JPH02205065A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPH02205065A
JPH02205065A JP2423289A JP2423289A JPH02205065A JP H02205065 A JPH02205065 A JP H02205065A JP 2423289 A JP2423289 A JP 2423289A JP 2423289 A JP2423289 A JP 2423289A JP H02205065 A JPH02205065 A JP H02205065A
Authority
JP
Japan
Prior art keywords
insulating film
metal wiring
integrated circuit
polysilicon resistor
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2423289A
Other languages
Japanese (ja)
Inventor
Akio Nakamura
彰男 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP2423289A priority Critical patent/JPH02205065A/en
Publication of JPH02205065A publication Critical patent/JPH02205065A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the resistance of a polycrystalline silicon resistor with high reproducibility by a method wherein a second metal wirings provided on a third insulating film formed on a first metal wiring are directly brought into contact with the surface of the polycrystalline silicon resistor to use the second metal wirings as the integrated circuit internal connection wirings of the polycrystalline silicon resistor. CONSTITUTION:After a first insulating film 2 is formed on a silicon substrate 1, a polycrystalline silicon resistor 3 doped with P-type impurity is formed. After a second insulating film 4 is formed, a first metal wiring 5 is formed. After a thermal treatment is applied to obtain an ohmic contact with the foundation, a third insulating film 6 is formed by a plasma CVD method. Then organic solvent containing Si is applied to the surface of the insulating film 6 to form a spin-on-glass layer. After that, a thermal treatment is applied for leveling, apertures 7 are drilled, second metal wirings 8 are formed and, after a protective film is formed, a thermal treatment is applied to remove plasma application damages produced by plasma dry etching.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、シリコン基板上に配設された抵抗値のばらつ
きが小さい、ポリシリコン抵抗体を有する半導体集積回
路装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor integrated circuit device having a polysilicon resistor disposed on a silicon substrate and having a small variation in resistance value.

従来の技術 近年、高速化する半導体集積回路装置にあっては、寄生
容量が小さいポリシリコン抵抗がよく使用される。
2. Description of the Related Art In recent years, polysilicon resistors with small parasitic capacitance are often used in semiconductor integrated circuit devices that are becoming faster.

以下に従来の半導体集積回路装置について説明する。第
2図は、従来の半導体集積回路装置の断面構造図を示す
ものである。第2図において、1はシリコン基板、2は
第1絶縁膜、3はポリシリコン抵抗体、4は第2絶縁膜
、5は第1金属配線、6は第3絶縁膜、8は第2金属配
線、9は接続部、10は合金層である。
A conventional semiconductor integrated circuit device will be explained below. FIG. 2 shows a cross-sectional structural diagram of a conventional semiconductor integrated circuit device. In FIG. 2, 1 is a silicon substrate, 2 is a first insulating film, 3 is a polysilicon resistor, 4 is a second insulating film, 5 is a first metal wiring, 6 is a third insulating film, and 8 is a second metal 9 is a wiring, 9 is a connection portion, and 10 is an alloy layer.

以上のように構成された半導体集積回路において、ポリ
シリコン抵抗体3の接続部9では、第1金属配線5がポ
リシリコン抵抗体3と直接接続されている。
In the semiconductor integrated circuit configured as described above, the first metal wiring 5 is directly connected to the polysilicon resistor 3 at the connecting portion 9 of the polysilicon resistor 3 .

