JPH02213088A - Organic thin film el element and manufacture thereof - Google Patents

Organic thin film el element and manufacture thereof

Info

Publication number
JPH02213088A
JPH02213088A JP1034026A JP3402689A JPH02213088A JP H02213088 A JPH02213088 A JP H02213088A JP 1034026 A JP1034026 A JP 1034026A JP 3402689 A JP3402689 A JP 3402689A JP H02213088 A JPH02213088 A JP H02213088A
Authority
JP
Japan
Prior art keywords
organic
electron
thin film
film layer
organic thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1034026A
Other languages
Japanese (ja)
Inventor
Masayasu Ishiko
雅康 石子
Koji Utsuki
功二 宇津木
Keiji Nunomura
布村 恵史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1034026A priority Critical patent/JPH02213088A/en
Publication of JPH02213088A publication Critical patent/JPH02213088A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the deterioration of an EL element by laminating a hole conductive organic thin film or electron conductive organic thin film adjacent to at least one side of an organic phosphorus conductive film between electrodes as a pair containing at least one transparent electrode. CONSTITUTION:An organic compound having a porphylin ring or phthalocyanine ring skeleton, and an electron receptor molecule or donor molecule are co-deposited, thereby ensuring easy electron or hole implantation. A compound having a functional group such as cyano and nitro groups for easily taking in an electron added to phororanyl and other types of quinone and aromatic rings, is used as an electron receptor organic molecule. Also, a compound having a functional group such as an amino group for the easy emission of an electron added to tetrathiofurbaren and other types of polycyclic and aromatic rings is used as an electron donar organic molecule. An ITO electrode 2 is provided on a glass substrate 1 and a deposited film formed with a ratio of 10 magnesium phthalocyanine to 1 phororanyl is applied thereto as a hole implantation layer 2. Then, a phosphorus tris (8-hydroxynorine) aluminum 4 is provided and an indium electrode 5 is formed thereon. According to the aforesaid construction, it is possible to prevent the deterioration of luminous efficiency due to the deterioration of the implantation layer 3.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は平面光源やデイスプレィに使用される有機薄膜
EL素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an organic thin film EL element used for flat light sources and displays.

(従来の技術) 有機物質を原料としたEL(電界発光)素子は、安価な
大面積フルカラー表示素子を実現するものとして注目を
集めている。例えばアントラセンやペリレン等縮合多環
芳香族系を原料としてLB法や真空蒸着法等で薄膜化し
た直流駆動の有機薄膜EL素子が製造され、その発光特
性が研究されている。
(Prior Art) EL (electroluminescent) devices using organic materials as raw materials are attracting attention as they can realize inexpensive large-area full-color display devices. For example, DC-driven organic thin-film EL devices have been manufactured using condensed polycyclic aromatic systems such as anthracene and perylene as raw materials and made into thin films by the LB method, vacuum evaporation method, etc., and their light-emitting characteristics have been studied.

しかし、従来の有機薄膜EL素子は駆動電圧が高く、か
つその発光輝度・効率が無機薄膜EL素子のそれと比べ
て低かった。また、発光特性の劣化も著しく実用レベル
のものはできなかった。
However, conventional organic thin film EL devices require a high driving voltage, and their luminance and efficiency are lower than those of inorganic thin film EL devices. In addition, the luminescent properties deteriorated significantly, making it impossible to achieve a practical level.

ところが、最近有機薄膜を2層構造にした新しいタイプ
の有機薄膜EL素子が報告され強い関心を集めている(
Applied Physics Letters、第
51巻913ページ、1987年)。第3図に示すよう
に強い蛍光を発する金属キレート錯体を有機蛍光体薄膜
層34に正孔伝導性有機物としてアミン系材料23を正
孔注入層33に使用して明るい緑色発光を得たと報告し
ている。6〜7Vの直流印加で数100cd/mの輝度
を得ている。最大発光率は1.5(m/Wと、従来のZ
nS系薄膜EL素子と同レベルの性能を持っている。
However, recently, a new type of organic thin film EL device with a two-layer organic thin film structure has been reported and is attracting strong interest (
Applied Physics Letters, Vol. 51, p. 913, 1987). As shown in Figure 3, they reported that bright green light was obtained by using a metal chelate complex that emits strong fluorescence as a hole-conducting organic material in the organic phosphor thin film layer 34 and an amine material 23 in the hole injection layer 33. ing. A brightness of several 100 cd/m is obtained by applying a DC voltage of 6 to 7 V. The maximum luminous efficiency is 1.5 (m/W), which is higher than the conventional Z
It has the same level of performance as nS thin film EL elements.

(発明が解決しようとする課題) 前述したように、有機蛍光体薄膜と有機物の正孔注入層
が2層積層した構造を有している新しい有機薄膜EL素
子は、最大発光輝度が1000cd/m以上の明るい緑
色発光を示す。しかし上記の輝度を得るために100m
A/cm以上の電流を素子に流さなければならない。従
来使用していた有機物の正孔伝導性薄膜では、このよう
な比較的高い電流密度での駆動は通電とともに、その正
孔伝導性薄膜の電気特性が劣化し発光効率の低下や、発
光−電圧特性の高電圧側シフトを招いていた。
(Problems to be Solved by the Invention) As mentioned above, a new organic thin film EL element having a two-layer structure consisting of an organic phosphor thin film and an organic hole injection layer has a maximum luminance of 1000 cd/m. It emits bright green light. However, in order to obtain the above brightness,
A current of A/cm or more must be passed through the element. In conventional organic hole-conducting thin films, driving at such relatively high current densities deteriorates the electrical properties of the hole-conducting thin film as the current is applied, resulting in a decrease in luminous efficiency and an increase in luminescence-voltage. This caused the characteristics to shift to the higher voltage side.

発光効率を更に向上させることも重要である。It is also important to further improve luminous efficiency.

従来の素子の発光効率では充分な発光輝度を得るために
は100mA/cm程度の大電流を流さなければならな
いが、素子表示面積増加とともに素子発熱及びそれにと
もなう発光効率の低下が無視できない問題となっている
With the luminous efficiency of conventional devices, a large current of about 100 mA/cm must be passed in order to obtain sufficient luminance, but as the display area of the device increases, the heat generated by the device and the resulting decrease in luminous efficiency become a problem that cannot be ignored. ing.

このように、素子発光効率を更に向上させ、且つ比較的
大きな電流を流しても素子劣化の少ない有機薄膜EL素
子の開発が非常に重要である。
Thus, it is very important to develop an organic thin film EL device that further improves device luminous efficiency and exhibits less device deterioration even when a relatively large current is applied.

