JPH02212541A - Liquid resin composition for semiconductor sealing - Google Patents

Liquid resin composition for semiconductor sealing

Info

Publication number
JPH02212541A
JPH02212541A JP3285889A JP3285889A JPH02212541A JP H02212541 A JPH02212541 A JP H02212541A JP 3285889 A JP3285889 A JP 3285889A JP 3285889 A JP3285889 A JP 3285889A JP H02212541 A JPH02212541 A JP H02212541A
Authority
JP
Japan
Prior art keywords
resin composition
liquid resin
semiconductor element
present
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3285889A
Other languages
Japanese (ja)
Other versions
JPH0713170B2 (en
Inventor
Masuo Mizuno
水野 増雄
Mitsuo Waki
脇 光生
Shigehiko Sakura
桜 茂彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP3285889A priority Critical patent/JPH0713170B2/en
Publication of JPH02212541A publication Critical patent/JPH02212541A/en
Publication of JPH0713170B2 publication Critical patent/JPH0713170B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain the title composition which has a low water absorptivity and excellent adhesiveness to the surface of a semiconductor element and can prevent the aluminum wiring on the surface of an element from being corroded by the moisture infiltrating from outside by adding an aminosilane compound to a specified fluororesin. CONSTITUTION:A liquid resin composition is produced by mixing a vinylidene fluoride/hexafluoropropylene copolymer (A) of the formula (wherein m/n is 1-20) with an aminosilane compound (B) (e.g. aminopropyltriethoxysilane), an inorganic filler (C) (e.g. silica) and an organic solvent (D). The above mixing is performed so that the ratio of component C to components A, B and C may be 30-80wt.%. This composition is useful for the production of a resin film for protecting the surface of a semiconductor element, has a very low water absorptivity and excellent adhesiveness to the surface of a semiconductor element and can prevent the aluminum wiring on the surface of an element from being corroded by the moisture infiltrating from the outside.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体素子の表面を保護する樹脂に関するもの
であり、更に詳しくは吸水率が非常に小さく、かつ半導
体素子表面との密着性に優れ、素子表面のアルミ配線が
外部からの水分の侵入で生じる腐食を防止することを目
的とする半導体封止用液状樹脂組成物に関するものであ
る。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a resin that protects the surface of a semiconductor element, and more specifically, a resin that has extremely low water absorption and excellent adhesion to the surface of a semiconductor element. , relates to a liquid resin composition for semiconductor encapsulation whose purpose is to prevent corrosion of aluminum wiring on the surface of a device caused by moisture intrusion from the outside.

(従来の技術) 半導体素子を封止する方法には大きく分けて2通りあり
、1つは金属リードフレームの上に接合された素子を固
形の樹脂組成物を用いてトランスファーモールドする方
法であり、もう1つは裸の素子をそのままプリント配線
基板の上に接合し、液状樹脂組成物を用いてドロッピン
グ法により封止する方法である。
(Prior Art) There are two main methods for encapsulating semiconductor elements. One is to transfer mold the element bonded onto a metal lead frame using a solid resin composition. The other method is to bond a bare element directly onto a printed wiring board and seal it with a liquid resin composition by a dropping method.

トランスファーモールドする方法ではモールドされたも
のをプリント配線基板の上に搭載するためどうしても厚
く大きくなってしまう。
In the transfer molding method, the molded product is mounted on a printed wiring board, which inevitably results in a thick and large product.

近年は電子機器の軽薄短小が求められており、その意味
から液状樹脂組成物を用いてドロッピング法で封止する
方法が注目されてきている。
In recent years, there has been a demand for electronic devices to be lighter, thinner, and smaller, and for this reason, a method of sealing by a dropping method using a liquid resin composition has been attracting attention.

そして従来、この様なドロッピング法の用途にはエポキ
シ樹脂が多く用いられてきた。
Conventionally, epoxy resins have been widely used for such dropping method applications.

