JPS63176396A - Production of compound semiconductor single crystal and apparatus therefor - Google Patents

Production of compound semiconductor single crystal and apparatus therefor

Info

Publication number
JPS63176396A
JPS63176396A JP329287A JP329287A JPS63176396A JP S63176396 A JPS63176396 A JP S63176396A JP 329287 A JP329287 A JP 329287A JP 329287 A JP329287 A JP 329287A JP S63176396 A JPS63176396 A JP S63176396A
Authority
JP
Japan
Prior art keywords
crucible
single crystal
compound semiconductor
semiconductor single
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP329287A
Other languages
Japanese (ja)
Inventor
Tatsuya Tanabe
達也 田辺
Kazuhisa Matsumoto
和久 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP329287A priority Critical patent/JPS63176396A/en
Publication of JPS63176396A publication Critical patent/JPS63176396A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain a single crystal having high quality in high yield, by putting two or more kinds of elements including an element having high vapor pressure into a crucible and controlling the baking condition by detecting the evaporation rate of the element having high vapor pressure. CONSTITUTION:Raw materials Ga 3, As 4 and a liquid encapsulant 5 (e.g. B2O3) are charged into a crucible 2 held in a pressure chamber 1, the space in the chamber 1 is evacuated and the crucible 2 is heated with a heater 6 keeping the evacuated state to effect vacuum baking. During the vacuum baking process, the baking condition is controlled by detecting the weight of the crucible with a lower weight sensor 8. When the reduction of weight reaches a prescribed level, the vacuum baking operation is finished and a prescribed pressure is applied to the chamber. The direct synthetic reaction of Ga and As is carried out in the chamber maintained under high pressure, the produced GaAs raw material is melted by heating with the heater 6 and a GaAs compound semiconductor single crystal is grown from the molten GaAs.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は直接合成法による化合物半導体単結晶の製造方
法及び製造装置に関し、特に、原料の酸化物を減らし、
かつ蒸気圧の高い原料元素の飛散量を再現性よく設定範
囲に制御して、化合物半導体原料を合成し、しかも原料
融液の組成比の制御された高純度の化合物半導体単結晶
を得るのに適したものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method and apparatus for producing a compound semiconductor single crystal by a direct synthesis method, and particularly relates to a method and an apparatus for producing a compound semiconductor single crystal by a direct synthesis method, and in particular, by reducing the amount of oxides in the raw material,
In addition, the amount of scattering of raw material elements with high vapor pressure is controlled within a set range with good reproducibility to synthesize compound semiconductor raw materials, and to obtain high-purity compound semiconductor single crystals with a controlled composition ratio of raw material melt. It is suitable.

〔従来の技術〕[Conventional technology]

GaAl1 % 工nAsなどのm−v族化合物半導体
の製造方法として、ルツボ内に1族元素原料と■族元素
原料をチャージし、これを加熱することで直接、I−v
族化合物半導体の原料融液を合成する、いわゆる直接合
成法がある。この方法は成長し九結晶が高純度であるこ
と、組成比制御が可能であること、あるいは低コストで
あることなどの理由から広〈実施されている。ここでこ
れらの■−■族化合物半導体のうちのGaAa単結晶製
造を列にして述べる。
As a manufacturing method for m-v group compound semiconductors such as GaAl1% E-nAs, group 1 element raw materials and group
There is a so-called direct synthesis method that synthesizes a raw material melt of a group compound semiconductor. This method is widely practiced because the nine crystals grown are of high purity, the composition ratio can be controlled, and the cost is low. Here, the production of GaAa single crystals of these ■-■ group compound semiconductors will be described in sequence.