(課題を解決するための手段) 前述の課題を解決するために本発明が提供する第1の手
段は、少なくとも一方が透明である電極対の間に有機蛍
光体薄膜層と、その有機蛍光体薄膜層の少なくとも一方
の面に接して、ポルフィリン環あるいはフタロシアニン
環骨格を有する有機化合物に、少なくとも一以上の電子
受容性有機分子を添加した正孔伝導性有機薄膜層、ある
いは前記有機化合物に少なくとも一以上の電子供与性有
機分子を添加した電子伝導性有機薄膜層を積層したこと
を特徴とした有機薄膜EL素子である。
(Means for Solving the Problems) A first means provided by the present invention to solve the above-mentioned problems is to provide an organic phosphor thin film layer between a pair of electrodes, at least one of which is transparent; A hole-conducting organic thin film layer in which at least one electron-accepting organic molecule is added to an organic compound having a porphyrin ring or phthalocyanine ring skeleton, or at least one electron-accepting organic molecule is added to the organic compound in contact with at least one surface of the thin film layer. This is an organic thin film EL device characterized by stacking electron conductive organic thin film layers to which the above electron-donating organic molecules are added.

本発明が提供する第2の手段は、少なくとも一方が透明
である電極対の間に有機蛍光体薄膜層と、その有機蛍光
体薄膜層の少なくとも一方の面に接して、ポルフィリン
環あるいはフタロシアニン環骨格の一部を少なくとも1
以上の電子供与基あるいは電子受容基で置換した有機化
合物を積層したことを特徴とする有機薄膜KL素子であ
る。
A second means provided by the present invention includes an organic phosphor thin film layer between a pair of electrodes, at least one of which is transparent, and a porphyrin ring or phthalocyanine ring skeleton in contact with at least one surface of the organic phosphor thin film layer. at least 1 part of
This is an organic thin film KL element characterized by laminating organic compounds substituted with the above electron-donating groups or electron-accepting groups.

本発明が提供する第3の手段は、少なくとも一方が透明
である電極対の間に有機蛍光体薄膜層と、その有機蛍光
体薄膜層の少なくとも一方の面に接して、ポルフィリン
環あるいはフタロシアニン環骨格の一部を少なくとも1
以上の電子供与基で置換した有機化合物に、少なくとも
一以上の電子受容性有機分子を添加した正孔伝導性有機
薄膜層、あるいはポルフィリン環あるいはフタロシアニ
ン環骨格の一部を少なくとも1以上の電子受容基で置換
した有機化合物に、少なくとも一以上の電子供与性有機
分子を添加した電子伝導性有機薄膜層を積層したことを
特徴とする有機薄膜EL素子である。
A third means provided by the present invention includes an organic phosphor thin film layer between a pair of electrodes, at least one of which is transparent, and a porphyrin ring or phthalocyanine ring skeleton in contact with at least one surface of the organic phosphor thin film layer. at least 1 part of
A hole-conducting organic thin film layer in which at least one or more electron-accepting organic molecules are added to an organic compound substituted with the above electron-donating group, or a part of the porphyrin ring or phthalocyanine ring skeleton is added with at least one or more electron-accepting group. This is an organic thin film EL device characterized by laminating an electron conductive organic thin film layer in which at least one electron donating organic molecule is added to an organic compound substituted with .

本発明が提供する第4の手段は、ポルフィリン環あるい
はフタロシアニン環骨格を有する有機化合物、あるいは
ポルフィリン環あるいはフタロシアニン環骨格の一部を
少なくとも1以上の電子供与基あるいは電子受容基で置
換した有機化合物と、電子受容性有機分子あるいは電子
供与性有機分子を、真空中で別々の蒸発源から同時に供
給し正孔伝導性有機薄膜層あるいは電子伝導性有機薄膜
層を形成することを特徴とした有機薄膜EL素子の製造
方法である。
A fourth means provided by the present invention is an organic compound having a porphyrin ring or phthalocyanine ring skeleton, or an organic compound in which a part of the porphyrin ring or phthalocyanine ring skeleton is substituted with at least one electron donating group or electron accepting group. , an organic thin film EL characterized in that electron-accepting organic molecules or electron-donating organic molecules are simultaneously supplied from separate evaporation sources in vacuum to form a hole-conducting organic thin film layer or an electron-conducting organic thin film layer. This is a method for manufacturing an element.

(作用) 有機薄膜EL素子のように比較的高い電流で駆動させる
素子は、各層を構成する材料の電気特性が安定でなけれ
ばならない。従来の有機薄膜EL素子は、電荷注入層で
電気的劣化が進行し、これが駆動電圧の高電圧側シフト
や発光効率の低下等、素子劣化を招いていたことは既に
述べた。
(Function) In an element driven with a relatively high current, such as an organic thin film EL element, the electrical properties of the materials constituting each layer must be stable. It has already been mentioned that in conventional organic thin film EL devices, electrical deterioration progresses in the charge injection layer, leading to device deterioration such as a shift to a higher voltage side of the driving voltage and a decrease in luminous efficiency.

電気特性が安定な電荷注入層用材料の探索を行い、無金
属あるいは金属フタロシアニンや、無金属あるいは金属
ポルフィリン環及びこれらの誘導体を使用した薄膜が優
れていることを見いだした。約500OAの膜厚のフタ
ロシアニンに100mA/cm”の電流を流し続けても
電気特性の変化はみられなかった。
We searched for materials for charge injection layers with stable electrical properties and found that thin films using metal-free or metal phthalocyanine, metal-free or metal porphyrin rings, and their derivatives are excellent. No change in electrical properties was observed even when a current of 100 mA/cm'' was continuously applied to a phthalocyanine film with a thickness of about 500 OA.

更に、ポルフィリン環あるいはフタロシアニン環骨格を
有する有機化合物と電子受容性分子あるいは電子供与性
分子を共蒸着すると、電子あるいは正孔が過剰な薄膜が
形成できる。添加する電子受容性分子あるいは電子供与
性分子の量で、抵抗は2桁程度変化した。この薄膜を有
機薄膜EL素子の正孔注入層あるいは電子注入層とする
と、有機蛍光体層に電子あるいは正孔が注入され易くな
り、その結果素子特性を大幅に改善することができた。
Furthermore, when an organic compound having a porphyrin ring or phthalocyanine ring skeleton and an electron-accepting molecule or an electron-donating molecule are co-deposited, a thin film containing an excess of electrons or holes can be formed. The resistance varied by about two orders of magnitude depending on the amount of electron-accepting molecules or electron-donating molecules added. When this thin film is used as a hole injection layer or an electron injection layer of an organic thin film EL device, electrons or holes are easily injected into the organic phosphor layer, and as a result, device characteristics can be significantly improved.

