JPH02204388A - Production of single crystal - Google Patents

Production of single crystal

Info

Publication number
JPH02204388A
JPH02204388A JP2457889A JP2457889A JPH02204388A JP H02204388 A JPH02204388 A JP H02204388A JP 2457889 A JP2457889 A JP 2457889A JP 2457889 A JP2457889 A JP 2457889A JP H02204388 A JPH02204388 A JP H02204388A
Authority
JP
Japan
Prior art keywords
pulling
single crystal
crystal
weight
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2457889A
Other languages
Japanese (ja)
Other versions
JPH0699227B2 (en
Inventor
Keiji Katagiri
片桐 圭司
Hironori Kusumi
久須美 大乗
Teru Araki
荒木 暉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP1024578A priority Critical patent/JPH0699227B2/en
Publication of JPH02204388A publication Critical patent/JPH02204388A/en
Publication of JPH0699227B2 publication Critical patent/JPH0699227B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To grow the single crystal having lessened crystal defects with good reproducibility by measuring the change rate of the crystal weight within the specific time right after the start of pulling up at the time of pulling up the single crystal by a Czochralski method, comparing the measured value and a preset reference and determining the surface temp. of the melt at the time of starting the pulling up. CONSTITUTION:A weight measuring instrument 14 is connected to a single crystal pulling-up shaft 12 and the pulling-up of the single crystal is started; thereafter, the change range of the crystal weight is successively calculated in accordance with the detection signal from the weight measuring instrument 14. The surface temp. of the melt at the start of the pulling-up is so determined that the locus of the change rate enters the preset permissible range in at least 20 minutes after the start of the pulling up.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、単結晶製造方法に関し、特にチョクラルスキ
ー法(液体封圧チョクラルスキー法を含む)による単結
晶の成長方法に利用される技術に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a single crystal, and in particular to a method for growing a single crystal by the Czochralski method (including the liquid confinement Czochralski method). Regarding technology.

[従来の技術] GaAsやInPのような化合物半導体単結晶の成長方
法の一つに、るつぼ内に原料を入れて加熱、溶融させ、
その融液表面に種結晶を接触させてから徐々に引き上げ
ることによって結晶方位の揃った単結晶を成長させるチ
ョクラルスキー法がある。
[Prior Art] One of the methods for growing compound semiconductor single crystals such as GaAs and InP is to place raw materials in a crucible and heat and melt them.
There is the Czochralski method, in which a seed crystal is brought into contact with the surface of the melt and then gradually pulled up to grow a single crystal with uniform crystal orientation.

このチョクラルスキー法による結晶成長においては種結
晶引上げ開始時における融液表面の温度が高すぎると種
結晶が溶けてしまって結晶は成長せず、また低すぎると
結晶欠陥が発生する。そのため、チョクラルスキー法で
は種付は時の融液温度と引上げタイミングの決定が非常
に重要である。
In crystal growth by this Czochralski method, if the temperature of the melt surface at the start of seed crystal pulling is too high, the seed crystal will melt and the crystal will not grow, and if it is too low, crystal defects will occur. Therefore, in the Czochralski method, it is very important to determine the temperature of the melt during seeding and the timing of pulling.

種付は時の融液表面温度を正確に知るには、熱電対を融
液表面に接触させて裕ればよいが、熱な対を挿入するこ
とにより融液の対流が乱れ、融液内温変分布が変化して
、単結晶を成長させることができなくなってしまう。
To accurately determine the melt surface temperature during seeding, it is sufficient to place a thermocouple in contact with the melt surface, but inserting a hot couple disrupts the convection of the melt and The temperature distribution changes, making it impossible to grow a single crystal.

また、光温度計を用いて、非接触で融液表面の温度を測
定することも可能であるが、この場合、炉内の雰囲気ガ
スやその対流、炉の窓材の影響があり、正確な融液表面
の温度を再現性よく測定できるまでには至っていない。
It is also possible to measure the temperature of the melt surface non-contact using an optical thermometer, but in this case, it is affected by the atmospheric gas in the furnace, its convection, and the furnace window material, making it difficult to accurately measure the temperature. It has not yet been possible to measure the temperature of the melt surface with good reproducibility.