エポキシ樹脂ではドロッピング法で使い易くするために
、より低粘度の硬化剤が用いられ、例えばメチルテトラ
ヒドロフタル酸無水物等の液状の酸無水物が用いられる
ことが多かった。
In order to make epoxy resins easier to use in the dropping method, a curing agent with a lower viscosity is used, and for example, a liquid acid anhydride such as methyltetrahydrophthalic anhydride is often used.

しかしこの様な酸無水物を硬化剤とした場合の硬化物は
硬化構造の中に加水分解し易いエステル結合を多く含む
ため耐湿性が劣り、特に半導体封止用樹脂として必要な
PCT試験では直接樹脂を通って水分が侵入したり、あ
るいは樹脂と基板との界面から水の侵入を受は易<10
時間程度で半導体素子のアルミ配線の腐食を起こすとい
う問題があった。
However, when such acid anhydride is used as a curing agent, the cured product contains many ester bonds that are easily hydrolyzed in the cured structure, resulting in poor moisture resistance.Especially in the PCT test required for semiconductor encapsulation resin, the cured product has poor moisture resistance. It is easy for water to enter through the resin or from the interface between the resin and the substrate <10
There was a problem in that the aluminum wiring of the semiconductor element corroded in a matter of hours.

(発明が解決しようとする課題) 本発明の目的とするところは、従来の半導体封止用液状
樹脂組成物の欠点を改良し、ドロッピング法による液状
樹脂でありながらPTC試験においても、殆ど劣化せず
、耐湿性に非常に優れた半導体封止用液状樹脂組成物を
提供することにある。
(Problems to be Solved by the Invention) It is an object of the present invention to improve the drawbacks of conventional liquid resin compositions for semiconductor encapsulation, and to improve the ability of the liquid resin composition to hardly deteriorate in the PTC test even though it is a liquid resin produced by the dropping method. First, it is an object of the present invention to provide a liquid resin composition for semiconductor encapsulation that has excellent moisture resistance.

(課題を解決するための手段) 本発明は飽和吸水率の少ない、共重合比m/nが特定の
下記式CI)で示されるフッ化ビニリデンと6フッ化プ
ロピレンの共重合体(A)と密着性を向上させるための
アミノシラン(B)と液状樹脂として作業性をもたせる
ために特定の配合部数の無機充填材(C)及び有機溶剤
(D)とを必須成分とする液状樹脂組成物であって、(
A)の共重合比m/nが1〜20であり、特に5〜15
の範囲のものが望ましく、かつ(C)の配合比率(C)
 / (A) + (B) + (C)が30〜80M
量%であることを特徴とする半導体封止用液状樹脂組成
物である。
(Means for Solving the Problems) The present invention uses a copolymer (A) of vinylidene fluoride and propylene hexafluoride, which has a low saturated water absorption rate and has a specific copolymerization ratio m/n represented by the following formula CI. It is a liquid resin composition containing as essential components aminosilane (B) to improve adhesion, and a specific number of blended inorganic fillers (C) and organic solvents (D) to provide workability as a liquid resin. hand,(
The copolymerization ratio m/n of A) is 1 to 20, particularly 5 to 15
It is desirable that the mixture ratio of (C) be within the range of (C)
/ (A) + (B) + (C) is 30~80M
This is a liquid resin composition for semiconductor encapsulation, characterized in that the amount is %.

(作用) 本発明の液状樹脂組成物の特徴は硬化物の吸水率が非常
に小さいことであり、通常の液状樹脂組成物ではPCT
試験において加水分解を受は易く、吸水率が大きく耐湿
性に非常に弱い。
(Function) A feature of the liquid resin composition of the present invention is that the water absorption rate of the cured product is extremely low.
In tests, it is easily susceptible to hydrolysis, has a high water absorption rate, and has very low moisture resistance.