電子受容性有機分子としては、フルオラニル、トリニト
ロフルオレン、テトラシアノキノジメタン(TCNQ)
、ヘキサシアノブタジェン、テトラシアノエチレン(T
CNE)、メチルテトラシアノキノジメタン、ジメチル
テトラシアノキノジメタン等、キノン類や芳香環にシア
ノ基、ニトロ基等の電子を取り込みやすい官能基をつけ
た有機化合物があ込。電子供与性有機分子としては、テ
トラチオフルバレン(TTIF)、テトラチオテトラセ
ン(′IvIwII)、ベルシン、バラフェニレンジア
ミン、テトラメチルテトラセレノフルバレン(TMTS
F)、フェノチアジン、ビス(エチレンジチオ)テトラ
チオフルバレン、ペンタセン等、多環芳香族や芳香環に
アミノ基等の電子を放出し易い官能基をつけた有機化合
物である。
Examples of electron-accepting organic molecules include fluoranyl, trinitrofluorene, and tetracyanoquinodimethane (TCNQ).
, hexacyanobutadiene, tetracyanoethylene (T
CNE), methyltetracyanoquinodimethane, dimethyltetracyanoquinodimethane, and other organic compounds with quinones and aromatic rings attached with functional groups that easily absorb electrons, such as cyano groups and nitro groups. Examples of electron-donating organic molecules include tetrathiofulvalene (TTIF), tetrathiotetracene ('IvIwII), vercine, paraphenylenediamine, and tetramethyltetraselenofulvalene (TMTS).
F), phenothiazine, bis(ethylenedithio)tetrathiofulvalene, pentacene, etc. are organic compounds in which a functional group that easily releases electrons, such as an amino group, is attached to a polycyclic aromatic or aromatic ring.

本発明による有機薄膜は、■正孔注入電極、正孔伝導性
有機薄膜層、有機蛍光体薄膜層、電子伝導性有機薄膜層
及び電子注入電極が順次積層されている、■正孔注入電
極、正孔伝導性有機薄膜層、有機蛍光体薄膜層及び電子
注入電極が順次積層されている、あるいは■正孔注入電
極、有機蛍光体薄膜層、電子伝導性有機薄膜層及び電子
注入電極が順次積層されているどの構造の有機薄膜EL
素子に使用しても1発光効率の改善効果が認められた。
The organic thin film according to the present invention includes: (1) a hole injection electrode, a hole conductive organic thin film layer, an organic phosphor thin film layer, an electron conductive organic thin film layer, and an electron injection electrode are sequentially laminated; (2) a hole injection electrode; A hole-conducting organic thin film layer, an organic phosphor thin film layer, and an electron injection electrode are sequentially laminated, or a hole-injecting electrode, an organic phosphor thin film layer, an electron-conducting organic thin film layer, and an electron injection electrode are sequentially laminated. Which structure of organic thin film EL is being used?
Even when used in devices, the effect of improving luminous efficiency was observed.

ポルフィリン環あるいはフタロシアニン環を骨格とし、
その一部を少なくとも1以上の電子供与基で置換した有
機化合物分子は、正孔伝導性を示す。その理由は現在明
確ではないものの、次のように考えられている。電子供
与基で置換した有機化合物分子のポルフィリン環あるい
はフタロシアニン環中央部での電子密度が高くなり、そ
の分子は電界など外部の変化で容易に電子を放出し易く
なる。その結果、正に帯電した、あるいは正孔がトラッ
プされた分子が形成され、正孔伝導性を示すようになる
。その体積抵抗率は10Ω・am程度であった。
The skeleton is a porphyrin ring or a phthalocyanine ring,
Organic compound molecules partially substituted with at least one electron-donating group exhibit hole conductivity. Although the reason for this is not clear at present, it is thought to be as follows. The electron density at the center of the porphyrin ring or phthalocyanine ring of an organic compound molecule substituted with an electron-donating group increases, and the molecule becomes more likely to release electrons due to external changes such as an electric field. As a result, positively charged molecules or molecules in which holes are trapped are formed and exhibit hole conductivity. Its volume resistivity was about 10 Ω·am.

同様に、ポルフィリン環あるいはフタロシアニン環を骨
格とし、その一部を少なくとも1以上の電子受容基で置
換した有機化合物分子は電子伝導性を示す。電子受容基
で置換した有機化合物分子のポルフィリン環あるいはフ
タロシアニン環中央部での電子密度が低くなり、その分
子は電界など外部の変化で容易に電子を取り込み易くな
る。その結果、負に帯電した分子が形成され、電子伝導
性を示すようになる考えられている。その体積抵抗率は
、前記のものとほぼ同じ10Ω・cm程度であった。
Similarly, an organic compound molecule that has a porphyrin ring or phthalocyanine ring as its backbone and has a portion thereof substituted with at least one electron-accepting group exhibits electron conductivity. The electron density at the center of the porphyrin ring or phthalocyanine ring of an organic compound molecule substituted with an electron-accepting group decreases, making it easier for the molecule to take in electrons due to external changes such as an electric field. As a result, negatively charged molecules are formed and are thought to exhibit electronic conductivity. Its volume resistivity was about 10 Ω·cm, which is almost the same as that of the above-mentioned one.

このような正孔伝導性あるいは電子伝導性有機薄膜を構
成する材料を使用して上記■〜■の構造の有機薄膜EL
素子を製造した。それら有機薄膜EL素子はいずれも従
来の有機薄膜EL素子に比べ効率は2から5倍改善され
ていた。
The organic thin film EL having the structure of ① to ② above is made using the materials constituting such a hole-conducting or electron-conducting organic thin film.
The device was manufactured. The efficiency of all of these organic thin film EL devices was improved by 2 to 5 times compared to conventional organic thin film EL devices.

更にポルフィリン環あるいはフタロシアニン環を骨格と
し、その一部を少なくとも1以上の電子供与基で置換し
た有機化合物と電子受容性有機分子からなる正孔伝導性
有機薄膜層や、ポルフィリン環あるいはフタロシアニン
環を骨格とし、その−部を少なくとも1以上の電子受容
基で置換した有機化合物と電子供与性有機分子からなる
電子伝導性有機薄膜層を使用した上記■〜■の構造の有
機薄膜EL素子でも同様な効果が認められた。
In addition, a hole-conducting organic thin film layer consisting of an organic compound and an electron-accepting organic molecule with a porphyrin ring or phthalocyanine ring as the backbone, and a part of which is substituted with at least one electron donating group, or a hole-conducting organic thin film layer with a porphyrin ring or phthalocyanine ring as the backbone. The same effect can be obtained with an organic thin film EL element having the structure of (■) to (■) above, which uses an electron-conducting organic thin film layer consisting of an organic compound whose - part is substituted with at least one electron-accepting group and an electron-donating organic molecule. was recognized.