この直接合成法においてはGa及びムeがそれぞれ酸化
しやすいという性質のなめ、直接合成によりGaAs 
 融液とし九時に、融液表面上にそれらの酸化物などが
浮遊して融液表面に濁りが生じてしまう。このなめシー
ディングが回連となったり多結晶化しやすかったりある
いは電気特性などの結晶品質が悪くなるなど結晶成長に
悪形f#を及ぼすことが知られている。そこでこの酸化
物対策としてGa及びムSの原料チャージ後にチャ/バ
ー容器内を真空状態に保ちながら、加熱して酸化物等を
除去する真空ベーキング法が実施されている。
In this direct synthesis method, GaAs and Mue are easily oxidized.
When the melt is turned into a melt, these oxides and the like float on the surface of the melt, causing turbidity on the surface of the melt. It is known that this sloppy seeding causes adverse f# effects on crystal growth, such as formation of repeats, easy polycrystalization, and deterioration of crystal quality such as electrical properties. Therefore, as a countermeasure against this oxide, a vacuum baking method has been implemented in which after charging the raw materials of Ga and S, the inside of the chamber container is kept in a vacuum state and heated to remove the oxide and the like.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところがこの真空ベーキング法においては昇温速度、到
達温度、継続時間などの条件の違いによってその酸化物
削減効果に差があり、t+酸化物を最も減少せしめる条
件を決定してもA3091篭散量が大きくばらつく現象
が生じてしまうことがあった。このため酸化物は減った
ものの、GaAs の組成比がストイキオメトリ−から
大きくくずれてしまい、単結晶の歩留りが低下し、ま念
電気特性や熱安定性などの結晶品質も良いものができな
いという問題点があった。一方、ルツボを保持する回転
軸に重量センサーft魂付けてこの検出信号により結晶
重量を測定する機構を備えた単結晶製造装置では直接合
成後のGaAs単結晶成長の制御、特に形状制御などに
ついては重量センサーの検出信号では精度が悪く困難で
あるという問題点があった。
However, in this vacuum baking method, the effect of reducing oxides varies depending on the conditions such as heating rate, temperature reached, duration, etc., and even if the conditions that reduce t+ oxides the most are determined, the amount of A3091 dispersion is still low. A phenomenon that varies greatly may occur. As a result, although the amount of oxides has been reduced, the composition ratio of GaAs deviates significantly from the stoichiometry, resulting in a decrease in the yield of single crystals and, unfortunately, making it impossible to produce crystals with good crystal quality such as electrical properties and thermal stability. There was a problem. On the other hand, in a single crystal manufacturing apparatus equipped with a mechanism for measuring the crystal weight using a detection signal from a weight sensor attached to the rotating shaft that holds the crucible, it is difficult to control the growth of GaAs single crystals after direct synthesis, especially shape control. There was a problem in that the detection signal of the weight sensor had poor accuracy and was difficult to detect.

本発明は上記の問題点を解消し、品質の良い単結晶を歩
留りよく製造することを可能とする製造方法及び製造装
置を提供しようとするものである。
The present invention aims to solve the above-mentioned problems and provide a manufacturing method and manufacturing apparatus that make it possible to manufacture high-quality single crystals with a high yield.

〔問題点を解決する九めの手段〕[Ninth way to solve the problem]

本発明は、 (1)蒸気圧の高い元素を含んだ2種以上の元素からな
る化合物?直接会成し、まの後化合物半導体結晶を製造
する方法において、上記211以上の元素及び液体封止
剤をルツボに入れ、ルツボを、収容するチャンバ容器内
を真空にし、かつ、該ルツボを加熱してベーキングする
ために、ルツボを支持する下軸に付設する下部重量セン
サーにより、蒸気圧の高い元素の飛散量を検知して、ベ
ーキング条件を制御し、次いで加圧ガスをチャンバ容器
に導入し加熱して原料から化合物を直接合成した後該化
合物を溶融し、その融液より化合物半導体単結晶を引き
上げるために、引上軸に付設した上部重量センサーによ
り引上結晶の重量増加速度を検知して結晶成長条件を制
御することを特徴とする化合物半導体単結晶の製造方法
、(2)蒸気圧の高い元素を含んだ2種以上の元素から
々る化合物半導体単結晶を製造する装置において、結晶
の引上軸及びルツボを支持する下軸にそれぞれ重量セン
サーを付設し、上部重量センサーの検出信号を結晶成長
制御装置に入力し、下部重量センサーの検出信号を真空
ベーキング制御装置に入力することを特徴とする化合物
半導体単結晶を製造する装置である。
The present invention is characterized by: (1) A compound consisting of two or more elements including an element with high vapor pressure? In a method for directly assembling and then manufacturing a compound semiconductor crystal, the above 211 or more elements and a liquid sealant are placed in a crucible, the chamber containing the crucible is evacuated, and the crucible is heated. In order to bake the crucible, a lower weight sensor attached to the lower shaft supporting the crucible detects the amount of scattered elements with high vapor pressure to control the baking conditions, and then pressurized gas is introduced into the chamber container. After directly synthesizing a compound from raw materials by heating, the compound is melted, and in order to pull a compound semiconductor single crystal from the melt, the weight increase rate of the pulled crystal is detected by a weight sensor attached to the upper part of the pulling shaft. (2) an apparatus for producing a compound semiconductor single crystal made from two or more elements including an element with high vapor pressure; A weight sensor is attached to each of the pulling shaft and the lower shaft supporting the crucible, and the detection signal from the upper weight sensor is input to the crystal growth control device, and the detection signal from the lower weight sensor is input to the vacuum baking control device. This is an apparatus for manufacturing compound semiconductor single crystals.

