JPH02203549A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02203549A
JPH02203549A JP2417889A JP2417889A JPH02203549A JP H02203549 A JPH02203549 A JP H02203549A JP 2417889 A JP2417889 A JP 2417889A JP 2417889 A JP2417889 A JP 2417889A JP H02203549 A JPH02203549 A JP H02203549A
Authority
JP
Japan
Prior art keywords
film
isolation trench
oxide film
active region
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2417889A
Other languages
Japanese (ja)
Inventor
Mitsuo Tanaka
光男 田中
Akihiro Kanda
神田 彰弘
Takehiro Hirai
健裕 平井
Yoshiro Fujita
藤田 良郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2417889A priority Critical patent/JPH02203549A/en
Publication of JPH02203549A publication Critical patent/JPH02203549A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To prevent the generation of stress in an active region by a method wherein, after a comparative thick oxide film is formed on a semiconductor substrate, and an isolation trench is formed, a silicon nitride film is deposited on the whole surface, a crystal silicon film is buried in the isolation trench, and the surface is oxidized. CONSTITUTION:After a buried layer 12, an epitaxial layer 13, and a thermal oxide layer 14 are formed on a semiconductor substrate 11, an element isolation trench 15 is formed by dry etching. An oxide film 16 is formed, and a channel stopper region 17 is formed by ion-implanting high concentration boron. At this time, a silicon nitride film 18 is deposited; a polycrystalline silicon film 19 is deposited; the polycrystalline silicon film 19 except the isolation trench is eliminated by etching; the polycrystalline silicon film 19 is buried only in the isolation trench 15. Next, an oxide film 20 is formed on the surface; by using the silicon nitride film 18, an oxide film 20 is formed only in the isolation trench 15, thereby obtaining an element isolation structure having no recess in the vicinity of the surface, and obtaining a state where stress is scarcely applied in an active region 21 after element isolation process is finished.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体装置の製造方法、特に半導体装置の素
子分離領域の形成方法に間するものである。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to a method of manufacturing a semiconductor device, particularly a method of forming an isolation region of a semiconductor device.

従来の技術 従来、半導体装置の製造における素子分離領域の形成方
法として、素子分離領域となるべき部分をエツチングし
て溝を形成した後、溝内を酸化し、溝内に多結晶シリコ
ン膜を埋め込んだ後、溝表面、及び溝の近傍を選択的に
酸化して素子分離領域を形成するという方法がある。そ
の従来技術の一例を第2図により説明する。
Conventional technology Conventionally, as a method for forming element isolation regions in the manufacture of semiconductor devices, the area to be the element isolation region is etched to form a groove, the inside of the groove is oxidized, and a polycrystalline silicon film is buried in the groove. After that, there is a method of selectively oxidizing the groove surface and the vicinity of the groove to form an element isolation region. An example of the prior art will be explained with reference to FIG.

半導体基板(Si)1上に、シリコン酸化膜(SiO2
)2、シリコン窒化膜(S 13Na)3を形成した後
、レジストをマスクにしてエツチングを行い、分離溝4
を形成する。(第2図(a))レジスト除去後、溝内表
面を酸化して酸化膜5を形成する。その後、不純物イオ
ンを注入し、基板凹部の底部にチャネルストッパ6を形
成した後、多結晶シリコン膜7を基板上全面に堆積した
後、ドライエッチ等により、基板凹部以外に堆積された
多結晶シリコン膜7を除去し、基板凹部のみに、多結晶
シリコン膜7を埋め込む、(第2図(b))その後、ホ
トマスクを用いてシリコン窒化膜3のパターン出しを行
い、溝上部、及び溝近傍を熱酸化して、表面酸化膜8を
形成して素子分離領域を完成する。(第2図(C)) 発明が解決しようとする課題 従来例においては、表面酸化膜8を形成する際に、溝内
の酸化膜の近傍の多結晶シリコン膜7、及び半導体基板
シリコンlのところで酸化が他の部分よりも速く進行し
、この部分に、verticalbirds beak
gが発生する。 (第2図(C))このvertica
l birds beakの発生によって、分離溝によ
って囲まれた活性領域内に大きな圧縮ストレスが発生し
て、活性領域のシリコンに結晶欠陥が発生し、素子を形
成したときに、リーク電流が増大するという問題点が発
生した。
A silicon oxide film (SiO2) is formed on a semiconductor substrate (Si) 1.
) 2. After forming the silicon nitride film (S 13Na) 3, etching is performed using the resist as a mask to form the isolation trench 4.
form. (FIG. 2(a)) After removing the resist, the inner surface of the trench is oxidized to form an oxide film 5. After that, impurity ions are implanted to form a channel stopper 6 at the bottom of the substrate recess, and a polycrystalline silicon film 7 is deposited on the entire surface of the substrate. The film 7 is removed, and the polycrystalline silicon film 7 is buried only in the substrate recess (FIG. 2(b)).Then, the silicon nitride film 3 is patterned using a photomask, and the upper part of the trench and the vicinity of the trench are patterned. A surface oxide film 8 is formed by thermal oxidation to complete an element isolation region. (FIG. 2(C)) Problems to be Solved by the Invention In the conventional example, when forming the surface oxide film 8, the polycrystalline silicon film 7 near the oxide film in the trench and the semiconductor substrate silicon l are By the way, oxidation progresses faster than other parts, and vertical birds beak occurs in this part.
g occurs. (Figure 2 (C)) This vertica
The problem is that due to the occurrence of birds beak, large compressive stress is generated in the active region surrounded by the isolation trench, causing crystal defects in the silicon of the active region and increasing leakage current when devices are formed. A point occurred.