また通常のエポキシ樹脂トランスファーモールド材でも
PCT試験においては飽和吸水率は0.7%程度であり
、これは無機充填材が全く吸水しないと仮定したとして
も、バインダーであるエポキシ樹脂が2%程度吸水する
ためである。
In addition, even with ordinary epoxy resin transfer molding materials, the saturated water absorption rate in the PCT test is about 0.7%, which means that even if it is assumed that the inorganic filler does not absorb water at all, the epoxy resin as a binder absorbs about 2% of water. This is to do so.

本発明に用いられるフッ化ビニリデンと677化プロピ
レンとの共重合体はPCT試験における飽和吸水率が非
常に小さいく、0.05%以下である。
The copolymer of vinylidene fluoride and propylene 677 used in the present invention has a very low saturated water absorption rate in the PCT test, which is 0.05% or less.

ただし、式〔I〕、で示される共重合体において共重合
比m/nが20より大きいとフッ素含有率が小さくなり
吸水率が大きくなってしまう。又m/nが1より小さけ
れば吸水率は小さいが透湿率が大きくなってしまう。
However, in the copolymer represented by formula [I], if the copolymerization ratio m/n is greater than 20, the fluorine content will be low and the water absorption will be high. If m/n is smaller than 1, the water absorption rate will be low but the moisture permeability will be high.

また一般にフッ素系樹脂は他の物質との非粘着性が強く
、本発明の目的とする用途には半導体素子との密着性が
悪く、そのままでは用いることが出来ず、樹脂そのもの
の吸水率が小さくても半導体素子表面と樹脂との界面か
ら水分が侵入し、アルミ配線が腐食してしまうという不
具合が生じてしまう。
In addition, fluororesins generally have strong non-adhesiveness with other substances, and cannot be used as they are because they have poor adhesion with semiconductor elements for the purpose of the present invention, and the resin itself has a low water absorption rate. However, moisture intrudes from the interface between the semiconductor element surface and the resin, causing problems such as corrosion of the aluminum wiring.

本発明者等はこの欠点を改良すべく各種のカンブリング
剤について鋭意検討を重ねた結果、本発明に用いるフッ
素系樹脂にアミノシラン化合物を添加すると、今まで考
えられなかったような密着性が著しく向上することを見
いだし、本発明の目的に到達することが出来たものであ
る。
In order to improve this drawback, the present inventors have conducted extensive studies on various cambling agents, and have found that when an aminosilane compound is added to the fluororesin used in the present invention, adhesion is significantly improved, which was previously unimaginable. The present invention has been found to be improved and the object of the present invention has been achieved.

本発明に用いられるアミノシラン化合物とは、アミノ基
とシラノール基、あるいはアミノ基とンラノール基誘導
体とを併せ持つ化合物であって、例えばアミンエチルシ
ラノール、アミノエチルトリメトキシシラン、アミノエ
チルトリエトキシシラン、アミノプロピルシラノール トリメトキシシラン、アミノブロビルトリエトキ/シラ
ン、γ−(2−ウレイドエチル)アミノプロピルトリメ
トキンシラン、γーウレイドプロピルトリエトキシシラ
ンなどが挙げられる。
The aminosilane compound used in the present invention is a compound having both an amino group and a silanol group, or an amino group and an lanol group derivative, such as amineethylsilanol, aminoethyltrimethoxysilane, aminoethyltriethoxysilane, aminopropyl Examples include silanoltrimethoxysilane, aminobrobyltriethoxysilane, γ-(2-ureidoethyl)aminopropyltrimethoxysilane, and γ-ureidopropyltriethoxysilane.