発明が解決しようとする課題 しかしながら、上記の従来の構成では、第1金属配線5
を集積回路内部接続配線としているため、第2金属配線
5と下地とのオーミック接触を得るための約400℃で
15分程度の熱処理および第3絶縁膜をスピンオンガラ
スを含む複層膜で構成する場合、450〜500℃で3
0分程度の平坦化熱処理、さらに、保護膜形成後に、プ
ラズマドライエツチングのプラズマ照射ダメージを除去
する400〜450℃で15分程度の熱処理がすべて、
第1金属配線5とポリシリコン抵抗体3との接続部9に
加わり、このため第1金属配線5の中の金属粒子が過剰
に拡散、合金化し、第1金属配線5とポリシリコン抵抗
体3との接続部9での合金層10が、接続部9の端部か
ら横方向へ1.5〜2μm程度しみ出してしまい、ポリ
シリコン抵抗体3の長さによっては、その抵抗値のばら
つきが30%〜50%にも達したり、ショートしてしま
うという欠点を有していた。
Problems to be Solved by the Invention However, in the above conventional configuration, the first metal wiring 5
Since this is used as an internal connection wiring of an integrated circuit, heat treatment is performed at approximately 400° C. for approximately 15 minutes to obtain ohmic contact between the second metal wiring 5 and the underlying layer, and the third insulating film is composed of a multilayer film containing spin-on glass. 3 at 450-500℃
Flattening heat treatment for about 0 minutes, and after forming the protective film, heat treatment for about 15 minutes at 400 to 450°C to remove plasma irradiation damage from plasma dry etching.
The metal particles in the first metal wiring 5 are excessively diffused and alloyed, and the first metal wiring 5 and the polysilicon resistor 3 are connected to each other. The alloy layer 10 at the connection part 9 with the polysilicon resistor 9 seeps out laterally by about 1.5 to 2 μm from the end of the connection part 9, and depending on the length of the polysilicon resistor 3, the resistance value may vary. It had the disadvantage that it could reach 30% to 50% or short circuit.

本発明は、上記従来の課題を解決するもので、ポリシリ
コン抵抗体の抵抗値を再現性よく得られる半導体集積回
路装置を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and aims to provide a semiconductor integrated circuit device in which the resistance value of a polysilicon resistor can be obtained with good reproducibility.

課題を解決するための手段 この目的を達成するために本発明の半導体集積回路装置
は、第1金属配線上に被着した第3絶縁膜上に配設する
第2金属配線が、ポリシリコン抵抗体の表面に直接接続
した構成を有し、第2金属配線をポリシリコン抵抗体の
集積回路内部接続配線としている。
Means for Solving the Problems In order to achieve this object, the semiconductor integrated circuit device of the present invention provides a semiconductor integrated circuit device in which the second metal wiring disposed on the third insulating film deposited on the first metal wiring is a polysilicon resistor. It has a structure in which it is directly connected to the surface of the body, and the second metal wiring is used as the internal connection wiring of the integrated circuit of the polysilicon resistor.

作用 この構成によって、接続部ではポリシリコン抵抗体の表
面と第2金属配線が直接接触する。このため第2金属配
線とポリシリコン抵抗体との接続部では、第1金属配線
のオーミック接触用の熱処理および第3絶縁膜の平坦化
熱処理を受けないので、過剰な合金層をおさえ、従って
接続部からの合金層のしみ出しを制御でき、ポリシリコ
ン抵抗体の抵抗値のばらつきを低減することができ、抵
抗値の再現性のよい半導体集積回路装置を得ることがで
きる。
Effect: With this configuration, the surface of the polysilicon resistor and the second metal wiring are in direct contact at the connection portion. Therefore, at the connection between the second metal wiring and the polysilicon resistor, the first metal wiring is not subjected to ohmic contact heat treatment and the third insulating film is not subjected to flattening heat treatment, so the excess alloy layer is suppressed and the connection is made. It is possible to control the seepage of the alloy layer from the portion, reduce variations in the resistance value of the polysilicon resistor, and obtain a semiconductor integrated circuit device with good resistance value reproducibility.

実施例 以下本発明の一実施例について図面を参照しながら説明
する。
EXAMPLE An example of the present invention will be described below with reference to the drawings.