そこで、従来は、炉体に設けられたのぞき窓より種結晶
と融液との接触部の状態を観察して、目視により引上げ
開始タイミングを決定していた。
Therefore, conventionally, the state of the contact area between the seed crystal and the melt was observed through a viewing window provided in the furnace body, and the pulling start timing was determined visually.

〔発明が解決しようとする課M] しかしながら、上記目視による種付は温度測定方法にあ
っては、正確な温度の決定が困難であり。
[Problem M to be Solved by the Invention] However, when the above-mentioned visual seeding is a temperature measurement method, it is difficult to accurately determine the temperature.

長年の経験と熟練を要するとともに1作業者によるバラ
ツキが大きく単結晶の育成ごとに形状が異なってしまい
再現性が十分でなく、結晶欠陥も生じ易いという問題点
があった。
This method requires many years of experience and skill, has large variations from one operator to another, and has a different shape each time the single crystal is grown, resulting in insufficient reproducibility and the problem of crystal defects being likely to occur.

この発明は上記のような問題点に着目してなされたもの
で、チョクラルスキー法による単結晶の育成工程におい
て、結晶欠陥が少なくかつ形状のバラツキの少ない単結
晶を再現性よく成長させることができるようにすること
を目的とする。
This invention was made in view of the above-mentioned problems, and it is possible to grow single crystals with fewer crystal defects and less variation in shape with good reproducibility in the single crystal growth process using the Czochralski method. The purpose is to make it possible.

[課題を解決するための手段] 本発明者らは、融液温度を変えて引上げを繰返し行ない
、そのときの結晶重量の変化率について調べた。その結
果、第2図(a)〜(c)に示すように、融液表面温度
T intによって結晶重量の変化率の軌跡が異なるこ
とを見出した。すなわち、融液表面温度が高い状態から
引き上げるほど、同図(a)のごとく軌跡が緩やかにな
り、低い状態から引き上げるほど軌跡が急峻になるとい
うものである。さらに、この重量の変化率の軌跡が少な
くとも引上げ開始後20〜30分の間だけ、最適温度か
ら引き上げた場合の軌跡に合致すれば、十分に再現性の
良い結晶成長を行なえることを見出した。
[Means for Solving the Problems] The present inventors repeatedly carried out pulling while changing the melt temperature, and investigated the rate of change in crystal weight at that time. As a result, as shown in FIGS. 2(a) to 2(c), it was found that the locus of the rate of change in crystal weight differs depending on the melt surface temperature T int. That is, as the melt surface temperature is raised from a high state, the trajectory becomes gentler, as shown in FIG. 2(a), and as the melt surface temperature is raised from a lower state, the trajectory becomes steeper. Furthermore, they found that if the trajectory of the weight change rate matches the trajectory when the temperature is lifted from the optimum temperature for at least 20 to 30 minutes after the start of pulling, crystal growth can be achieved with sufficient reproducibility. .

この発明は上記のような知見に基づいてなされたもので
、単結晶引上げ軸に重量測定器を接続して単結晶の引上
げを開始し、その後上記型1’J定器からの検出信号に
基づいて結晶重量の変化率を逐次算出し、少なくとも引
上げ開始後20分間その変化率の軌跡が予め設定してお
いた許容範囲に入るように引上げ開始時の融液表面温度
を決定するようにした。
This invention was made based on the above-mentioned knowledge, and a weight measuring device is connected to the single crystal pulling shaft to start pulling the single crystal, and then, based on the detection signal from the above-mentioned type 1'J measuring device, The rate of change in crystal weight was calculated sequentially, and the surface temperature of the melt at the start of pulling was determined so that the trajectory of the rate of change fell within a preset tolerance range for at least 20 minutes after the start of pulling.

〔作用] 上記した手段によれば1重量の変化率dv/dtの変化
を一定の範囲内にして単結晶を引上げることにより、再
現性の良い結晶成長が可能となる。
[Operation] According to the above-described means, crystal growth with good reproducibility can be achieved by pulling a single crystal while keeping the change rate of 1 weight dv/dt within a certain range.