更に本発明の必須成分として無機充填材とを機溶剤があ
るが、本発明が目的とする用途は液状であることが必要
であり、無機充填材は本発明の液状樹脂組成物に適度の
粘度、チキン性を付与し、液状樹脂組成物として作業性
の優れたものとすると同時に硬化物の熱膨張率係数を小
さくし、熱応力を下げ、硬化物のクラックや使用中に半
導体素子と封止用樹脂の熱障張の差により素子表面と外
部リードを結ぶ金線が切れてしまうという重大な欠陥を
防ぐことを目的としたものである。
Furthermore, as an essential component of the present invention, there is an inorganic filler and an organic solvent, but the intended use of the present invention requires a liquid state, and the inorganic filler is added to the liquid resin composition of the present invention with an appropriate viscosity. , imparts chicken properties and makes the liquid resin composition excellent in workability, while at the same time reducing the coefficient of thermal expansion of the cured product, reducing thermal stress, preventing cracks in the cured product, and sealing with semiconductor elements during use. The purpose of this is to prevent the serious defect that the gold wire connecting the element surface and the external lead breaks due to the difference in thermal tension of the resin used.

従って無機充填材の配合比率としては30〜80重量%
が適当であり、30重量%より少なければ熱膨張率が大
きくなり、作業性も悪くなってしまう。又、801i量
%より多いと適度の粘度、チキン性を付与することがで
きず、これらを適度なものにするには有機溶剤を多く配
合しなければならず、その結果樹脂分が少なくなってし
まい硬化物にボイドが発生し易くなり、吸水性が大きく
なってしまうという欠点を生じてしまう。
Therefore, the blending ratio of inorganic filler is 30 to 80% by weight.
is appropriate; if it is less than 30% by weight, the coefficient of thermal expansion will increase and workability will deteriorate. Moreover, if the amount exceeds 801i, it is not possible to impart appropriate viscosity and consistency, and in order to achieve these properties, it is necessary to add a large amount of organic solvent, and as a result, the resin content decreases. As a result, voids are likely to occur in the cured product, resulting in increased water absorption.

本発明に用いられる無機充填材としてはシリカ、アルミ
ナ、炭酸カルシウム、酸化マグネシウム、水酸化マグネ
シウム、チッ化ホウ素、酸化亜鉛等がありこれ等を単独
もしくは2種以上を併用して用いることが出来る。
Inorganic fillers used in the present invention include silica, alumina, calcium carbonate, magnesium oxide, magnesium hydroxide, boron nitride, zinc oxide, etc., and these can be used alone or in combination of two or more.

液状封止用樹脂組成物は、その使用方法はシリンジに詰
めてデイスペンサーによりドロッピングされることが多
く、このため用いる無機充填材の粒径はシリンジの先端
のニードル内径より小さいことが必要であり、最大粒径
が200μm以下であることが好ましい。
Liquid sealing resin compositions are often used by filling them into a syringe and dropping them with a dispenser. Therefore, the particle size of the inorganic filler used must be smaller than the inner diameter of the needle at the tip of the syringe. , the maximum particle size is preferably 200 μm or less.

更に本発明で用いられる有機溶剤はフッ化ビニリデンと
6フッ化プロピレンの共重合体を溶解させるものならば
すべてを用いることができるが、なかでも特にアセトン
、メチルエチルケトン、メチルイソブチルケトンの様な
ケトン系溶剤やジメチル7オルムアミド メチル−2−ピロリドンの様な極性溶剤又はその併用系
が優れている。
Further, as the organic solvent used in the present invention, any organic solvent can be used as long as it can dissolve the copolymer of vinylidene fluoride and propylene hexafluoride, but in particular, ketone-based solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone can be used. Solvents, polar solvents such as dimethyl 7-olamide methyl-2-pyrrolidone, or combination systems thereof are excellent.

又、本発明の液状樹脂組成物の加熱硬化においては低沸
点の溶剤を使用した時は低温で、高洟点の溶剤を使用し
た時は高温で行うことが必要であるが、硬化物のボイド
を少なくするためには多段硬化、例えば60〜120°
C/60分→150〜200°C/60分で行うのが好
ましい。
In addition, in the heat curing of the liquid resin composition of the present invention, it is necessary to perform the curing at a low temperature when a low boiling point solvent is used, and at a high temperature when a high boiling point solvent is used. In order to reduce the
C/60 minutes→150-200°C/60 minutes is preferable.

