JPS61106498A - Method for growing cdte crystal - Google Patents

Method for growing cdte crystal

Info

Publication number
JPS61106498A
JPS61106498A JP14257084A JP14257084A JPS61106498A JP S61106498 A JPS61106498 A JP S61106498A JP 14257084 A JP14257084 A JP 14257084A JP 14257084 A JP14257084 A JP 14257084A JP S61106498 A JPS61106498 A JP S61106498A
Authority
JP
Japan
Prior art keywords
furnace
temperature
temp
resistivity
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14257084A
Other languages
Japanese (ja)
Inventor
Morio Wada
守夫 和田
Junichi Suzuki
順一 鈴木
Tsutomu Yamazaki
勉 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP14257084A priority Critical patent/JPS61106498A/en
Publication of JPS61106498A publication Critical patent/JPS61106498A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain the titled crystal having uniform resistivity by eliminating a temp. gradient in a furnace after the CdTe crystal is grown, and cooling slowly the furnace while keeping a uniform temp. distribution in the Bridgman furnace having a temp. gradient between the upper and the lower part. CONSTITUTION:Cd and Te3 in a stoichiometric ratio are charged in a vessel 2, then allowed to react with each other at a low temp. of about 800 deg.C, and alloyed. The alloy is charged into a Bridgman furnace 4 having such a temp. gradient that the temp. of the upper furnace (a) is regulated to 1,150 deg.C and that of the lower furnace (b) is regulated to about 950 deg.C, and allowed to react at about 1,150 deg.C for several hours. Then the vessel 2 is moved to the lower furnace (b) at 950 deg.C, the temp. of the upper furnace (a) is equalized to the temp. of the lower furnace (b), and then the temp. of the upper and the lower furnace is reduced at 10 deg.C/hr cooling velocity.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はのブリッジマン炉を用いたCdTe結晶の成長
法に関し、特にその結晶の比抵抗の均一性の改良に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for growing CdTe crystals using a Bridgman furnace, and particularly to improving the uniformity of resistivity of the crystals.

〈従来技術〉 第2図(a)、(b)、(c)は従来例にお・け、るC
d Teの結晶成長法を示すもので、第2図(a )は
上部にフック1を有する筒状の容器(例えば石英アンプ
ル)2に、純度5N〜6N (99゜999〜99.9
999%)程度のcdおよびTeの結晶3を化学当量比
の割合で収納し、104パスカル(Pa )程度の真空
度で封止したものである。第1図(b)は第1図(a)
の容器2をブリッジマン炉4に挿入した状態を示すもの
で、5は炉心管、6は炉心管5の外壁に設けられたヒー
タである。これらヒータは図示しない制御部により制御
され、例えば上方のイ部で上部炉を形成し、下方の口部
で下部炉を形成する。7は容器2をつるし、図示しない
制御装置により所定の場所に位置させ、または移動させ
るためのワイヤである。
<Prior art> Fig. 2 (a), (b), and (c) are in the conventional example.
Fig. 2(a) shows a crystal growth method for Te. In Fig. 2(a), a cylindrical container (for example, a quartz ampoule) 2 with a hook 1 on the top is filled with a material having a purity of 5N to 6N (99°999 to 99.9%).
CD and Te crystals 3 of approximately 999%) are housed in a chemical equivalent ratio and sealed under a vacuum degree of approximately 104 Pascals (Pa). Figure 1(b) is Figure 1(a)
This figure shows the state in which the container 2 is inserted into the Bridgman furnace 4, where 5 is a furnace core tube and 6 is a heater provided on the outer wall of the furnace core tube 5. These heaters are controlled by a control section (not shown), and, for example, the upper part A forms an upper furnace, and the lower mouth part forms a lower furnace. 7 is a wire for hanging the container 2 and positioning it at a predetermined location or moving it by a control device (not shown).

第2図<C,)は第2図(1))の炉心管5の温度分布
を示すもので、横軸に温度、縦軸に炉心管5の各借賃に
おける温度をプロットしたもので、炉4のほぼ中心から
上の下部炉が1150℃、中心から下の下部炉が950
℃であることを示し、下部炉と下部炉の間に1092℃
のA点が存在することを示している。
Figure 2<C,) shows the temperature distribution of the furnace core tube 5 in Figure 2 (1)), where the horizontal axis is the temperature and the vertical axis is the temperature at each rental of the furnace core tube 5. The lower furnace above approximately the center of furnace 4 is 1150°C, and the lower furnace below the center is 950°C.
℃, 1092℃ between the lower furnace and the lower furnace
This shows that point A exists.