ポルフィリン環あるいはフタロシアニン環を骨格とし、
その一部を置換する電子供与基として、アルコキシ基、
アリール基、アリロキシ基、アルキルチオ基、アミノ基
、メトキシ基等がある。この有機化合物に混入する電子
受容性有機分子としては、フルオラニル、トリニトロフ
ルオレン、テトラシアノキノジメタン(TCNQ)、ヘ
キサシアノブタジェン、テトラシアノエチレン(TCN
E)、メチルテトラシアノキノジメタン、ジメチルテト
ラシアノキノジメタン等、キノン類や芳香環にシアノ基
、ニトロ基等の電子を取り込みやすい官能基をつけた有
機化合物がある。
The skeleton is a porphyrin ring or a phthalocyanine ring,
As an electron donating group to partially substitute the alkoxy group,
Examples include aryl group, allyloxy group, alkylthio group, amino group, and methoxy group. Electron-accepting organic molecules mixed into this organic compound include fluoranyl, trinitrofluorene, tetracyanoquinodimethane (TCNQ), hexacyanobutadiene, and tetracyanoethylene (TCNQ).
E), methyltetracyanoquinodimethane, dimethyltetracyanoquinodimethane, and other organic compounds have quinones and aromatic rings attached with functional groups that easily absorb electrons, such as cyano groups and nitro groups.

一方、ポルフィリン環あるいはフタロシアニン環を骨格
とし、その一部を置換する電子受容基として、シアノ基
、ニトロ基、ピリジル基、キノリル基、キノキサリル基
等がある。この有機化合物に混入する電子供与性有機分
子としては、テトラチオフルバレン(’I’rF)、テ
トラチオテトラセン(’rr’r)、ペリレン、バラフ
ェニレンジアミン、テトラメチルテトラセレノフルバレ
ン(TMTSF)、フェノチアジン、ビス(エチレンジ
チオ)テトラチオフルバレン、ペンタセン等、多環芳香
族や芳香環にアミノ基等の電子を放出し易い官能基をつ
けた有機化合物である。
On the other hand, examples of electron-accepting groups that have a porphyrin ring or phthalocyanine ring as a skeleton and substitute a part thereof include a cyano group, a nitro group, a pyridyl group, a quinolyl group, and a quinoxalyl group. Electron-donating organic molecules mixed into this organic compound include tetrathiofulvalene ('I'rF), tetrathiotetracene ('rr'r), perylene, paraphenylenediamine, and tetramethyltetraselenofulvalene (TMTSF). , phenothiazine, bis(ethylenedithio)tetrathiofulvalene, pentacene, etc. are organic compounds in which a functional group that easily releases electrons, such as an amino group, is attached to a polycyclic aromatic or aromatic ring.

従来よりも効率が向上した分少ない電流で発光するため
、ジュール熱の発生量が少なくなった。
As the efficiency is improved, less current is required to emit light than before, resulting in less Joule heat being generated.

この結果素子発熱にともなう発光特性の劣化や。As a result, the light emitting characteristics deteriorate due to element heat generation.

電極−電荷注入界面の変質による発光−印加電圧特性の
高電圧側シフトなども少なくなった。
Shifts to the higher voltage side of the emission-applied voltage characteristics due to deterioration of the electrode-charge injection interface were also reduced.

以下実施例を以て、本発明の詳細な説明する。The present invention will be explained in detail below with reference to Examples.

(実施例1) 有機蛍光体としてトリス(8−ハイドロキシキノリン)
アルミニウム(Alq3)を用いた。第1図に示すよう
にガラス基板1上にITO透明電極2を形成してから有
機正孔注入(有機正孔伝導性薄膜)層3としてマグネシ
ウム・フタロシアニンとフルオラニルを10:1の蒸着
速度比で150人蒸0した。その後有機蛍光体薄膜4を
900人形成した。Inの背面金属電極5を1500人
形成して有機薄膜EL素子が完成する。
(Example 1) Tris(8-hydroxyquinoline) as an organic phosphor
Aluminum (Alq3) was used. As shown in FIG. 1, an ITO transparent electrode 2 is formed on a glass substrate 1, and then magnesium phthalocyanine and fluoranil are deposited at a evaporation rate ratio of 10:1 as an organic hole injection (organic hole conductive thin film) layer 3. 150 people died. Thereafter, 900 people formed the organic phosphor thin film 4. An organic thin film EL device is completed by forming 1,500 In back metal electrodes 5.

素子製造に使用した真空蒸着装置を第2図に示す。第2
図に示すように、本実施例で使用した製造装置は3つの
蒸着源21から有機物質を蒸発させ、その蒸着速度は水
晶振動子22で検知している。成膜前は、真空ゲージ2
7で真空度を調べたところ、 1O−7Torr台であ
った。また、成膜中は10  Torr台の真空であっ
た。この製造装置はヒータ26で基板加熱できるように
なっているが、特に基板加熱は行なわなかった。蒸着の
開始及び終了は基板23直前にあるシャッター24で行
なっている。有機正孔伝導層を形成するときは蒸発源2
3にそれぞれマグネシウム・フタロシアニンとフルオラ
ニルをいれ同時に加熱・蒸発させる。
FIG. 2 shows the vacuum evaporation equipment used to manufacture the device. Second
As shown in the figure, the manufacturing apparatus used in this example evaporates organic substances from three evaporation sources 21, and the evaporation rate is detected by a crystal oscillator 22. Before film formation, vacuum gauge 2
When the degree of vacuum was checked at 7, it was on the order of 10-7 Torr. Further, during film formation, the vacuum was on the order of 10 Torr. Although this manufacturing apparatus is capable of heating the substrate with a heater 26, the substrate was not particularly heated. The start and end of vapor deposition is performed by a shutter 24 located just in front of the substrate 23. When forming an organic hole conductive layer, evaporation source 2
Add magnesium phthalocyanine and fluoranil to Step 3 and heat and evaporate them at the same time.

この素子の発光特性を乾燥窒素中で測定したところ、約
8vの直流電圧の印加で300cd/mの発光が得られ
た。従来の素子に比べ発光輝度・効率が2から5倍改善
されていることがわかる。この有機薄膜EL素子を電流
密度0.5mA/amの状態でエージング試験をしたと
ころ輝度半減時間は1000時間以上であった。従来の
素子では100から300時間であったから、この素子
の信頼性は大幅に改善されている。
When the luminescent properties of this element were measured in dry nitrogen, a luminescence of 300 cd/m was obtained when a DC voltage of about 8 V was applied. It can be seen that the luminance and efficiency are improved by 2 to 5 times compared to conventional elements. When this organic thin film EL element was subjected to an aging test at a current density of 0.5 mA/am, the luminance half-life was over 1000 hours. The reliability of this device is significantly improved compared to 100 to 300 hours for conventional devices.