本発明においてこの他必要に応じて消泡剤、分散安定剤
、着色剤等を添加しても差し支えがない。
In the present invention, there is no problem in adding an antifoaming agent, a dispersion stabilizer, a coloring agent, etc., if necessary.

(実施例) 実施例1 下記式で示される7ツ化ビニリデンと6フッ化プロピレ
ンの共重合体で 共重合比m/n−10のものジメチルアセトアミドに濃
度が20重量%になる様に溶解させた。
(Example) Example 1 A copolymer of vinylidene heptadide and propylene hexafluoride represented by the formula below with a copolymerization ratio of m/n-10 was dissolved in dimethylacetamide to a concentration of 20% by weight. Ta.

この溶液に第1表に示すような配合比でカップリング剤
、シリカ(平均粒径20μm,最大粒径150μm)を
配合し、3本ロールで混練して均質な液状封止用樹脂組
成物を得た。
A coupling agent and silica (average particle size 20 μm, maximum particle size 150 μm) are blended into this solution at the mixing ratio shown in Table 1, and kneaded with three rolls to form a homogeneous liquid sealing resin composition. Obtained.

この樹脂組成物をスピンナーを用いてシリコーンウェハ
上に塗布し、100°C/60分→200°C/60分
で硬化させてPCT試験条件(125℃。
This resin composition was applied onto a silicone wafer using a spinner and cured at 100°C/60 minutes → 200°C/60 minutes under PCT test conditions (125°C).

2、3気圧)で処理し、シリコーンウェハとの密着性を
調べた。又同様の工程でこの樹脂組成物をアルミ箔上に
流延塗布硬化後、アルミ箔をエツチングによって除去し
厚さ100μmのフィルムを作成シ吸水率、透湿率(J
 I S−Z−0 2 0 8)を測定した。
The adhesiveness with the silicone wafer was examined. In the same process, this resin composition was cast onto aluminum foil and cured, and then the aluminum foil was removed by etching to create a film with a thickness of 100 μm.The water absorption rate and moisture permeability (J
IS-Z-0208) was measured.

更に模擬素子表面にデイスペンサーを用いて、この樹脂
組成物をドロッピング封止し、上記条件で硬化させたも
のを一55°C←→125℃(処理時間30分)のサイ
クルで熱衝撃試験を行い100サイクルでの金線切れの
有無を調べた。又この封止した模擬素子を用いてPCT
試験条件(125”C!.2.3気圧)で処理しアルミ
腐食の発生する時間を調べた。
Furthermore, this resin composition was drop-sealed on the surface of the simulated element using a dispenser, cured under the above conditions, and then subjected to a thermal shock test in a cycle of -55°C←→125°C (processing time 30 minutes). The presence or absence of gold wire breakage after 100 cycles was investigated. Also, using this sealed simulated element, PCT
The treatment was carried out under test conditions (125"C!, 2.3 atm) and the time required for aluminum corrosion to occur was investigated.

用いた模擬素子は5mm角のシリコーンウェハ上に線間
/線巾が5μmの櫛形パターンにアルミを蒸着したチッ
プでプリント配線基板(ガラス布/エポキシ樹脂)に銀
ペーストで接着し25μmの金線でポンディングしたも
のである。
The simulated element used was a chip in which aluminum was vapor-deposited in a comb-shaped pattern with a line spacing/width of 5 μm on a 5 mm square silicone wafer, which was bonded to a printed wiring board (glass cloth/epoxy resin) with silver paste and a 25 μm gold wire. It was pounded.

以上の試験結果を第1表に示す。The above test results are shown in Table 1.

