sintering aids, and a binder is further added is kneaded, and then a first ceramic green sheet is formed from the mixed material.
他方、上記と同一材料に、さらに有機セルロースを50
fE量%加えたものを混練し、該混線物より第2のセラ
ミックグリーンシートを成形する。On the other hand, 50% organic cellulose was added to the same material as above.
The mixture containing % fE is kneaded, and a second ceramic green sheet is formed from the mixture.
第2図に示すように、第1.第2のセラミックグリーン
シート1,2を重ね合わせ、圧着し、さらに所定の大き
さに切断することにより、図示の成形体3を得る。この
成形体3を1400℃〜1600℃の温度で焼成し、0
.5W厚の実施例の基板を得る。As shown in FIG. The illustrated molded body 3 is obtained by overlapping the second ceramic green sheets 1 and 2, pressing them together, and cutting them into a predetermined size. This molded body 3 is fired at a temperature of 1400°C to 1600°C, and
.. A substrate of the example having a thickness of 5W is obtained.
第1図に示すように、得られた基板4では、0゜11厚
の緻密なセラミックス部分5と、0.4W厚の多孔質セ
ラミックス部分6とが層を成すように成形されており、
全体として0.5圓の厚みを看するように構成されてい
る。As shown in FIG. 1, the obtained substrate 4 is formed so that a dense ceramic portion 5 with a thickness of 0°11 and a porous ceramic portion 6 with a thickness of 0.4W form a layer.
It is constructed to have a thickness of 0.5 mm as a whole.
比較のために、第1の材料のみからなるセラミックグリ
ーンシートを用いて0.5mm厚の焼結基板を作製し、
比較例として用意した。For comparison, a sintered substrate with a thickness of 0.5 mm was prepared using a ceramic green sheet made only of the first material.
Prepared as a comparative example.
第3図に示すように、実施例の基板4上に、10X2X
O,5Mで、10μm厚のCutOF!膜7を形成する
。比較例の基板についても、同様のCuxOyl[膜を
形成する。As shown in FIG. 3, 10X2X
O,5M, 10μm thick CutOF! A film 7 is formed. A similar CuxOyl film was also formed on the substrate of the comparative example.
次に、第4図に示すように、両端から2順のところまで
至るように、Agを蒸着し、電極8.9を形成する。比
較例の基板においても同様の電極を形成する。Next, as shown in FIG. 4, Ag is vapor-deposited from both ends to two points in order to form electrodes 8.9. Similar electrodes are formed on the substrate of the comparative example as well.
上記のようにして得られた実施例および比較例のサーモ
バイルを第5図の装置にセットし、その熱起電力を測定
した。The thermoelements of Examples and Comparative Examples obtained as described above were set in the apparatus shown in FIG. 5, and their thermoelectromotive force was measured.
なお、第5図において11は恒温層を示し、咳恒温層1
1内は25°Cとなるように調整した。この恒温層11
内には、電極8.9間に温度差を与えるためのヒータ1
2,13が配置されている。In addition, in FIG. 5, 11 indicates a constant temperature layer, and the cough constant temperature layer 1
The temperature inside 1 was adjusted to 25°C. This constant temperature layer 11
Inside is a heater 1 for providing a temperature difference between the electrodes 8 and 9.
2 and 13 are arranged.
このヒーター2.13とサーモパイル側の電極8゜9と
の間には、サーモパイルの熱起電力を測定するための電
極14.15が配置されている。測定に際しては、この
電極14.15にサーモパイル側の電極8,9を当接さ
せるように、図示のようにサーモパイルを裏返した状態
で重ね合わせ、その状態で、ヒーター2.13間に温度
差を与え、熱起電力を測定した。An electrode 14.15 for measuring the thermoelectromotive force of the thermopile is arranged between the heater 2.13 and the electrode 8.9 on the thermopile side. During measurement, the thermopiles are stacked upside down as shown in the figure so that the electrodes 8 and 9 on the thermopile side are in contact with the electrodes 14 and 15, and in this state, a temperature difference is created between the heaters 2 and 13. and the thermoelectromotive force was measured.
結果を、下記の表に示す。The results are shown in the table below.
表
上記の表から明らかなように、実施例によれば、比較例
に比べて、熱起電力の指標となるゼーベック係数がかな
り高くなることがわかる。これは、比較例に比べて基板
の熱伝導性が抑えられているので、基板を通した熱放散
が抑制されるからである。このように、熱伝導性の低い
本実施例の基板を用いれば、高熱起電力および高効率の
サーモパイルを容易に得ることができる。Table As is clear from the table above, it can be seen that the Seebeck coefficient, which is an index of thermoelectromotive force, is considerably higher in the Examples than in the Comparative Examples. This is because the thermal conductivity of the substrate is suppressed compared to the comparative example, so heat dissipation through the substrate is suppressed. In this way, by using the substrate of this example with low thermal conductivity, a thermopile with high thermoelectromotive force and high efficiency can be easily obtained.