本発明はトリス(8−ハイドロキシキノリン)アルミニ
ウム有機蛍光体ばかりでなくテトラフェニルブタジエン
、ビス(8−ハイドロキシキノリン)マグネシウム、ス
チルベン誘導体等、他の有機蛍光体でも同様な効果が得
られる。更に、透明な正孔注入電極はITOでけでなく
5n203、ZnO:AlやAuなどでもよい。
In the present invention, similar effects can be obtained not only with tris(8-hydroxyquinoline)aluminum organic phosphors but also with other organic phosphors such as tetraphenylbutadiene, bis(8-hydroxyquinoline)magnesium, and stilbene derivatives. Furthermore, the transparent hole injection electrode is not limited to ITO, but may also be made of 5n203, ZnO:Al, Au, or the like.

また、2種類以上のポルフィリン環あるいはフタロシア
ニン環骨格を有する有機化合物と電子受容性分子を組み
合わせての同様な効果を得ることができた。
Furthermore, a similar effect could be obtained by combining an organic compound having two or more types of porphyrin rings or phthalocyanine ring skeletons with an electron-accepting molecule.

(実施例2〜8) ポルフィリン環あるいはフタロシアニン環骨格を有する
有機化合物と電子受容性分子を第2図に示す装置を使用
して、別々の蒸発源から同時に供給し正孔伝導性有機薄
膜層(第1表のa−g)を形成し、実施例1と同様に有
機薄膜EL素子を製造した。
(Examples 2 to 8) An organic compound having a porphyrin ring or phthalocyanine ring skeleton and an electron-accepting molecule were simultaneously supplied from separate evaporation sources using the apparatus shown in Fig. 2 to form a hole-conducting organic thin film layer ( Examples a to g in Table 1 were formed, and an organic thin film EL device was manufactured in the same manner as in Example 1.

以下余白 第1表 Pcは無金属フタロシアニンを示す。TPPはテトラフ
ェニルポルフィリン、Pはポルフィリンを示す。
Table 1 Pc in the margin below shows metal-free phthalocyanines. TPP represents tetraphenylporphyrin, and P represents porphyrin.

(実施例9) 第3図に示すようにガラス基板31上にITO透明電極
32を形成してから有機の正孔注入(有機正孔伝導性薄
膜)層33としてマグネシウム・フタロシアニンとフル
オラニルを10:1の蒸着速度比で150人蒸0した。
(Example 9) As shown in FIG. 3, an ITO transparent electrode 32 is formed on a glass substrate 31, and then an organic hole injection (organic hole conductive thin film) layer 33 is formed using magnesium phthalocyanine and fluoranyl in 10: At a deposition rate ratio of 1, 150 people were evaporated.

その後有機蛍光体(A1q3)薄膜34を900人形成
した。電子注入層35として3.4.9.10−ペリレ
ンテトラカルボキシリック−ビス−ベンジミダゾールを
、300人形成した。最後にMgの背面金属電極36を
1500人形成して有機薄膜EL素子が完成する。
Thereafter, 900 organic phosphor (A1q3) thin films 34 were formed. As the electron injection layer 35, 300 layers of 3.4.9.10-perylenetetracarboxylic-bis-benzimidazole were formed. Finally, 1,500 Mg back metal electrodes 36 are formed to complete the organic thin film EL device.

この素子の発光特性を乾燥窒素中で測定したところ、約
8vの直流電圧の印加で300cd/mの発光が得られ
た。従来の素子に比べ発光輝度・効率が2から5倍改善
されていることがわかる。この有機薄膜EL素子を電流
密度0.5mA/cmの状態でエージング試験をしたと
ころ輝度半減時間は1000時間以上であった。従来の
素子では100から300時間であったから、この素子
の信頼性は大幅に改善されている。
When the luminescent properties of this element were measured in dry nitrogen, a luminescence of 300 cd/m was obtained when a DC voltage of about 8 V was applied. It can be seen that the luminance and efficiency are improved by 2 to 5 times compared to conventional elements. When this organic thin film EL element was subjected to an aging test at a current density of 0.5 mA/cm, the luminance half-life was over 1000 hours. The reliability of this device is significantly improved compared to 100 to 300 hours for conventional devices.

尚、実施例2〜8で使用した、有機の正孔注入層(第1
表のa−g)を本実施例の正孔注入層として用いても同
様な効果が認められた。
Note that the organic hole injection layer (first layer) used in Examples 2 to 8
Similar effects were observed even when ag) in the table were used as the hole injection layer in this example.

また、本実施例で使用した電子注入層材料以外に各種ペ
リレン誘導体、3−メチルチオフェン、α−ビチオフエ
ン、α−ターチニエル、チェノチオフェン、ジチェノチ
オフェン、2,2−チエニルビロール出発材料にしたポ
リチオフェン等の酸化電位の低いものであれば使うこと
ができた。
In addition to the electron injection layer materials used in this example, various perylene derivatives, 3-methylthiophene, α-bithiophene, α-tertiniel, chenothiophene, dichenothiophene, and 2,2-thienylvirol starting materials were also used. Any material with a low oxidation potential, such as polythiophene, could be used.

(実施例10) 第4図に示すように、ガラス基板41の上にITO透明
電極42を形成し、その後、有機蛍光体薄膜43を90
0人形成する。続いて、電子注入層(有機電子伝導性薄
膜)44としテCo(p−CI)5, 10, 15.
 20−テトラフェニルポルフィリン(tetraph
enylpolphyrineX以後1Co(p−CI
)TPPと略記する)とテトラチオテトラセンを、第2
図に示す装置を使用して、同時に5:1の蒸着速度にな
るようにして、300人形成する。最後にMgとAgが
10:1の原子比である背面金属電極45を1500人
形成して有機薄膜EL素子が完成する。
(Example 10) As shown in FIG. 4, an ITO transparent electrode 42 was formed on a glass substrate 41, and then an organic phosphor thin film 43 was formed over a 90°
Form 0 people. Subsequently, an electron injection layer (organic electron conductive thin film) 44 was formed using TeCo (p-CI) 5, 10, 15.
20-tetraphenylporphyrin (tetraph
1Co (p-CI
) and tetrathiotetracene (abbreviated as TPP) and tetrathiotetracene, the second
Using the apparatus shown in the figure, 300 people were formed at the same time at a deposition rate of 5:1. Finally, 1,500 back metal electrodes 45 having an atomic ratio of Mg and Ag of 10:1 are formed to complete the organic thin film EL device.

この素子の発光特性を乾燥窒素中で測定したところ、約
8vの直流電圧の印加で300cd/mの発光が得られ
た。従来の素子に比べ発光輝度・効率が2から5倍改善
されている。この有機薄膜EL素子を電流密度0.5m
A/cmの状態でエージング試験をしたところ輝度半減
時間は1000時間以上であった。従来の素子では10
0から300時間であったから、この素子の信頼性は大
幅に改善されている。
When the luminescent properties of this element were measured in dry nitrogen, a luminescence of 300 cd/m was obtained when a DC voltage of about 8 V was applied. Compared to conventional elements, luminance and efficiency are improved by 2 to 5 times. This organic thin film EL element has a current density of 0.5 m.
When an aging test was conducted under the condition of A/cm, the luminance half-life was over 1000 hours. 10 for conventional elements
0 to 300 hours, the reliability of this device is greatly improved.