実施例2〜3、比較例1〜4 実施例1と同様に、第1表に示す配合により液状樹脂組
成物を作成し、同様の試験を行った結果を第1表に示す
Examples 2 to 3, Comparative Examples 1 to 4 Similarly to Example 1, liquid resin compositions were prepared using the formulations shown in Table 1, and similar tests were conducted. Table 1 shows the results.

比較例5 第1表に示すように無機充填材(シリカ)の配合量を8
2重量%とし液状樹脂組成物を作成した。
Comparative Example 5 As shown in Table 1, the amount of inorganic filler (silica) was 8
A liquid resin composition was prepared with a concentration of 2% by weight.

得られたものはドロッピング塗布での広がり性が非常に
悪く、このものにジメチルアセトアミドを追加して添加
し粘度を下げて試験片を作成しようとしたが、硬化時に
ボイドが多数発生してしまい試験片がうまく作成できず
、試験を行うことが出来なかった。
The obtained product had very poor spreadability in drop coating, and an attempt was made to create a test piece by adding dimethylacetamide to lower the viscosity, but a large number of voids occurred during curing, making it difficult to test. The piece could not be made properly and could not be tested.

比較例6 ビスフェノールAとエピクロルヒドリンとの反応によっ
て得られたビスフェノールA型エポキシ樹脂(エポキシ
当fi190)とメチルテトラヒドロフタル酸無水物、
カップリング剤、シリカを第1表に示すように配合し、
更に硬化促進剤としてl・リス−ジメチルアミノ−メチ
ルフェノールをエポキシ樹脂100重量部に対して1重
量部添加し、実施例1と全く同様にして液状封止用樹脂
組成物を得て試験片を作成し、実施例1と同様の試験を
行い、その結果を第1表に示す。
Comparative Example 6 Bisphenol A type epoxy resin (epoxy fi 190) obtained by the reaction of bisphenol A and epichlorohydrin and methyltetrahydrophthalic anhydride,
A coupling agent and silica are blended as shown in Table 1,
Further, 1 part by weight of l.lis-dimethylamino-methylphenol was added as a curing accelerator to 100 parts by weight of the epoxy resin, a liquid sealing resin composition was obtained in exactly the same manner as in Example 1, and a test piece was prepared. The test was conducted in the same manner as in Example 1, and the results are shown in Table 1.

(発明の効果) 本発明により得られた半導体封止用液状樹脂組成物は非
常に吸水率が小さく、かつシリコンウエノ1との密着性
にも優れており、従来の半導体封止用液状樹脂組成物で
は決して得られなかったPCT試験に対する信頼性の高
い硬化物が得られ、半導体封止用として非常に優れてい
るものである。
(Effects of the Invention) The liquid resin composition for semiconductor encapsulation obtained by the present invention has a very low water absorption rate and has excellent adhesion to Silicon Ueno 1, compared to the conventional liquid resin composition for semiconductor encapsulation. A cured product with high reliability in the PCT test, which could never be obtained with a physical product, can be obtained, and is extremely suitable for semiconductor encapsulation.

Claims (1)

【特許請求の範囲】[Claims] (1)(A)下記式〔 I 〕で示されるフッ化ビニリデ
ンと6フッ化プロピレンの共重合体 ▲数式、化学式、表等があります▼……〔 I 〕 (B)アミノシラン (C)無機充填材 (D)有機溶剤 から成る液状樹脂組成物であって、(A)の共重合比m
/nが1〜20であり、かつ(C)の配合比率(C)/
(A)+(B)+(C)が30〜80重量%であること
を特徴とする半導体封止用液状樹脂組成物。
(1) (A) Copolymer of vinylidene fluoride and propylene hexafluoride represented by the following formula [I]▲There are mathematical formulas, chemical formulas, tables, etc.▼……[I] (B) Aminosilane (C) Inorganic filling (D) A liquid resin composition comprising an organic solvent, the copolymerization ratio of (A) m
/n is 1 to 20, and the blending ratio of (C) (C)/
A liquid resin composition for semiconductor encapsulation, characterized in that (A)+(B)+(C) is 30 to 80% by weight.
JP3285889A 1989-02-14 1989-02-14 Liquid resin composition for semiconductor encapsulation Expired - Lifetime JPH0713170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3285889A JPH0713170B2 (en) 1989-02-14 1989-02-14 Liquid resin composition for semiconductor encapsulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3285889A JPH0713170B2 (en) 1989-02-14 1989-02-14 Liquid resin composition for semiconductor encapsulation