[実施例] 第1図は、本発明の一実施例において使用する単結晶引
上げ炉を示すもので、密閉型の高圧容器3内には、略円
筒状のヒータ4が配設されており。
[Embodiment] FIG. 1 shows a single crystal pulling furnace used in an embodiment of the present invention, in which a substantially cylindrical heater 4 is disposed in a closed high-pressure vessel 3.

このヒータ4の中央には1口径約6インチのpBN!2
のるつぼ5が配置されている。そして、このるつぼ5中
には、融液6が入れられており、融液6の上面はB20
.からなる液体封止剤N7で覆われている。また、るつ
ぼ5は、その下端に固着された支持軸8により回転およ
び上下動可能に支持されている。9は支持N8の下端に
設けられた支持軸回転・上下鄭動機構である。なお、1
1はヒータ4の外周を囲続するように配置された断熱部
材である。
In the center of this heater 4 is a pBN with a diameter of about 6 inches! 2
A crucible 5 is arranged. A melt 6 is placed in this crucible 5, and the upper surface of the melt 6 is B20.
.. It is covered with a liquid sealant N7 consisting of. Further, the crucible 5 is rotatably and vertically supported by a support shaft 8 fixed to its lower end. Reference numeral 9 denotes a support shaft rotation and vertical movement mechanism provided at the lower end of the support N8. In addition, 1
Reference numeral 1 denotes a heat insulating member disposed so as to surround the outer periphery of the heater 4 .

一方、るつぼ5の上方からは、高圧容器3内に結晶引上
げ軸12が回転かつ上下動可能に垂下されており、この
結晶引上げ軸12の下端に種結晶を保持し、るつぼ5中
の融液6の表面に接触させることができるようになって
いる。13は結晶9上げ軸12の上端に設けられた引上
げ軸回転・−E下匪動機構である。また、結晶引上げ軸
12には。
On the other hand, a crystal pulling shaft 12 is suspended from above the crucible 5 into the high pressure container 3 so as to be able to rotate and move vertically. It is possible to contact the surface of 6. Reference numeral 13 denotes a pulling shaft rotation/-E lowering mechanism provided at the upper end of the crystal 9 lifting shaft 12. In addition, the crystal pulling shaft 12 has a

結晶の重量を測定できる重量センサ14が取付けられて
いる。
A weight sensor 14 is attached that can measure the weight of the crystal.

さらに、高圧容器3の側壁上部には、高圧のArガスを
導入するためのガス導入管15が接続され、側壁下部に
は、そのArガスを高圧容器3外部へ排出するガス排出
管16が接続されている。
Furthermore, a gas introduction pipe 15 for introducing high-pressure Ar gas is connected to the upper part of the side wall of the high-pressure container 3, and a gas exhaust pipe 16 for discharging the Ar gas to the outside of the high-pressure container 3 is connected to the lower part of the side wall. has been done.

これらガス導入管15およびガス排出管16を介して高
圧容器3内を加圧、減圧して内部圧力を所□゛定圧力と
することができるようになっている。
The interior of the high-pressure container 3 can be pressurized or depressurized through the gas introduction pipe 15 and the gas discharge pipe 16 to maintain the internal pressure at a predetermined constant pressure.

以下、上記構成の単結晶引上げ炉を用いて、 LEC法
によってr n P 4Ji結晶を育成する場合の実施
例について説明する。
Hereinafter, an example will be described in which an r n P 4Ji crystal is grown by the LEC method using the single crystal pulling furnace configured as described above.

先ず、原料としてInP多結晶を用意し、これをるつぼ
S中に入れる。
First, InP polycrystal is prepared as a raw material and placed in a crucible S.

次に、B、O,を封止剤としてるつぼ5内に入れ、この
るつぼ5をヒータ4の内側に設置した後、高圧容器3内
に高圧のArガスを導入するとともに、ヒータ4を加熱
してるつぼ5内の原料を融解させる。
Next, B, O, and the like are placed in a crucible 5 as a sealant, and the crucible 5 is placed inside the heater 4. High-pressure Ar gas is introduced into the high-pressure container 3, and the heater 4 is heated. The raw material in the crucible 5 is melted.