また、半導体素子が微細になるにつれて、このvert
ical birds beakgによる活性領域の圧
縮ストレスは大きくなり、微細な半導体素子を形成する
ことを不可能にしている。
In addition, as semiconductor devices become finer, this vert
The compressive stress in the active region due to the ical birds peak becomes large, making it impossible to form fine semiconductor devices.

さらに、多結晶シリコン膜7を分離溝内に埋め込む際に
、半導体基板lの表面と同じ高さとなるように埋め込む
ことは非常に難しく、分離溝内の多結晶シリコン膜7の
方が、基板表面よりも低くなりやすく、分離溝表面を酸
化した際に、分離溝の部分が周囲に比べて落ち込んでし
まい、AI配線の断線、あるいはエツチングの際のAI
残りによる短絡という問題も発生した。
Furthermore, when embedding the polycrystalline silicon film 7 in the isolation trench, it is very difficult to bury it so that it is at the same height as the surface of the semiconductor substrate l. When the surface of the isolation trench is oxidized, the isolation trench becomes depressed compared to the surrounding area, resulting in disconnection of the AI wiring or damage to the AI during etching.
The problem of short circuit caused by the remaining parts also occurred.

課題を解決するための手段 本発明は上記問題に鑑みなされたもので、半導体基板表
面に比較的厚い酸化膜を形成し、分離溝を形成後、全面
にシリコン窒化膜を堆積してから、分離溝内にた結晶シ
リコン膜を埋め込み、最適な膜厚の表面酸化を行うもの
である。
Means for Solving the Problems The present invention was made in view of the above problems, and consists of forming a relatively thick oxide film on the surface of a semiconductor substrate, forming an isolation trench, depositing a silicon nitride film on the entire surface, and then performing isolation. A crystalline silicon film is buried in the trench, and the surface is oxidized to an optimal film thickness.

作用 半導体基板上に、比較的厚い酸化膜を形成し、レジスト
をマスクにして、酸化膜と半導体基板をエツチングして
分離溝を形成する。この時、分離溝によって囲まれた活
性領域には、引っ張りストレスが発生する。この後、分
離溝内の表面に酸化膜を形成し、シリコン窒化膜を堆積
してから、多結晶シリコン膜を埋め込み、最適な膜厚だ
け熱酸かを行うと、シリコン窒化膜が酸化防止膜である
ので、分離溝上部にのみ酸化膜が形成され、かっver
tical birds beakは発生しない。この
時、分離溝によって囲まれた活性領域には、多結晶シリ
コン膜の酸化によフて起こる堆積膨張によって適度に圧
縮ストレスが加わり、素子分離工程を経た後、活性領域
中にはストレスがほとんどかからないようになる。この
場合、分離溝によって囲まれた領域が小さくなっても、
最初に形成した酸化膜と、分離向上部の熱酸化によって
発生するストレスの影響がつり合い、活性領域中にスト
レスは発生しなくなる。
A relatively thick oxide film is formed on a working semiconductor substrate, and using a resist as a mask, the oxide film and the semiconductor substrate are etched to form isolation trenches. At this time, tensile stress is generated in the active region surrounded by the isolation trench. After this, an oxide film is formed on the surface inside the isolation trench, a silicon nitride film is deposited, a polycrystalline silicon film is buried, and thermal oxidation is carried out to the optimum film thickness. Therefore, the oxide film is formed only on the upper part of the isolation trench, and the
tical birds beak does not occur. At this time, moderate compressive stress is applied to the active region surrounded by the isolation trench due to deposition expansion caused by oxidation of the polycrystalline silicon film, and after the element isolation process, there is almost no stress in the active region. It will not take longer. In this case, even if the area surrounded by the separation groove becomes smaller,
The effects of the stress generated by the initially formed oxide film and the thermal oxidation of the isolation enhancement portion are balanced, and no stress is generated in the active region.

また、分離溝の上部のみに熱酸化膜が形成されるので、
分離溝の部分にくぼみは発生せず、平坦な素子分離構造
を得ることができる。
In addition, since a thermal oxide film is formed only on the upper part of the isolation trench,
A flat element isolation structure can be obtained without creating a depression in the isolation groove portion.