なお、上記実施例では、第1.第2のセラミックグリー
ンシートを積層した後に焼成して基板を作製したが、予
め多孔質焼結板を作製し、該多孔質焼結板をセラミック
・スラリーに浸漬したり、あるいはその表面にスラリー
を塗布した後に焼成する方法や、多孔質成形体をスラリ
ーに浸漬した後に焼成する方法等によっても、同様の構
造の基板を得ることができる。Note that in the above embodiment, the first. The substrate was produced by laminating and firing the second ceramic green sheet, but a porous sintered plate was prepared in advance and the porous sintered plate was immersed in ceramic slurry, or the slurry was applied to the surface of the porous sintered plate. A substrate with a similar structure can also be obtained by a method in which the slurry is applied and then baked, or a porous molded body is immersed in a slurry and then baked.
また、上記実施例では、多孔質セラミックス層の一方面
側に緻密なセラミックスが配置されているが、多孔質セ
ラミックスの両側に緻密なセラミックス層が配置されて
いるように基板を構成してもよい。その場合には、多孔
質セラミックス層の両側が緻密なセラミックス層で覆わ
れているため、基板強度を高めることができる。Further, in the above embodiment, the dense ceramic layer is arranged on one side of the porous ceramic layer, but the substrate may be configured so that the dense ceramic layer is arranged on both sides of the porous ceramic layer. . In this case, since both sides of the porous ceramic layer are covered with dense ceramic layers, the strength of the substrate can be increased.
すなわち、その上に薄膜が形成される部分以外の残りの
部分の全てを多孔質セラミックスにより構成する必要は
必ずしもなく、少な(とも薄膜がその上に形成される緻
密なセラミックス部分と接触する部分を多孔質セラミッ
クスで構成すれば、本発明の効果を得ることができ、そ
のような効果を得ることができる限り、基板の物理的な
構造は図示のものに限らない、もっとも、多孔質部を緻
密な部分に比べて厚くすることが熱放散防止の点で好ま
しい。In other words, it is not necessarily necessary to make all of the remaining parts other than the part on which the thin film is formed of porous ceramics, and it is not necessary to make only a small part (the part where the thin film contacts the dense ceramic part on which the thin film is formed). The effects of the present invention can be obtained if the substrate is made of porous ceramics, and the physical structure of the substrate is not limited to that shown in the drawings, as long as such effects can be obtained. In terms of preventing heat dissipation, it is preferable to make it thicker than other parts.
以上のように、本発明によれば、基板の熱伝導性が効果
的に低められ、かつ薄膜状熱電体の形成される部分の平
滑性が維持されているので、強度および性能の安定性を
維持したまま、熱電変換効率に優れ、かつ高感度の薄膜
サーモパイルを実現することが可能となる。As described above, according to the present invention, the thermal conductivity of the substrate is effectively reduced, and the smoothness of the part where the thin film thermoelectric body is formed is maintained, so that the strength and performance stability can be improved. It becomes possible to realize a thin film thermopile with excellent thermoelectric conversion efficiency and high sensitivity while maintaining the same characteristics.
第1図は本発明の一実施例の側面図、第2図は第1図実
施例を得るのに用いたセラミックス成形体の側面図、第
3図は第1図実施例上に薄膜状熱電体を形成した状態の
側面図、第4図は電極を形成した状態を示す側面図、第
5図は熱起電力測定装置を説明するための略図的側面図
である。
図において、4は基板、5は緻密なセラミックス部分、
6は多孔質セラミックス部分、7は薄膜状熱電体を示す
。
第5図FIG. 1 is a side view of one embodiment of the present invention, FIG. 2 is a side view of the ceramic molded body used to obtain the embodiment of FIG. 1, and FIG. 3 is a thin film thermoelectric FIG. 4 is a side view showing a state in which a body is formed, FIG. 4 is a side view showing a state in which electrodes are formed, and FIG. 5 is a schematic side view for explaining the thermoelectromotive force measuring device. In the figure, 4 is a substrate, 5 is a dense ceramic part,
6 indicates a porous ceramic portion, and 7 indicates a thin film thermoelectric body. Figure 5
Claims (1)
において、 前記薄膜状熱電体の形成される部分が緻密なセラミック
スよりなり、残りの部分のうち、少なくとも前記緻密な
セラミックスと接触する部分が多孔質セラミックスより
なることを特徴とする、薄膜サーモパイル用基板。[Claims] In a thermopile substrate on which a thin film thermoelectric body is formed, a portion on which the thin film thermoelectric body is formed is made of dense ceramics, and at least the remaining portion is made of dense ceramics. 1. A substrate for a thin film thermopile, characterized in that a portion in contact with the substrate is made of porous ceramics.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63171393A JPH0221675A (en) | 1988-07-08 | 1988-07-08 | Substrate for thin film thermopile use |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63171393A JPH0221675A (en) | 1988-07-08 | 1988-07-08 | Substrate for thin film thermopile use |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0221675A true JPH0221675A (en) | 1990-01-24 |