〔作用〕[Effect]

以下、本発明について図面を使用して詳細に説明する。 Hereinafter, the present invention will be explained in detail using the drawings.

GaAs の直接合成法においては第1図に示したよう
に耐高圧チャンバ容器1内に保持され念ルツボ2に原料
Ga  3及びム84、さらに液体封止剤5(例えば、
ExOs)をチャージし、まず、チャンバ1内の不純物
ガス(大気)を除去するなめにチャンバ内を真空に引き
、真空状態(〜10−” Torr )  を1〜数時
間保持する。次に前述のようにGa及びAsの酸化物等
を除去するためにチャンバ1内を真空状態に保っなまま
ヒーター6を用いてルツボ2を加熱、すなわち真空ベー
キングを行う。ここで酸化物等を十分に除去できるよう
に真空ベーキング?実施する熱環境及びベーキングを継
続する時間を設定してやらなければならない。ところが
適温状態にしたり、継続時間を長くし過ぎると、Ae自
体が多量に昇華してしまうことになる。そこで本発明で
は、この真空ベーキング時にルツボ保持回転軸7(下軸
)に設けられ九下部重量センサー8によりルツボ重量を
検出し、その重量の減少分があらかじめ設定され7jA
s 飛散量に達するまで真空ベーキングを行ない、重量
の減少量が設定値に達した時点で真空ベーキングを終了
し、あらかじめ設定され九圧力をチャンバ内に加える。
In the direct synthesis method of GaAs, as shown in FIG.
First, the inside of the chamber is evacuated to remove impurity gas (atmosphere) in the chamber 1, and the vacuum state (~10-'' Torr) is maintained for 1 to several hours.Next, the above-mentioned In order to remove the oxides of Ga and As, etc., the crucible 2 is heated using the heater 6 while the inside of the chamber 1 is kept in a vacuum state, that is, vacuum baking is performed.At this point, the oxides, etc. can be sufficiently removed. Vacuum baking?The thermal environment to be carried out and the duration of baking must be set.However, if the temperature is set to an appropriate temperature or the duration is too long, a large amount of Ae itself will sublimate. In the present invention, during this vacuum baking, the weight of the crucible is detected by the lower weight sensor 8 provided on the crucible holding rotating shaft 7 (lower shaft), and the decrease in weight is set in advance.
s Vacuum baking is performed until the amount of scattering is reached, and when the amount of weight reduction reaches the set value, the vacuum baking is finished and a preset pressure is applied to the chamber.

従って本発明においては原料の酸化物等を最大限除去す
るとともに、最終的なムa飛散量と予測することが可能
となる。
Therefore, in the present invention, it is possible to remove the oxides and the like of the raw material to the maximum extent possible, and to predict the final amount of Mu scattering.