第1図は、本発明の一実施例における半導体集積回路装
置の断面構造図を示すものである。第1図において、シ
リコン基板1上に第1絶縁膜2、例えばシリコン酸化膜
を0.5μmの厚さで形成した後、P型にドープしたポ
リシリコン抵抗体3を形成する。その後、第2絶縁膜4
を、例えばシリコン酸化膜を0.1μmの厚さで構成し
た後、第1金属配線5として、Siを1%含むアルミニ
ウムを厚み1μm形成する。その後、下地とのオーミッ
ク接触を得る熱処理として、例えば380℃15分の熱
処理を施した後、第3絶縁膜6として、例えばシリコン
酸化膜をプラズマCVD法により約0.5μm形成した
上部に、Siを含んだ有機溶剤を塗布し、スピンオンガ
ラスを形成する。そめ後、400〜500℃で30分程
度の平坦化熱処理を施し、開講部7を開口し、第2金属
配線8を形成し、保護膜形成後にプラズマドライエツチ
ングのプラズマ照射ダメージを除去する400〜450
℃で15分程度の熱処理を施す。
FIG. 1 shows a cross-sectional structural diagram of a semiconductor integrated circuit device according to an embodiment of the present invention. In FIG. 1, a first insulating film 2, for example a silicon oxide film, is formed to a thickness of 0.5 μm on a silicon substrate 1, and then a P-type doped polysilicon resistor 3 is formed. After that, the second insulating film 4
For example, after forming a silicon oxide film with a thickness of 0.1 .mu.m, aluminum containing 1% Si is formed to a thickness of 1 .mu.m as the first metal wiring 5. Thereafter, heat treatment is performed at 380° C. for 15 minutes to obtain ohmic contact with the base, and then, as the third insulating film 6, a silicon oxide film is formed to a thickness of about 0.5 μm by plasma CVD. A spin-on glass is formed by applying an organic solvent containing . After cooling, a flattening heat treatment is performed at 400 to 500° C. for about 30 minutes to open the opening part 7, form the second metal wiring 8, and after forming the protective film, remove the plasma irradiation damage caused by plasma dry etching. 450
Heat treatment is performed at ℃ for about 15 minutes.

以上のように構成された半導体集積回路において、ポリ
シリコン抵抗体の接続部9には、第1金属配線5は形成
されず、第2金属配線8のみが直接接続される。このた
め第2金属配線8とポリシリコン抵抗体3との接続部9
では第1釜属配線の下地とのオーミック接触を得るため
の熱処理および第3絶縁膜の平坦化熱処理を受けないの
で、金属粒子の過剰な拡散が制御され、合金層のしみ出
\1 しが0,3μm11度以下と従来の175以下に低減さ
れる。これにともない、ポリシリコシ抵抗−のばらつき
も10%程度まで低減可能ヤあ乞。′なお、ポリシリL
:1′:/抵抗体と第2金属配線間の合釜化熱処禅は、
保護膜形成後の400〜450℃15分の熱処理で、充
分小さく、安定したコンタクト抵抗が得られそいる。ま
た、コシ多りト数はポリシリコン抵抗体1個;巳つき、
等価回路にMでいくつあってもよいことは明白である。
In the semiconductor integrated circuit configured as described above, the first metal wiring 5 is not formed at the connection portion 9 of the polysilicon resistor, and only the second metal wiring 8 is directly connected. Therefore, the connecting portion 9 between the second metal wiring 8 and the polysilicon resistor 3
Since the heat treatment for obtaining ohmic contact with the base of the first pot metal wiring and the flattening heat treatment for the third insulating film are not performed, excessive diffusion of metal particles is controlled and the seepage of the alloy layer is prevented. It is reduced to 0.3 μm and 11 degrees or less, which is 175 or less than the conventional value. Along with this, the variation in polysilicon resistance can be reduced to about 10%. 'In addition, polysili L
:1':/The heat treatment process between the resistor and the second metal wiring is as follows:
A sufficiently small and stable contact resistance can be obtained by heat treatment at 400 to 450° C. for 15 minutes after forming the protective film. In addition, the number of stiffness is 1 polysilicon resistor;
It is obvious that there may be any number of M in the equivalent circuit.

発明の効果 以上のように、本発明によれば、第1金属配線上に被着
した第3絶縁膜上に配設する第2金属配線が、ポリシリ
コン抵抗体の表面に直接接続した構成により、第2金属
配線とポリシリコン抵抗体との接触部では第1金属配線
のオーミック接触用の熱処理および第3絶縁膜の平坦化
熱処理を受けないので、過剰な合金層をおさえ、従って
接続部からの合金層のしみ出しを制御でき、ポリシリコ
ン抵抗体の抵抗値のばらつきを低減でき、抵抗値の再現
性のよい優れた半導体集積回路装置を実現できる。
Effects of the Invention As described above, according to the present invention, the second metal wiring disposed on the third insulating film deposited on the first metal wiring is directly connected to the surface of the polysilicon resistor. Since the contact area between the second metal wiring and the polysilicon resistor is not subjected to the heat treatment for ohmic contact of the first metal wiring and the flattening heat treatment of the third insulating film, the excess alloy layer is suppressed and the contact area is removed from the connection area. The seepage of the alloy layer can be controlled, the variation in the resistance value of the polysilicon resistor can be reduced, and an excellent semiconductor integrated circuit device with good resistance value reproducibility can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例半導体集積回路装置の断面
構造図、第2図は、従来の半導体集積回路装置の断面構
造図である。 2・・・・・・第1絶縁膜、3・・・・・・ポリシリコ
ン抵抗体4・・・・・・第2絶縁膜、5・・・・・・第
1金属配線、6・・・・・・第3絶縁膜、7・・・・・
・開口部、8・・・・・・第2金属配線。
FIG. 1 is a cross-sectional structural diagram of a semiconductor integrated circuit device according to an embodiment of the present invention, and FIG. 2 is a cross-sectional structural diagram of a conventional semiconductor integrated circuit device. 2...First insulating film, 3...Polysilicon resistor 4...Second insulating film, 5...First metal wiring, 6... ...Third insulating film, 7...
- Opening, 8...Second metal wiring.