(実施例11〜16) ポルフィリン環あるいはフタロシアニン環骨格を有する
有機化合物と電子供与性有機分子を別々の蒸発源から同
時に供給し電子伝導性有機薄膜層(第2表のh−m)を
形成し、実施例10と同様に有機薄膜EL素子を製造し
た。
(Examples 11 to 16) An electron-conductive organic thin film layer (h-m in Table 2) was formed by simultaneously supplying an organic compound having a porphyrin ring or phthalocyanine ring skeleton and an electron-donating organic molecule from separate evaporation sources. An organic thin film EL device was manufactured in the same manner as in Example 10.

第2表 ’r(4−py)pはテトラ(4−ピリジル)ポルフィ
リン、T(6−Q)はテトラ(6−キノリル)ポルフィ
リン、Pはポルフィリン、Pcはフタロシアニンを示す
Table 2'r(4-py)p represents tetra(4-pyridyl)porphyrin, T(6-Q) represents tetra(6-quinolyl)porphyrin, P represents porphyrin, and Pc represents phthalocyanine.

(実施例17) 第3図に示すようにガラス基板31上にITO透明電極
32を形成してから有機の正孔注入(有機正孔伝導性薄
膜)層33としてマグネシウム・フタロシアニンとフル
オラニルを10=1の蒸着速度比で150人蒸着口た。
(Example 17) As shown in FIG. 3, after forming an ITO transparent electrode 32 on a glass substrate 31, magnesium phthalocyanine and fluoranyl were used as an organic hole injection (organic hole conductive thin film) layer 33. At a deposition rate ratio of 1, there were 150 deposition ports.

その後有機蛍光体(A1q3)薄膜34を900人形成
した。電子注入層35として’r(4−py)pとTT
Fを5:lの割合でできている電子伝導性有機薄膜を、
300人形成した。最後にMgの背面金属電極36を1
500人形成して有機薄膜EL素子が完成する。
Thereafter, 900 organic phosphor (A1q3) thin films 34 were formed. 'r(4-py)p and TT as the electron injection layer 35
An electronically conductive organic thin film made of F at a ratio of 5:l,
300 people were formed. Finally, attach the Mg back metal electrode 36 to 1
After 500 people formed, the organic thin film EL device was completed.

この素子の発光特性を乾燥窒素中で測定したところ、約
8vの直流電圧の印加で300cd/mの発光が得られ
た。従来の素子に比べ発光輝度・効率が2から5倍改善
されていることがわかる。この有機薄膜EL素子を電流
密度0.5mA/cmの状態でエージング試験をしたと
ころ輝度半減時間は1000時間以上であった。従来の
素子では100から300時間であったから、この素子
の信頼性は大幅に改善されている。
When the luminescent properties of this element were measured in dry nitrogen, a luminescence of 300 cd/m was obtained when a DC voltage of about 8 V was applied. It can be seen that the luminance and efficiency are improved by 2 to 5 times compared to conventional elements. When this organic thin film EL element was subjected to an aging test at a current density of 0.5 mA/cm, the luminance half-life was over 1000 hours. The reliability of this device is significantly improved compared to 100 to 300 hours for conventional devices.

また、正孔伝導性有機薄膜および電子伝導性有機薄膜と
して、マグネシウム・フタロシアニンとフルオラニル、
およびT(4−Py)PとTTFの代わりに、第1表の
a−bおよび第2表に示したh−mを使用しても同様な
効果が得れた。
In addition, magnesium phthalocyanine and fluoranyl are used as hole conductive organic thin films and electron conductive organic thin films.
Similar effects were also obtained by using a-b in Table 1 and hm shown in Table 2 instead of T(4-Py)P and TTF.

(実施例18) 実施例17において、正孔注入(有機正孔伝導性薄膜)
層33としてトリフェニルジアミン等、有機分子やポリ
カルバゾール等の高分子を使用した有機薄膜EL素子を
製造した。その特性は実施例17の素子と同じく、従来
の素子と比較し、発光特性は信頼性は大幅に改善されて
いる。
(Example 18) In Example 17, hole injection (organic hole conductive thin film)
An organic thin film EL device was manufactured using an organic molecule such as triphenyldiamine or a polymer such as polycarbazole as the layer 33. The characteristics are the same as those of the device of Example 17, and the reliability of the light emitting characteristics is greatly improved compared to the conventional device.

(実施例19) 第5図に示すように、マグネシウム・フタロシアニンと
TCNEが10:1の割合で混合している、膜厚が15
0人である第1の正孔注入層とN、 N、 N’、 N
’、−テトラフェニル−4,4−ジアミノビフェニルを
20OA蒸着した第2の正孔注入層を積層した正孔注入
層を使用し、その後有機蛍光体(Alq3)薄膜34を
900人形成した。
(Example 19) As shown in FIG.
The first hole injection layer is 0 and N, N, N', N
A hole injection layer formed by laminating a second hole injection layer in which 20OA of ,-tetraphenyl-4,4-diaminobiphenyl was vapor-deposited was used, and then 900 organic phosphor (Alq3) thin films 34 were formed.

この素子の発光特性を乾燥窒素中で測定したところ、約
6.5vの直流電圧の印加で300cd/mの発光が得
られた。従来の素子に比べ発光輝度・効率が5倍程度改
善されている。この有機薄膜EL素子を電流密度0.5
mA/cmの状態でエージング試験をしたところ輝度半
減時間は1000時間以上であった。従来の素子ではで
は100から300時間であったから、この素子の信頼
性は大幅に改善されている。
When the luminescent properties of this element were measured in dry nitrogen, a luminescence of 300 cd/m was obtained when a DC voltage of about 6.5 V was applied. Compared to conventional elements, luminance and efficiency are improved by about five times. This organic thin film EL element has a current density of 0.5
When an aging test was conducted under the condition of mA/cm, the luminance half-life time was more than 1000 hours. The reliability of this device is significantly improved compared to 100 to 300 hours for conventional devices.

第1表の材料を適当に組み合わせて、2層以上の正孔中
入層を形成しても同様な効果を得ることができた。
A similar effect could be obtained by appropriately combining the materials shown in Table 1 to form two or more hole entry layers.

(発明の効果) 以上説明したように本発明により発光特性及び信頼性を
大幅に改善することができた。
(Effects of the Invention) As explained above, the present invention was able to significantly improve the light emission characteristics and reliability.