その後、高圧に保たれ九チャンバ容器内でGaとA8の
直接合成を行い、生成し7jGaAs原料をヒーター6
で加熱して融液状態にし、第2図に示すようにGaAs
融液9よりGaAs化合物半導体単結晶10を成長させ
る。その際、結晶の引上げ回転軸11(上軸)に設は念
上部重量センサー12により結晶100重量を検出しこ
の検出信号を用いて結晶成長の制御、すなわち結晶形状
制御などを行う。本発明における化合物半導体単結晶製
造装置では上部重量センサー12と下部重量センサー8
の検出信号は信号選択装置13によって選択された信号
が結晶成長制御装置14に送られ、ヒーター6、上11
t111及び下軸7の各々の駆動装置15.16を制御
して結晶成長の制御を行なうことができる。
After that, Ga and A8 are directly synthesized in a nine-chamber container kept at high pressure, and the generated 7jGaAs raw material is transferred to a heater 6.
As shown in Figure 2, the GaAs
A GaAs compound semiconductor single crystal 10 is grown from the melt 9. At this time, the weight of the crystal 100 is detected by a top weight sensor 12 installed on the crystal pulling rotation axis 11 (upper axis), and this detection signal is used to control the crystal growth, that is, the crystal shape. In the compound semiconductor single crystal manufacturing apparatus according to the present invention, an upper weight sensor 12 and a lower weight sensor 8
The detection signal selected by the signal selection device 13 is sent to the crystal growth control device 14, and is sent to the heater 6 and the upper 11.
Crystal growth can be controlled by controlling the drive devices 15 and 16 for each of the t111 and the lower shaft 7.

〔実施例〕〔Example〕

第2図の装置を用いてGaA3単結晶単結晶上製造内径
154■、深さ140IllIIのpBN製ルツルツボ
a  原料2760f%As  原料5000F、液体
封止剤としてE、O,A600 Fチャージして耐高圧
チャンバ容器内に設置した。まずチャンバ容器内の真空
引きを約1時間程度実施し九ところ到達真空度は1X 
10−” TOrr 程度であった。この真空引きを継
続しながら10℃/!!lin 〜2 Q C/ II
I!inの昇温速度でヒーターの加熱(真空ベーキング
)を開始するとしばらく後に除々に真空度が悪化しGa
 原料が融解し始めた。さらにベーキングを継続してい
くと下部重量センサーによって検出されるルツボ重量が
減少し、第3図に示すような変化を示した。あらかじめ
八〇  チャージ量の13%、すなわち、約10?重量
が減少し九時点で真空ベーキングが終了するように設定
し、ベーキング開始後約50分経過したところで重量の
減少分が設定値に達した。この時点のヒーターの温度は
約550℃であった。その後Ar、N2などの不活性ガ
スにより圧力を加えて60〜70 kg7cm2の高圧
下900〜1000℃でGaとAsの直接合成反応によ
りGaAs多結晶原料を生成した。本実施例においてG
aAs原料を融解してGaA3融液となった時には酸化
物等の浮遊物はほとんど存在せず融液の濁夛なども観察
されなかった。その後公知の方法であるLP!(!法に
よりGaAs単結晶の引上げを実施した。ここで、結晶
成長においては上部電話センサーによる重量信号を用い
て直胴部の目標径を85−として結晶形状自動制御を行
なったところ長さ約22m5重量的5700iの結晶の
GaAs単結晶が得られ、直胴部における結晶径は±1
.5w以内の変動で抑えられてい念。
A pBN crucible with an inner diameter of 154 cm and a depth of 140 IllII was produced using the equipment shown in Figure 2. Raw material: 2760 f%As, raw material: 5000 F, liquid sealant was charged with E, O, and A600 F to withstand high pressure. It was installed in a chamber container. First, the inside of the chamber was evacuated for about an hour, and the vacuum level reached at 9 was 1X.
It was about 10-” TOrr. While continuing this vacuuming, the temperature was 10°C/!!lin ~2 Q C/ II
I! When heating the heater (vacuum baking) is started at a temperature increase rate of in, the degree of vacuum gradually deteriorates after a while and the Ga
The raw material started to melt. As baking continued further, the weight of the crucible detected by the lower weight sensor decreased, showing changes as shown in FIG. 80 in advance 13% of the charge amount, about 10? The vacuum baking was set so that the weight decreased and the vacuum baking ended at the 9th point, and the weight reduction reached the set value about 50 minutes after the start of baking. The temperature of the heater at this point was approximately 550°C. Thereafter, pressure was applied using an inert gas such as Ar or N2, and a GaAs polycrystalline raw material was produced by a direct synthesis reaction of Ga and As at a high pressure of 60 to 70 kg7cm2 at 900 to 1000C. In this example, G
When the aAs raw material was melted to form a GaA3 melt, there were almost no floating substances such as oxides, and no turbidity was observed in the melt. After that, the known method LP! (A GaAs single crystal was pulled using the ! method. During crystal growth, the target diameter of the straight body part was set to 85 mm and the crystal shape was automatically controlled using the weight signal from the upper telephone sensor. A GaAs single crystal with a crystal size of 22 m5 and a weight of 5700 i was obtained, and the crystal diameter at the straight body was ±1.
.. Just make sure that the fluctuation is suppressed within 5W.