Claims (1)

【特許請求の範囲】[Claims] 第1絶縁膜上に配設されたポリシリコン抵抗体と、前記
第1絶縁膜および前記ポリシリコン抵抗体を覆って被着
された第2絶縁膜と、前記第2絶縁膜上に配設された第
1金属配線と、前記第1金属配線および前記第2絶縁膜
を覆って被着された第3絶縁膜と、前記ポリシリコン抵
抗体の直上の前記第3絶縁膜上に配設された第2金属配
線とを有し、前記第2金属配線が、前記第2絶縁膜およ
び前記第3絶縁膜を貫通する開講部を介して、前記ポリ
シリコン抵抗体の表面に接続されてなる半導体集積回路
装置。
a polysilicon resistor disposed on a first insulating film; a second insulating film deposited to cover the first insulating film and the polysilicon resistor; and a polysilicon resistor disposed on the second insulating film. a first metal wiring, a third insulating film deposited to cover the first metal wiring and the second insulating film, and a third insulating film disposed directly above the polysilicon resistor. a second metal wiring, and the second metal wiring is connected to the surface of the polysilicon resistor through an opening that penetrates the second insulating film and the third insulating film. circuit device.
JP2423289A 1989-02-02 1989-02-02 Semiconductor integrated circuit device Pending JPH02205065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2423289A JPH02205065A (en) 1989-02-02 1989-02-02 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2423289A JPH02205065A (en) 1989-02-02 1989-02-02 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPH02205065A true JPH02205065A (en) 1990-08-14

Family

ID=12132512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2423289A Pending JPH02205065A (en) 1989-02-02 1989-02-02 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH02205065A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6703666B1 (en) * 1999-07-14 2004-03-09 Agere Systems Inc. Thin film resistor device and a method of manufacture therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6703666B1 (en) * 1999-07-14 2004-03-09 Agere Systems Inc. Thin film resistor device and a method of manufacture therefor
US7276767B2 (en) 1999-07-14 2007-10-02 Agere Systems Inc. Thin film resistor device and a method of manufacture therefor

Similar Documents

Publication Publication Date Title
US4305760A (en) Polysilicon-to-substrate contact processing
JPS6173370A (en) Semiconductor device and method of producing same
JPH10303372A (en) Semiconductor integrated circuit and producing method therefor
JPS61214555A (en) Semiconductor device
JPS6213819B2 (en)
JPH0574958A (en) Semiconductor device and manufacture thereof
JPH02205065A (en) Semiconductor integrated circuit device
JPS5950104B2 (en) Hand tie souchi
JPH0258259A (en) Manufacture of semiconductor device
JPS62235739A (en) Manufacture of semiconductor device
JPH04361566A (en) Semiconductor integrated circuit
JPS609155A (en) Memory device
JPS6259463B2 (en)
JP2608889B2 (en) Method for manufacturing semiconductor device
JP2719143B2 (en) Semiconductor device
JPS5994437A (en) Semiconductor device
JPH028463B2 (en)
JPH10223842A (en) Semiconductor integrated circuit and manufacturing method thereof
JPS60121769A (en) Manufacture of mis semiconductor device
JPS6160578B2 (en)
JPS6316655A (en) Manufacture of semiconductor device
JPS63177454A (en) Manufacture of semiconductor device
JPS6140133B2 (en)
JPH0322062B2 (en)
JPS5912010B2 (en) Manufacturing method of semiconductor device