次に、引上げ軸回転・上下駆動機構13を作動させて先
ず引上げfi12を降下させて、その下端に保持されて
いる種結晶をるつぼ5内の原料融液6の表面に接触させ
る。
Next, the pulling shaft rotation/vertical drive mechanism 13 is activated to first lower the pulling fi 12 to bring the seed crystal held at its lower end into contact with the surface of the raw material melt 6 in the crucible 5.

単結晶の引上げを開始した後、重量センサ14による重
量測定で、検出された重量変化ΔWより重量の変化率d
w/dtを算出し、その変化率の軌跡が少なくとも20
分間第3図の斜線で示す許容範囲から分れないように引
上げσa始時の融液表面温度を決定する。許容範囲から
外れた場合は再度融液表面温度を調節して、単結晶を引
き上げる。
After starting to pull the single crystal, the weight is measured by the weight sensor 14, and the weight change rate d is determined from the detected weight change ΔW.
w/dt is calculated, and the trajectory of its rate of change is at least 20
The melt surface temperature at the beginning of pulling σa is determined so as not to fall within the allowable range indicated by diagonal lines in FIG. If it is outside the allowable range, adjust the melt surface temperature again and pull the single crystal.

本発明者らは、上記実施例に従って引上げ開始直後の重
量変化率の軌跡が第3図の斜線内に入っていることを確
認した後、引き続きマニュアル制御でInP単結晶イン
ゴットの成長を行なった。
The inventors of the present invention confirmed that the trajectory of the weight change rate immediately after the start of pulling fell within the hatched area in FIG. 3 according to the above-mentioned example, and then continued to grow an InP single crystal ingot under manual control.

その結果、同一形状で欠陥も少ないInP単結晶を再現
性良く得ることができることを確認した。
As a result, it was confirmed that an InP single crystal with the same shape and fewer defects could be obtained with good reproducibility.

[発明の効果] 以上説明したようにこの発明は、単結晶引上げ軸に重量
測定器を接続して単結晶の引上げを開始し、その後上記
ff1ffi測定器からの検出信号に基づいて結晶重量
の変化率を逐次算出し、少なくとも引上げ開始後20分
間その変化率の軌跡が予め設定しておいた許容範囲に入
るように引上げ11時の融液温度を決定するようにした
ので、同一形状でしかも欠陥の少ない単結晶を再現性よ
く成長させることができるという効果がある。
[Effects of the Invention] As explained above, the present invention connects a weight measuring device to the single crystal pulling shaft to start pulling the single crystal, and then measures changes in the weight of the crystal based on the detection signal from the ff1ffi measuring device. The melt temperature at the 11th time of pulling is determined so that the trajectory of the rate of change falls within a preset tolerance range for at least 20 minutes after the start of pulling, so even if the shape is the same, there will be no defects. This method has the effect of being able to grow single crystals with good reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施に使用した単結晶引上げ炉の一例
を示す縦断面図、 第2図(a、)、(b)、(c)は引上げ開始時の融液
表面温度を変えたときの重量の変化率の軌跡の違いを示
すグラフ、 第3図は本発明によりInP単結晶を成長させる場合の
引上げ開始直後における重量の変化率の推移の許容範囲
を示すグラフである。 3・・・・高圧容器、4・・・・ヒータ、5・・・・る
つぼ。 6・・・・原料融液、7・・・・液体封止MM、8・・
・・支持軸、12・・・・結晶引上げ軸、14・・・・
重量センサ、15・・・・ガス導入管、16・・・・ガ
ス排第  1 図 出管。 第 図 瞬間 (分) To>Tb>TC 晴間 げ)
Figure 1 is a vertical cross-sectional view showing an example of a single crystal pulling furnace used in the implementation of the present invention, and Figures 2 (a,), (b), and (c) show cases in which the melt surface temperature at the start of pulling was changed. FIG. 3 is a graph showing the permissible range of the weight change rate immediately after the start of pulling when growing an InP single crystal according to the present invention. 3... High pressure container, 4... Heater, 5... Crucible. 6... Raw material melt, 7... Liquid sealed MM, 8...
...Support shaft, 12...Crystal pulling shaft, 14...
Weight sensor, 15... Gas inlet pipe, 16... Gas exhaust No. 1 exit pipe. Figure Moment (minutes) To>Tb>TC (Sunny weather)