上記の如き構成のブリッジマン炉に、容器2に収納した
C(lとTe’の結晶を800℃付近で低部反応σぜて
合金化し、上部炉イにて1150’Cで数時間程度反応
させ、その後、容器1時間に数mm程度の速度で下部炉
口の方へ下降させ、容器2全体が950℃の領域に達し
た時点でCdTeの結晶成長が終了する。従来はこの時
点でヒータ6への通電を停止し、自然冷却を行なってい
た。
In the Bridgman furnace configured as above, the crystals of C(l and Te' stored in container 2 are alloyed by a lower part reaction σ at around 800°C, and reacted at 1150'C for several hours in the upper furnace A). Then, the container 2 is lowered toward the lower furnace opening at a rate of several mm per hour, and the CdTe crystal growth ends when the entire container 2 reaches a temperature range of 950° C. Conventionally, at this point, the heater Power supply to 6 was stopped and natural cooling was performed.

しかしながら、この従来例においては、容器2の全ての
部分が下部炉口の950℃の領域に達しなかった場合、
成長侵の結晶インゴット全体を均一な状態で冷却するこ
とができない。また、室温まで自然冷却づるため冷却時
の温度降下はがなり急激なため、結晶インゴット内でも
冷却温度の不均一が生じ、従ってcdTe結晶の比抵抗
が不均一になりやすいという欠点がありりた。
However, in this conventional example, if all parts of the container 2 do not reach the 950°C region of the lower furnace mouth,
It is not possible to uniformly cool the entire crystal ingot due to growth erosion. In addition, since the temperature drop during cooling is rapid due to natural cooling to room temperature, the cooling temperature becomes uneven even within the crystal ingot, which has the disadvantage that the specific resistance of the cdTe crystal tends to become uneven. .

〈発明の目的〉 本発明は上記従来技術の欠点に鑑みてなされたもので、
Cd Te結晶成長後の炉の温度パターンを工夫し、均
一な温度のまま徐冷することにより、比抵抗の均一な結
晶を得ることを目的とするもの  。
<Object of the invention> The present invention has been made in view of the drawbacks of the above-mentioned prior art.
The purpose of this method is to obtain crystals with uniform resistivity by devising a temperature pattern in the furnace after CdTe crystal growth and slow cooling while maintaining a uniform temperature.

である。It is.

〈発明の構成〉 この目的を達成する本発明の構成は、カドミウム(Cd
 )とテルリウム(丁e)の結晶を化学当量比の割合で
容器に収納し、800℃付近で低部反応させて合金化し
た後、下部炉が1150℃程度、下部炉が950℃程度
の温度勾配を有するブリッジマン炉に入れ、前記合金化
したCdとTeを1150℃程度で数時間反応させ、次
に950℃程度の下部炉まで移動させて降温し、テルル
化カドミウム(Cd Te )の単結晶を得るようにし
たCd Teの結晶成長法において、結晶成長後、下部
炉の温度を下部炉の950℃程度の温度と一致させ、そ
の後上部および下部の温度を数10℃の程度の速さで降
温させることをを構成上の特徴とするものである。
<Configuration of the Invention> The configuration of the present invention that achieves this object is based on cadmium (Cd).
) and tellurium (Chinese) crystals are stored in a container in a chemically equivalent ratio, and after the lower part reacts and becomes alloyed at around 800°C, the lower furnace is heated to a temperature of approximately 1150°C and the lower furnace to a temperature of approximately 950°C. The alloyed Cd and Te are placed in a Bridgman furnace with a gradient and reacted at about 1150°C for several hours, and then transferred to a lower furnace at about 950°C to cool down and form a monomer of cadmium telluride (CdTe). In the Cd Te crystal growth method to obtain crystals, after crystal growth, the temperature of the lower furnace is made to match the lower furnace temperature of about 950°C, and then the temperature of the upper and lower parts is adjusted at a rate of several tens of degrees Celsius. The structural feature is that the temperature is lowered by .