本実施例における最終的なAB飛散量は約341であり
これによると初期融液組成比はAs / (Ga+As
) = [L500とストイキオメトリ−を精度良く保
っていることが判明した。さらに結晶中の不純物濃度分
析によると、Si、Sなど全て10140−3以下であ
り、非常に高純度で高品質であることがわかつ念。
The final AB scattering amount in this example is about 341, and according to this, the initial melt composition ratio is As / (Ga + As
) = [L500 and stoichiometry were found to be maintained accurately. Furthermore, an analysis of the impurity concentration in the crystal revealed that all of the crystals, including Si and S, were less than 10140-3, indicating extremely high purity and high quality.

〔発明の効果〕〔Effect of the invention〕

本発明は上記構成を採用することにより、べ一キ/グ処
理を確実にし、原料の酸化物を減らし、かつ、蒸気圧の
高い原料元素の飛散量を最少限にして、化合物半導体原
料を合成することが可能となり、従って、高純度でしか
も原R@液の組成比が精度良く制御された化合物半導体
単結晶tg造することができるという効果がある。
By adopting the above configuration, the present invention ensures the consistency of the benchmarking process, reduces the amount of oxides in the raw materials, and minimizes the amount of scattering of raw material elements with high vapor pressure, thereby synthesizing compound semiconductor raw materials. Therefore, it is possible to produce a compound semiconductor single crystal tg with high purity and precisely controlled composition ratio of the raw R@ liquid.

4、面の簡単な説明 第1図は直接合成法による化合物半導体単結晶製造開始
の状態を示し次間、第2図は本発明による化合物半導体
単結晶の製造装置において化合物半導体単結晶成長中の
状態を示した図である。ここでは実施例としてGaAs
 について示しである。さらに第3図は真空ベーキング
中の下部重量センサーによって検出されたルツボ重ユ変
化の1列を示したグラフである。
4. Brief explanation of surfaces Figure 1 shows the state of starting compound semiconductor single crystal production by the direct synthesis method. It is a figure showing a state. Here, as an example, GaAs
This is an example of the following. Further, FIG. 3 is a graph showing a series of changes in crucible weight detected by the lower weight sensor during vacuum baking.

Claims (2)

【特許請求の範囲】[Claims] (1)蒸気圧の高い元素を含んだ2種以上の元素からな
る化合物を直接合成し、化合物半導体単結晶を製造する
方法において、上記2種以上の元素をルツボに入れ、ル
ツボを収容するチャンバ容器内を真空にした後、該ルツ
ボを加熱してベーキングするときに、ルツボを支持する
下軸に付設する下部重量センサーにより、蒸気圧の高い
元素の飛散量を検知してベーキング条件を制御し、次い
で加圧ガスをチャンバ容器に導入し、温度を上昇させて
原料から化合物を直接合成した後該化合物を溶融し、そ
の融液より化合物半導体単結晶を製造することを特徴と
する化合物半導体単結晶の製造方法。
(1) In a method for directly synthesizing a compound consisting of two or more elements containing an element with high vapor pressure to produce a compound semiconductor single crystal, the two or more elements mentioned above are placed in a crucible, and a chamber containing the crucible is used. After creating a vacuum inside the container, when heating and baking the crucible, a lower weight sensor attached to the lower shaft that supports the crucible detects the amount of elements with high vapor pressure scattered and controls the baking conditions. Then, a pressurized gas is introduced into a chamber container, the temperature is raised, a compound is directly synthesized from the raw materials, the compound is melted, and a compound semiconductor single crystal is produced from the melt. Method of manufacturing crystals.
(2)蒸気圧の高い元素を含んだ2種以上の元素からな
る化合物半導体単結晶の製造装置において、原料を収容
するルツボの支持軸に重量センサーを付設し、該センサ
ーの検出信号を真空ベーキング制御装置に入力すること
を特徴とする化合物半導体単結晶の製造装置。
(2) In a manufacturing device for a compound semiconductor single crystal made of two or more elements including an element with high vapor pressure, a weight sensor is attached to the support shaft of the crucible that houses the raw materials, and the detection signal of the sensor is used for vacuum baking. A compound semiconductor single crystal manufacturing device characterized by inputting information to a control device.
JP329287A 1987-01-12 1987-01-12 Production of compound semiconductor single crystal and apparatus therefor Pending JPS63176396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP329287A JPS63176396A (en) 1987-01-12 1987-01-12 Production of compound semiconductor single crystal and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP329287A JPS63176396A (en) 1987-01-12 1987-01-12 Production of compound semiconductor single crystal and apparatus therefor