Claims (1)

【特許請求の範囲】[Claims] (1)単結晶引上げ軸に重量測定器を接続して単結晶の
引上げを開始し、その後上記重量測定器からの検出信号
に基づいて結晶重量の変化率を逐次算出し、少なくとも
引上げ開始後20分間その変化率の軌跡が予め設定して
おいた許容範囲に入るように引上げ開始時の融点表面温
度を決定するようにしたことを特徴とする単結晶の製造
方法。
(1) Connect a weight measuring device to the single crystal pulling shaft to start pulling the single crystal, and then sequentially calculate the rate of change in crystal weight based on the detection signal from the weight measuring device, at least 20 minutes after the start of pulling. A method for producing a single crystal, characterized in that the melting point surface temperature at the start of pulling is determined so that the locus of the rate of change per minute falls within a preset tolerance range.
JP1024578A 1989-02-02 1989-02-02 Single crystal manufacturing method Expired - Lifetime JPH0699227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1024578A JPH0699227B2 (en) 1989-02-02 1989-02-02 Single crystal manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1024578A JPH0699227B2 (en) 1989-02-02 1989-02-02 Single crystal manufacturing method

Publications (2)

Publication Number Publication Date
JPH02204388A true JPH02204388A (en) 1990-08-14
JPH0699227B2 JPH0699227B2 (en) 1994-12-07

Family

ID=12142048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1024578A Expired - Lifetime JPH0699227B2 (en) 1989-02-02 1989-02-02 Single crystal manufacturing method

Country Status (1)

Country Link
JP (1) JPH0699227B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56164098A (en) * 1980-05-21 1981-12-16 Toshiba Corp Preparation of single crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56164098A (en) * 1980-05-21 1981-12-16 Toshiba Corp Preparation of single crystal

Also Published As

Publication number Publication date
JPH0699227B2 (en) 1994-12-07

Similar Documents

Publication Publication Date Title
JP4253117B2 (en) Method and apparatus for controlling the growth of silicon crystals
JP2003528017A (en) Method and apparatus for controlling the diameter associated with a silicon crystal during a growth process
JP4287657B2 (en) Method and apparatus for preparing molten silicon by melting from a polycrystalline silicon charge
JPH0438719B2 (en)
JP3704710B2 (en) Method of setting seed crystal deposition temperature and silicon single crystal manufacturing apparatus
JPH02204388A (en) Production of single crystal
JP4039055B2 (en) Single crystal growth method and growth apparatus
JPH02204389A (en) Production of single crystal
JP3551270B2 (en) Single crystal manufacturing method
JP3109950B2 (en) Method for growing semiconductor single crystal
JP2001146496A (en) Single crystal pulling method
JPH01212291A (en) Method and apparatus for growing crystal
JP3991400B2 (en) Single crystal growth method and apparatus
WO2023219035A1 (en) Manufacturing method and manufacturing device for oxide single crystal
JPH01317188A (en) Production of single crystal of semiconductor and device therefor
JPH09315887A (en) Production of single crystal and device therefor
JPS63195190A (en) Growth of single crystal
JPH09118585A (en) Apparatus for pulling up single crystal and method for pulling up single crystal
JP4173216B2 (en) Single crystal manufacturing method
JPS61122187A (en) Apparatus for pulling up single crystal
JP2022092506A (en) Manufacturing method for semiconductor single crystal and manufacturing apparatus for semiconductor single crystal
JPS61106498A (en) Method for growing cdte crystal
JPS6389487A (en) Production of oxide single crystal
JPH0193493A (en) Monitoring of crystal growth
JP2726887B2 (en) Method for manufacturing compound semiconductor single crystal