〈実施例〉 第1図(a)、(b)は本発明の一実施例を示すもので
ある。第2因(a)において、容器2にcdとTeを収
納して封止し、炉4に挿入し、上部炉イ部にて1150
℃で数時間程度反応させ、その後、容器を1時間に数m
m程度の速度で下部炉口の方へ下降させ、容器2全体を
950℃の領域に移動さtICd Teを結晶成長させ
るま・では従来と同様である。本発明では、結晶成長後
の処理の方法に特徴を有するものであり、従来、結晶成
長後はヒータの通電を停止し自然冷却を行なっていたも
のを、制御部7により第1図(b)に示す如(,115
0℃と950℃程度の温度勾配を有する■の状態から上
部炉イの湿度を950’C程度の温度まで下げ、上部炉
イと下部炉口の瀾麿を同じ程度にし、点線で示す■の状
態にし、例えば1時間40℃程度の温度降下速度で徐冷
するものである。上記方法によれば、容器2全体が一様
の温度になった状態で徐冷されるので、比抵抗の均一な
結晶を得ることができる。
<Embodiment> FIGS. 1(a) and 1(b) show an embodiment of the present invention. In the second factor (a), CD and Te are stored and sealed in the container 2, inserted into the furnace 4, and heated to a temperature of 1150 in the upper furnace part.
Let the reaction take place at ℃ for several hours, then change the container several meters per hour.
The process is the same as the conventional method until the entire container 2 is moved to a region of 950° C. and crystal growth of tICd Te is performed. The present invention is characterized by a processing method after crystal growth, and in contrast to conventional methods in which the heater is de-energized and natural cooling is performed after crystal growth, the control unit 7 performs processing as shown in FIG. 1(b). As shown in (,115
From the state of ■ where there is a temperature gradient between 0°C and 950°C, the humidity in the upper furnace A is lowered to a temperature of around 950°C, the humidity at the upper furnace A and the lower furnace mouth are made to be the same, and the temperature gradient in ■ is shown by the dotted line. The temperature is then gradually cooled, for example, at a temperature drop rate of about 40° C. for 1 hour. According to the above method, since the entire container 2 is slowly cooled to a uniform temperature, it is possible to obtain crystals with uniform resistivity.

第3図(a)〜第6図(a、)は従来例による結晶板と
本発明による結晶板との比抵抗の状態を比較したもので
、第7図に示す結晶インゴット2゜を輪切りにした(ハ
)の円盤状のサンプルと、結晶インゴット20の中央部
から矩形状に切り出した(二)の板状のサンプルの表0
面に、1mmピッチの格子状の位置に直径0.4mm程
度のN極を設け、この電極に4端子プa−プを当て全面
に渡って比抵抗を測定したものである。第3図(a )
および第4図(a )は、従来例により作成したサンプ
ルの各部分における比抵抗の強弱の度合を色の濃淡で示
すものであり、図の左側面と上部の数字は各部の位置を
特定するためのものである。第3図(b)および第4図
(1))は第3図(a )および第4図(a )の比抵
抗の度合をグラフ化したもので、縦軸に比抵抗の度合を
、横軸にサンプルンの比抵抗の度合を示すもので、イン
ゴット20の外側部分が比抵抗が高く内側部分が低くな
っており、均一な結晶でないことがわかる。
Figures 3(a) to 6(a) compare the resistivity states of a conventional crystal plate and a crystal plate according to the present invention. Table 0 of the disc-shaped sample of (c) and the plate-shaped sample of (2) cut into a rectangular shape from the center of the crystal ingot 20.
N poles with a diameter of about 0.4 mm were provided on the surface in a lattice-like position with a pitch of 1 mm, and a 4-terminal probe was applied to these electrodes to measure the specific resistance over the entire surface. Figure 3(a)
Figure 4 (a) shows the strength and weakness of resistivity in each part of the sample prepared using the conventional example using color shading, and the numbers on the left side and the top of the figure specify the position of each part. It is for. Figure 3(b) and Figure 4(1)) are graphs of the degree of resistivity in Figures 3(a) and 4(a), with the degree of resistivity on the vertical axis and the degree of resistivity on the horizontal axis. The axis shows the degree of resistivity of the sample, and it can be seen that the outer part of the ingot 20 has a higher resistivity and the inner part has a lower resistivity, indicating that the crystal is not uniform.