Publications (1)

Publication Number Publication Date
JPS63176396A true JPS63176396A (en) 1988-07-20

Family

ID=11553313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP329287A Pending JPS63176396A (en) 1987-01-12 1987-01-12 Production of compound semiconductor single crystal and apparatus therefor

Country Status (1)

Country Link
JP (1) JPS63176396A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255289A (en) * 1988-08-19 1990-02-23 Mitsubishi Metal Corp Method for growing high-dissociation pressure compound semiconductor single crystal and apparatus therefor
JPH0255288A (en) * 1988-08-19 1990-02-23 Mitsubishi Metal Corp Method for growing high-dissociation pressure compound semiconductor single crystal and apparatus therefor
JP2007001712A (en) * 2005-06-23 2007-01-11 Toshiba Elevator Co Ltd Elevator control device and elevator operating method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255289A (en) * 1988-08-19 1990-02-23 Mitsubishi Metal Corp Method for growing high-dissociation pressure compound semiconductor single crystal and apparatus therefor
JPH0255288A (en) * 1988-08-19 1990-02-23 Mitsubishi Metal Corp Method for growing high-dissociation pressure compound semiconductor single crystal and apparatus therefor
JP2007001712A (en) * 2005-06-23 2007-01-11 Toshiba Elevator Co Ltd Elevator control device and elevator operating method

Similar Documents

Publication Publication Date Title
JP3444178B2 (en) Single crystal manufacturing method
JPS63176396A (en) Production of compound semiconductor single crystal and apparatus therefor
JPS61247683A (en) Pulling device for single crystal sapphire
JP2005015287A (en) Method and apparatus for manufacturing single crystal
JP2517803B2 (en) Method for synthesizing II-VI compound semiconductor polycrystal
JPS61106498A (en) Method for growing cdte crystal
JP2681114B2 (en) Single crystal manufacturing method
JP2003063894A (en) Single crystal of lithium tantalate and method for producing the same
JPH09328399A (en) Production of potassium niobate single crystal
JP2823741B2 (en) Method for producing bismuth germanate single crystal
JP2517738B2 (en) Method for producing compound semiconductor single crystal
JPS61101494A (en) Preparation of potassium tantalate niobate single crystal and crucible therefor
JP4403679B2 (en) Method for producing langasite type single crystal
JPH11199365A (en) Production of single crystal silicon and producing apparatus
JPH10251090A (en) Oxide single crystal and its growth method
JPS6221790A (en) Device for crystal growth and method
JP2616002B2 (en) High dissociation pressure compound semiconductor single crystal growth method and apparatus
JPS62230694A (en) Production of gaas single crystal
JPS6129914B2 (en)
JPH02196082A (en) Production of silicon single crystal
JPH09315887A (en) Production of single crystal and device therefor
SU1705424A1 (en) Method of growing single crystals with sillenite structure
JPH07206584A (en) Production of compound semiconductor single crystal
JPH10291891A (en) Production of single crystal
JPH05105586A (en) Method for producing single crystal