このように、本発明により有機薄膜EL素子を実用レベ
ルまで引き上げることができ、その工業的第1図は本発
明の実施例1〜8に使用した有機薄膜のEL素子の断面
構造を示す。第2図は本発明に使用した有機薄膜EL素
子の製造装置。第3図は本発明の実施例9.17.18
に使用した有機薄膜EL素子の断面構造を示す。第4図
は本発明の実施例10〜16に使用した有機薄膜EL素
子の断面構造を示す。第5図は本発明の実施例19に使
用した有機薄膜EL素子の断面構造を示す。
As described above, the present invention makes it possible to raise the organic thin film EL device to a practical level, and the industrial scale of FIG. 1 shows the cross-sectional structure of the organic thin film EL device used in Examples 1 to 8 of the present invention. FIG. 2 shows an apparatus for manufacturing an organic thin film EL device used in the present invention. FIG. 3 is an embodiment of the present invention 9.17.18
The cross-sectional structure of the organic thin film EL device used in this figure is shown. FIG. 4 shows the cross-sectional structure of the organic thin film EL device used in Examples 10 to 16 of the present invention. FIG. 5 shows a cross-sectional structure of an organic thin film EL device used in Example 19 of the present invention.

1、31.41.51・・・ガラス基板、2.32.4
2.52・・・透明電極、3′、33・・・正孔注入層
、4.34.43.54・・・有機蛍光体薄膜、35.
44・・・電子注入層、5.36.45.55・・・金
属電極、53・・・第1の正孔注入層、53′・・・第
2の正孔注入層、21・・・蒸着源、22・・・水晶振
動子、23・・・基板、24・・・シャッター、26・
・・ヒータ、27・・・真空ゲージ。
1, 31.41.51...Glass substrate, 2.32.4
2.52...Transparent electrode, 3', 33...Hole injection layer, 4.34.43.54...Organic phosphor thin film, 35.
44... Electron injection layer, 5.36.45.55... Metal electrode, 53... First hole injection layer, 53'... Second hole injection layer, 21... Vapor deposition source, 22... Crystal resonator, 23... Substrate, 24... Shutter, 26...
...Heater, 27...Vacuum gauge.

Claims (1)

【特許請求の範囲】 1) 少なくとも一方が透明である電極対の間に有機蛍
光体薄膜層と、その有機蛍光体薄膜層の少なくとも一方
の面に接して、ポルフィリン環あるいはフタロシアニン
環骨格を有する有機化合物に、少なくとも一以上の電子
受容性有機分子を添加した正孔伝導性有機薄膜層、ある
いは前記有機化合物に少なくとも一以上の電子供与性有
機分子を添加した電子伝導性有機薄膜層を積層したこと
を特徴とした有機薄膜EL素子。 2) 少なくとも一方が透明である電極対の間に有機蛍
光体薄膜層と、その有機蛍光体薄膜層の少なくとも一方
の面に接して、ポルフィリン環あるいはフタロシアニン
環骨格の一部を少なくとも1以上の電子供与基あるいは
電子受容基で置換した有機化合物を積層したことを特徴
とする有機薄膜EL素子。 3) 少なくとも一方が透明である電極対の間に有機蛍
光体薄膜層と、その有機蛍光体薄膜層の少なくとも一方
の面に接して、ポルフィリン環あるいはフタロシアニン
環骨格の一部を少なくとも1以上の電子供与基で置換し
た有機化合物に、少なくとも一以上の電子受容性有機分
子を添加した正孔伝導有機薄膜層、あるいはポルフイリ
ン環あるいはフタロシアニン環骨格の一部を少なくとも
1以上の電子受容基で置換した有機化合物に、少なくと
も一以上の電子供与性有機分子を添加した電子伝導性有
機薄膜層を積層したことを特徴とした有機薄膜EL素子
。 4) ポルフイリン環あるいはフタロシアニン環骨格を
有する有機化合物、ポルフィリン環あるいはフタロシア
ニン環骨格の一部を少なくとも1以上の電子供与基ある
いは電子受容基で置換した有機化合物と、電子受容性有
機分子あるいは電子供与性有機分子を、真空中で別々の
蒸発源から同時に供給し正孔伝導性有機薄膜層あるいは
電子伝導性有機薄膜層を形成することを特徴とした有機
薄膜EL素子の製造方法。
[Claims] 1) An organic phosphor thin film layer between a pair of electrodes, at least one of which is transparent, and an organic phosphor having a porphyrin ring or phthalocyanine ring skeleton in contact with at least one surface of the organic phosphor thin film layer. A hole-conducting organic thin film layer in which at least one electron-accepting organic molecule is added to a compound, or an electron-conducting organic thin film layer in which at least one electron-donating organic molecule is added to the organic compound. An organic thin film EL device featuring 2) An organic phosphor thin film layer is placed between a pair of electrodes, at least one of which is transparent, and a part of the porphyrin ring or phthalocyanine ring skeleton is in contact with at least one surface of the organic phosphor thin film layer, and at least one electron An organic thin film EL device characterized by stacking organic compounds substituted with a donating group or an electron accepting group. 3) An organic phosphor thin film layer is placed between a pair of electrodes, at least one of which is transparent, and a part of the porphyrin ring or phthalocyanine ring skeleton is in contact with at least one surface of the organic phosphor thin film layer, and at least one electron A hole-conducting organic thin film layer made by adding at least one electron-accepting organic molecule to an organic compound substituted with a donor group, or an organic compound in which a part of the porphyrin ring or phthalocyanine ring skeleton is substituted with at least one electron-accepting group. An organic thin film EL device characterized by laminating an electron conductive organic thin film layer in which at least one electron donating organic molecule is added to a compound. 4) Organic compounds having a porphyrin ring or phthalocyanine ring skeleton, organic compounds in which a part of the porphyrin ring or phthalocyanine ring skeleton is substituted with at least one electron-donating group or electron-accepting group, and electron-accepting organic molecules or electron-donating A method for manufacturing an organic thin film EL device, characterized in that organic molecules are simultaneously supplied in vacuum from separate evaporation sources to form a hole conductive organic thin film layer or an electron conductive organic thin film layer.
JP1034026A 1989-02-13 1989-02-13 Organic thin film el element and manufacture thereof Pending JPH02213088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1034026A JPH02213088A (en) 1989-02-13 1989-02-13 Organic thin film el element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1034026A JPH02213088A (en) 1989-02-13 1989-02-13 Organic thin film el element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02213088A true JPH02213088A (en) 1990-08-24