第5図(a)および第6図(a )は、本発明の方法に
より作成したサンプルの各部分における比抵抗の強弱の
度合を前記従来例と同様に色の濃淡で示すものであり、
図の左側面と上部の数字は各部の位置を特定するための
ものである。第5図(1) )および第6図(b)は第
5図<a >および第6図〈a)の比抵抗の度合をグラ
フ化したもので、縦軸に比抵−抗の度合を、横軸にサン
プルの位抵抗の度合を示すもので、外側部分と内側部分
の比抵抗の差が従来例に比較して低くなっており、結晶
が均一に成長していることがわかる。
FIGS. 5(a) and 6(a) show the degree of strength of resistivity in each part of the sample prepared by the method of the present invention by color shading, as in the conventional example,
The numbers on the left side and the top of the figure are for identifying the position of each part. Figure 5 (1)) and Figure 6 (b) are graphs of the degree of resistivity in Figure 5 <a> and Figure 6 <a), with the degree of resistivity plotted on the vertical axis. The horizontal axis shows the degree of resistivity of the sample, and it can be seen that the difference in resistivity between the outer part and the inner part is lower than that of the conventional example, indicating that the crystals are growing uniformly.

く効果〉 以上実施例と共に具体的に説明したように、本発明によ
れば比抵抗の均一な結晶を得ることができる。
Effects> As specifically explained above in conjunction with the examples, according to the present invention, a crystal with uniform resistivity can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)は本発明の一実施例を示すもので
、第1図<a >はブリッジマン炉の構成を示す説明図
、第1図(b)は“炉内の湿度分布を示す説明図、第3
図、第4図は従来例により作成した結晶の各部分におけ
る比抵抗の度合を示す説ある。 2・・・容器、3・・・カドミウム(Cd )とテルリ
ウム(Te )の結晶、4・・・ブリッジマン炉、5・
・・炉心管、6・・・ヒータ、イ・・・下部炉、口・・
・下部炉。 ON−j (Od)ON−j lf) 0)(N +s
(OaOFv−−一−y−(N (N (N〜へ24 
     ご国=Eコお1 2        圓賢− 〇 〇へぐ<Dψ0へぐのω Nぐu) 00 v−F−−v−一へへへヘヘ2   
  ′ ・°°゛″□′″“1勺    −゛(b) (b) (a) 0 (”J +s(OIn 0 (N −j to a
)へ+JCa)w−−r−−ヘヘヘ(NIN2    
    wIMB ON<u) coo(N−jtj)a)N +541)
の−P−jrrへへN〜N〇−暫・・・−・−゛・・、
?、・、・、・、−・t・・・−コ    (b) 笛6陳 手続補正書(ハ)
FIGS. 1(a) and (b) show an embodiment of the present invention, FIG. 1(a) is an explanatory diagram showing the configuration of a Bridgman furnace, and FIG. Explanatory diagram showing humidity distribution, 3rd
FIG. 4 shows the degree of resistivity in each part of a crystal prepared according to a conventional example. 2... Container, 3... Cadmium (Cd) and tellurium (Te) crystals, 4... Bridgman furnace, 5...
...Furnace core tube, 6...Heater, A...Lower furnace, mouth...
・Lower furnace. ON-j (Od)ON-j lf) 0)(N +s
(OaOFv--1-y-(N (N (N~to24
Country=Ekoo1 2 Enken-〇〇hegu<Dψ0hegunoω Ngu) 00 v-F--v-1hehehehe2
′ ・°°゛″□′″“1勺 −゛(b) (b) (a) 0 (”J +s(OIn 0 (N −j to a
) to + JCa)w--r--hehehe (NIN2
wIMB ON<u) coo(N-jtj)a)N +541)
-P-jrr to N~N〇-Temporary...---゛...,
? ,・・・・・・−・t・・・−KO (b) Fue 6 Chen procedure amendment (c)

Claims (1)