Family
ID=15922330
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63171393A Pending JPH0221675A (en) | 1988-07-08 | 1988-07-08 | Substrate for thin film thermopile use |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0221675A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0455051A2 (en) * | 1990-04-20 | 1991-11-06 | Matsushita Electric Industrial Co., Ltd. | Thermoelectric semiconductor having a porous structure deaerated into a vacuum and thermoelectric panel |
FR2822295A1 (en) * | 2001-03-16 | 2002-09-20 | Edouard Serras | Thermoelectric generator incorporating a number of alternating n and p type polycrystalline ceramic semiconducting layers connected in pairs and supported by a dielectric support |
JP2009265536A (en) * | 2008-04-29 | 2009-11-12 | Pilot Ink Co Ltd | Allochroic clock teaching equipment and allochroic clock teaching equipment set using the same |
CN106165135A (en) * | 2014-01-22 | 2016-11-23 | 株式会社渥美精机 | Thermo-electric conversion module |
-
1988
- 1988-07-08 JP JP63171393A patent/JPH0221675A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0455051A2 (en) * | 1990-04-20 | 1991-11-06 | Matsushita Electric Industrial Co., Ltd. | Thermoelectric semiconductor having a porous structure deaerated into a vacuum and thermoelectric panel |
USRE35441E (en) * | 1990-04-20 | 1997-02-04 | Matsushita Electrical Industrial Co., Ltd. | Thermoelectric semiconductor having a porous structure deaerated in a vacuum and thermoelectric panel using p-type and n-type thermoelectric semiconductors |
FR2822295A1 (en) * | 2001-03-16 | 2002-09-20 | Edouard Serras | Thermoelectric generator incorporating a number of alternating n and p type polycrystalline ceramic semiconducting layers connected in pairs and supported by a dielectric support |
WO2002075822A1 (en) * | 2001-03-16 | 2002-09-26 | Institut Francais Du Petrole | Thermoelectric generator and methods for the production thereof |
US6872879B1 (en) * | 2001-03-16 | 2005-03-29 | Edouard Serras | Thermoelectric generator |
JP2009265536A (en) * | 2008-04-29 | 2009-11-12 | Pilot Ink Co Ltd | Allochroic clock teaching equipment and allochroic clock teaching equipment set using the same |
CN106165135A (en) * | 2014-01-22 | 2016-11-23 | 株式会社渥美精机 | Thermo-electric conversion module |
EP3098863A4 (en) * | 2014-01-22 | 2017-08-23 | Atsumitec Co., Ltd. | Thermoelectric conversion module |
CN106165135B (en) * | 2014-01-22 | 2018-09-25 | 株式会社渥美精机 | Thermo-electric conversion module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04283902A (en) | Ntc thermistor element | |
US3911386A (en) | Exhaust gas air fuel ratio sensor | |
WO2019119981A1 (en) | Composite thermistor chip and preparation method therefor | |
WO2006095597A1 (en) | Multilayer ceramic electronic component | |
US4806739A (en) | Plate-like ceramic heater | |
JPH05119015A (en) | Carbon dioxide gas detection element | |
JP2006337384A (en) | Oxygen sensor | |
JPH0582550B2 (en) | ||
JPH0221675A (en) | Substrate for thin film thermopile use | |
JP2003344348A (en) | Oxygen sensor element | |
JP2006210122A (en) | Ceramic heater element and detection element using it | |
JPH03149791A (en) | Ceramic heater | |
JP3510978B2 (en) | Temperature sensing element | |
JPH04150001A (en) | Thermistor element | |
JP4416427B2 (en) | Ceramic heater and manufacturing method thereof | |
JPH09218178A (en) | Gas sensor and manufacture thereof | |
JPS6351356B2 (en) | ||
JPH0510918A (en) | Oxygen-concentration detecting element and manufacture thereof | |
JP3935059B2 (en) | Oxygen sensor element | |
JP2004296142A (en) | Ceramic heater and detecting element using the same | |
JPH08255704A (en) | Chip thermistor and its manufacturing method | |
JP2650346B2 (en) | Oxygen sensor | |
JPH10163008A (en) | Ntc thermistor device | |
JP2002190402A (en) | Thermistor element and its manufacturing method | |
JP2005340050A (en) | Ceramic heater element, manufacturing method of the same, and gas sensor |