Family

ID=12402858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1034026A Pending JPH02213088A (en) 1989-02-13 1989-02-13 Organic thin film el element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02213088A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998000474A1 (en) * 1996-06-28 1998-01-08 Chisso Corporation Red-emitting material and organic electroluminescent device made by using the same
JP2000058265A (en) * 1998-07-28 2000-02-25 Eastman Kodak Co Organic luminescence element and its manufacture
JP2000182774A (en) * 1998-12-16 2000-06-30 Junji Kido Organic electroluminescence element
JP2002535332A (en) * 1999-01-25 2002-10-22 ナショナル・ジュウィッシュ・メディカル・アンド・リサーチ・センター Substituted porphyrins
WO2006022194A1 (en) * 2004-08-23 2006-03-02 Semiconductor Energy Laboratory Co., Ltd. Electron injecting composition, and light emitting element and light emitting device using the electron injecting composition
JP2006066379A (en) * 2004-07-30 2006-03-09 Sanyo Electric Co Ltd Organic electroluminescence element and organic electroluminescence display device
JPWO2004064453A1 (en) * 2003-01-10 2006-05-18 株式会社半導体エネルギー研究所 Light emitting device and manufacturing method thereof
US7063901B2 (en) * 2002-09-30 2006-06-20 Fuji Photo Film Co., Ltd. Organic electroluminescent device
JP2006210845A (en) * 2005-01-31 2006-08-10 Sanyo Electric Co Ltd Organic electroluminescent element and organic electroluminescent display
JP2007149605A (en) * 2005-11-30 2007-06-14 Sanyo Electric Co Ltd Organic electroluminescent element, and organic electroluminescent display device
JP2008004950A (en) * 2007-07-27 2008-01-10 Semiconductor Energy Lab Co Ltd Material for electroluminescent device, and electroluminescent device using the same
EP2270894A1 (en) * 2003-12-04 2011-01-05 Novaled AG Use of organic mesomeric compounds as dotands
US7868324B2 (en) 2001-11-30 2011-01-11 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP2011109120A (en) * 2011-01-06 2011-06-02 Konica Minolta Holdings Inc Organic electroluminescence element, display device and lighting device
JP2016075739A (en) * 2014-10-03 2016-05-12 東洋インキScホールディングス株式会社 Color filter coloring composition and color filter
JP2016075738A (en) * 2014-10-03 2016-05-12 東洋インキScホールディングス株式会社 Color filter coloring composition and color filter

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6333122B1 (en) 1996-06-28 2001-12-25 Chisso Corporation Red-emitting material and organic electroluminescent device made by using the same
WO1998000474A1 (en) * 1996-06-28 1998-01-08 Chisso Corporation Red-emitting material and organic electroluminescent device made by using the same
JP2000058265A (en) * 1998-07-28 2000-02-25 Eastman Kodak Co Organic luminescence element and its manufacture
JP4718643B2 (en) * 1998-07-28 2011-07-06 グローバル オーエルイーディー テクノロジー リミティド ライアビリティ カンパニー ORGANIC LIGHT EMITTING DEVICE AND MANUFACTURING METHOD THEREOF
JP2010251803A (en) * 1998-07-28 2010-11-04 Global Oled Technology Llc Organic light-emitting device, and method of manufacturing the same
JP4505067B2 (en) * 1998-12-16 2010-07-14 淳二 城戸 Organic electroluminescent device
JP2000182774A (en) * 1998-12-16 2000-06-30 Junji Kido Organic electroluminescence element
JP2002535332A (en) * 1999-01-25 2002-10-22 ナショナル・ジュウィッシュ・メディカル・アンド・リサーチ・センター Substituted porphyrins
US8610142B2 (en) 2001-11-30 2013-12-17 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US8338824B2 (en) 2001-11-30 2012-12-25 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US7868324B2 (en) 2001-11-30 2011-01-11 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US7063901B2 (en) * 2002-09-30 2006-06-20 Fuji Photo Film Co., Ltd. Organic electroluminescent device
JPWO2004064453A1 (en) * 2003-01-10 2006-05-18 株式会社半導体エネルギー研究所 Light emitting device and manufacturing method thereof
EP1596445B2 (en) 2003-12-04 2015-09-30 Novaled AG Process for doping organic semiconductors with derivatives of diiminoquinones
EP2270894A1 (en) * 2003-12-04 2011-01-05 Novaled AG Use of organic mesomeric compounds as dotands
JP2006066379A (en) * 2004-07-30 2006-03-09 Sanyo Electric Co Ltd Organic electroluminescence element and organic electroluminescence display device
WO2006022194A1 (en) * 2004-08-23 2006-03-02 Semiconductor Energy Laboratory Co., Ltd. Electron injecting composition, and light emitting element and light emitting device using the electron injecting composition
JP2006210845A (en) * 2005-01-31 2006-08-10 Sanyo Electric Co Ltd Organic electroluminescent element and organic electroluminescent display
JP2007149605A (en) * 2005-11-30 2007-06-14 Sanyo Electric Co Ltd Organic electroluminescent element, and organic electroluminescent display device
JP2008004950A (en) * 2007-07-27 2008-01-10 Semiconductor Energy Lab Co Ltd Material for electroluminescent device, and electroluminescent device using the same
JP2011109120A (en) * 2011-01-06 2011-06-02 Konica Minolta Holdings Inc Organic electroluminescence element, display device and lighting device
JP2016075739A (en) * 2014-10-03 2016-05-12 東洋インキScホールディングス株式会社 Color filter coloring composition and color filter
JP2016075738A (en) * 2014-10-03 2016-05-12 東洋インキScホールディングス株式会社 Color filter coloring composition and color filter

Similar Documents

Publication Publication Date Title
JP2773297B2 (en) Organic thin film EL device
JP2926845B2 (en) Organic thin film EL device
KR100903918B1 (en) Organic Electroluminescence Element and Display
Hohnholz et al. Applications of phthalocyanines in organic light emitting devices
US6835473B2 (en) Organic electroluminescence element and display
JPH02213088A (en) Organic thin film el element and manufacture thereof
JPH07126616A (en) El device containing polythiophene
JPH02204996A (en) Organic film type el element
JPH11242996A (en) Organic electroluminescent element
JPH08109373A (en) Organic thin-film el element
KR100751464B1 (en) Organic electroluminescent device
JP2004006287A (en) Organic electroluminescent device
JP2004311231A (en) Organic el element
JP3555736B2 (en) Organic electroluminescent device
JP2002367786A (en) Luminous element
JP4374842B2 (en) Organic electroluminescence element and display device
JP2004311182A (en) Organic electroluminescent element using conductive liquid crystal material, thin film transistor, and its manufacturing method
KR100547055B1 (en) Organic Electroluminescent Device
JPH10284252A (en) Organic el element
JP3482446B2 (en) EL device
JPH1095971A (en) Organic electroluminescent element
JP4607268B2 (en) Organic electroluminescence device
JPH11307255A (en) Organic electroluminecence element
JP2002367785A (en) Luminous element
JP3927221B2 (en) EL device using polythiophene