Publications (2)

Publication Number Publication Date
JPH02212541A true JPH02212541A (en) 1990-08-23
JPH0713170B2 JPH0713170B2 (en) 1995-02-15

Family

ID=12370543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3285889A Expired - Lifetime JPH0713170B2 (en) 1989-02-14 1989-02-14 Liquid resin composition for semiconductor encapsulation

Country Status (1)

Country Link
JP (1) JPH0713170B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001032782A1 (en) * 1999-11-04 2001-05-10 Daikin Industries, Ltd. Molded elastomer for semiconductor production apparatus and crosslinkable fluoroelastomer composition
FR2834651A1 (en) * 2002-01-16 2003-07-18 Atofina POROUS MEMBRANE BASED ON A MIXTURE OF A FLUOROPOLYMER AND A SILANE

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001032782A1 (en) * 1999-11-04 2001-05-10 Daikin Industries, Ltd. Molded elastomer for semiconductor production apparatus and crosslinkable fluoroelastomer composition
US6803402B2 (en) 1999-11-04 2004-10-12 Daikin Industries, Ltd. Elastomer molded article and crosslinkable fluorine-containing elastomer composition for semi-conductor production apparatuses
FR2834651A1 (en) * 2002-01-16 2003-07-18 Atofina POROUS MEMBRANE BASED ON A MIXTURE OF A FLUOROPOLYMER AND A SILANE
WO2003061050A1 (en) * 2002-01-16 2003-07-24 Atofina Porous membrane based on a mixture of a fluoropolymer and a silane

Also Published As

Publication number Publication date
JPH0713170B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
JPH10212395A (en) Resin composition and semiconductor device produced by using the same
JP2701695B2 (en) Epoxy resin composition and semiconductor device
JPH02212541A (en) Liquid resin composition for semiconductor sealing
JP5074814B2 (en) Adhesive composition and method of using the same
JPH01299862A (en) Epoxy resin composition for semiconductor sealing
JPH0288621A (en) Epoxy resin composition for sealing semiconductor
JPH08311168A (en) Epoxy resin composition for sealing optical semiconductor element and optical semiconductor device using same
JP7454906B2 (en) Underfill material, electronic component device, and method for manufacturing electronic component device
JPH0967553A (en) Resin paste for die bonding
JPH0841168A (en) Liquid epoxy resin composition and semiconductor device
JPH09302201A (en) Epoxy resin composition for hermetic sealing
JPH03143944A (en) Liquid resin composition for semiconductor
KR100189095B1 (en) Epoxy resin compositions for sealing semiconductor precisely
JPS606383B2 (en) Coating resin composition
JPH039920A (en) Low-viscosity epoxy resin composition
JPH04122715A (en) Liquid epoxy resin composition and its cured product
JPH064838B2 (en) Adhesive composition
JPH0639517B2 (en) Epoxy resin composition
JP3261845B2 (en) Semiconductor device
JP2001151861A (en) Epoxy resin composition and semiconductor device
JP2004200349A (en) Lead frame for semiconductor, and semiconductor device using the same
JPH04320359A (en) Semiconductor device
JP2000103940A (en) Epoxy resin composition and semiconductor sealing device
JP2591365B2 (en) Liquid epoxy resin composition and semiconductor device
JPH11158354A (en) Resin composition for sealing and resin-sealed semiconductor device