【特許請求の範囲】[Claims] カドミウム(Cd)とテルリウム(Te)の結晶を化学
当量比の割合で容器に収納し、800℃付近で低部反応
させて合金化した後、上部炉が1150℃程度、下部炉
が950℃程度の温度勾配を有するブリッジマン炉に入
れ、前記合金化したCdとTeを1150℃程度で数時
間反応させ、次に950℃程度の下部炉まで移動させて
降温し、テルル化カドミウム(CdTe)の単結晶を得
るようにしたCdTeの結晶成長法において、結晶成長
後、上部炉の温度を下部炉の950℃程度の温度と一致
させ、その後上部および下部炉の温度を1時間数10℃
の程度の速さで降温させることを特徴とするCdTeの
結晶成長法。
Cadmium (Cd) and tellurium (Te) crystals are stored in a container in a chemically equivalent ratio, and after being reacted and alloyed in the lower part at around 800°C, the upper furnace is around 1150°C and the lower furnace is around 950°C. The alloyed Cd and Te are placed in a Bridgman furnace with a temperature gradient of 1,150°C for several hours, and then transferred to a lower furnace at around 950°C to cool down, resulting in the formation of cadmium telluride (CdTe). In the CdTe crystal growth method to obtain a single crystal, after crystal growth, the temperature of the upper furnace is made to match the temperature of the lower furnace of about 950°C, and then the temperature of the upper and lower furnaces is kept at several tens of degrees Celsius for one hour.
A CdTe crystal growth method characterized by lowering the temperature at a rate of approximately .
JP14257084A 1984-07-10 1984-07-10 Method for growing cdte crystal Pending JPS61106498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14257084A JPS61106498A (en) 1984-07-10 1984-07-10 Method for growing cdte crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14257084A JPS61106498A (en) 1984-07-10 1984-07-10 Method for growing cdte crystal

Publications (1)

Publication Number Publication Date
JPS61106498A true JPS61106498A (en) 1986-05-24

Family

ID=15318394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14257084A Pending JPS61106498A (en) 1984-07-10 1984-07-10 Method for growing cdte crystal

Country Status (1)

Country Link
JP (1) JPS61106498A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08208364A (en) * 1993-04-14 1996-08-13 Kanagawa Kagaku Gijutsu Akad Liquid-phase crystal growth method of ii-vi compound semiconductor
CN1044497C (en) * 1997-04-07 1999-08-04 中国科学院上海技术物理研究所 Method for solid regional melting growth of 1-3 micron Te-Cd-Hg crystal material
JP2008100900A (en) * 2006-09-07 2008-05-01 Commiss Energ Atom Method for eliminating precipitate in group ii-iv semiconductor material by annealing
JP2014196213A (en) * 2013-03-29 2014-10-16 Jx日鉱日石金属株式会社 Semiconductor wafer, radiation detection element, radiation detector and method of producing compound semiconductor single crystal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08208364A (en) * 1993-04-14 1996-08-13 Kanagawa Kagaku Gijutsu Akad Liquid-phase crystal growth method of ii-vi compound semiconductor
CN1044497C (en) * 1997-04-07 1999-08-04 中国科学院上海技术物理研究所 Method for solid regional melting growth of 1-3 micron Te-Cd-Hg crystal material
JP2008100900A (en) * 2006-09-07 2008-05-01 Commiss Energ Atom Method for eliminating precipitate in group ii-iv semiconductor material by annealing
JP2014196213A (en) * 2013-03-29 2014-10-16 Jx日鉱日石金属株式会社 Semiconductor wafer, radiation detection element, radiation detector and method of producing compound semiconductor single crystal

Similar Documents

Publication Publication Date Title
JP3242292B2 (en) Method and apparatus for manufacturing polycrystalline semiconductor
JPH09183606A (en) Production of polycrystalline semiconductor and apparatus for production therefor
JPS61247683A (en) Pulling device for single crystal sapphire
JPS61106498A (en) Method for growing cdte crystal
JPH09263484A (en) Method for pulling single crystal
JP3132412B2 (en) Single crystal pulling method
JPS6027684A (en) Apparatus for producing single crystal
EP1375705B1 (en) Silicon semiconductor single crystal manufacturing apparatus and manufacturing method
JPH01317188A (en) Production of single crystal of semiconductor and device therefor
JP2543449B2 (en) Crystal growth method and apparatus
JPS61261288A (en) Apparatus for pulling up silicon single crystal
JPS58181792A (en) Apparatus for pulling up single crystal silicon
JPS6356198B2 (en)
JP3154351B2 (en) Single crystal growth method
JPS63176396A (en) Production of compound semiconductor single crystal and apparatus therefor
JPS5815472B2 (en) crystal growth equipment
JPH04187585A (en) Device of growing crystal
JP2726887B2 (en) Method for manufacturing compound semiconductor single crystal
JPH0411513B2 (en)
JPH10338594A (en) Apparatus for growing single crystal by pulling up method
JPH0341432B2 (en)
JPS63252993A (en) Growth of single crystal
JPH024126Y2 (en)
JPS5815499Y2 (en) Structure of crucible support
JPH07206584A (en) Production of compound semiconductor single crystal