実施例 第1図の工程図にそって本発明の1実施例の説明を行う
。P形Si基板ll上に、n“埋め込み層I2、例えば
厚さ2μmのn形エピタキシャル層13を形成し、例え
ば厚ざ600nmの熱酸化膜14を形成する。この後、
ホトレジストをマスクにドライエッチを行い、Si基板
11を約37zmの深さまで掘り下げ、素子分離溝15
を形成する。
Embodiment One embodiment of the present invention will be explained along the process diagram shown in FIG. On the P-type Si substrate 11, an n" buried layer I2, for example, an n-type epitaxial layer 13 with a thickness of 2 μm, is formed, and a thermal oxide film 14 with a thickness of, for example, 600 nm is formed. After this,
Dry etching is performed using a photoresist as a mask, and the Si substrate 11 is dug to a depth of approximately 37 zm, and the element isolation grooves 15 are etched.
form.

(第1図(a)) 次に、溝底部と側面部を酸化し、酸化膜16を約110
0n形成し、分離溝底部に高濃度のボロンのイオン注入
を行い、溝15底部にチャネルストッパ領域17を形成
する。この後、酸化防止膜としてシリコン窒化膜18を
約120nm堆積させ、多結晶シリコン膜19を約2μ
m堆積させて、ドライエッチあるいは、ウェットエッチ
によりで、分離溝以外の多結晶シリコン膜19を除去し
て、分離溝内のみに、表面との段差ができるだけ小さく
なるように多結晶シリコン膜19を埋め込む。
(FIG. 1(a)) Next, the bottom and side surfaces of the trench are oxidized to form an oxide film 16 of approximately 110 mm.
A channel stopper region 17 is formed at the bottom of the trench 15 by implanting high concentration boron ions into the bottom of the isolation trench. After this, a silicon nitride film 18 is deposited to a thickness of about 120 nm as an oxidation prevention film, and a polycrystalline silicon film 19 is deposited to a thickness of about 2 μm.
m is deposited, and the polycrystalline silicon film 19 other than the isolation trench is removed by dry etching or wet etching, and the polycrystalline silicon film 19 is deposited only in the isolation trench so that the level difference from the surface is as small as possible. Embed.

(第1図(b)) 次に、表面に厚さ600’n mの酸化膜20を形成す
ると、酸化防止膜であるシリコン窒化膜があるため、分
離溝の部分にのみ酸化膜が形成されて、表面にくぼみの
ない素子分離構造を作ることができる。(第1図(C)
) この時、vertical birds beakが発
生しないので活性領域21中に大きな圧縮ストレスは加
わらず、多結晶シリコン膜19の表面酸化の時に活性領
域21に加わる圧縮ストレスと、活性領域21上の厚い
熱酸化膜14によって活性領域21に加わる引っ張りス
トレスとが均衡しあい、活性領域21中にはストレスは
ほとんどかからない状態になる。
(Fig. 1(b)) Next, when an oxide film 20 with a thickness of 600 nm is formed on the surface, since there is a silicon nitride film which is an oxidation prevention film, the oxide film is formed only in the isolation trenches. As a result, it is possible to create an element isolation structure with no depressions on the surface. (Figure 1 (C)
) At this time, since no vertical birds beak occurs, no large compressive stress is applied to the active region 21, and the compressive stress applied to the active region 21 when the surface of the polycrystalline silicon film 19 is oxidized and the thick thermal oxidation on the active region 21 are reduced. The tensile stress applied to the active region 21 is balanced by the film 14, and almost no stress is applied to the active region 21.

つまり、この素子分離工程の間では、活性領域21内に
発生するストレスは、分離溝15形成の時に、600n
mの熱酸化膜によって活性領域21中に発生する引っ張
りストレスを打ち消すように変化して行き、素子分離工
程終了後、活性領域21中にほとんどストレスのかかっ
ていない状態になるため、活性領域21中に結晶欠陥は
発生しにくく、結晶欠陥によって起こるリーク電流は少
なくなり、この領域に半導体素子を作ることが可能とな
る。
In other words, during this element isolation process, the stress generated in the active region 21 is 600 nm when the isolation trench 15 is formed.
The thermal oxide film of m changes to cancel out the tensile stress generated in the active region 21, and after the element isolation process is completed, the active region 21 is in a state where almost no stress is applied. Crystal defects are less likely to occur in this region, and leakage current caused by crystal defects is reduced, making it possible to fabricate semiconductor devices in this region.

また、活性領域が微細化しても、活性領域中に加わるス
トレスは、同様に引っ張りストレスと圧縮ストレスとが
互いにつり合うように加わフて行くため、結果として非
常に小さなストレスが活性領域に加わるようになるため
、この部分に微細な半導体素子を作ることが可能となる
Furthermore, even if the active region is miniaturized, the stress applied to the active region will continue to be applied so that the tensile stress and the compressive stress balance each other out.As a result, very small stress will be applied to the active region. Therefore, it becomes possible to fabricate a fine semiconductor element in this portion.

発明の効果 以上のように本発明によれば、素子分離工程によって活
性領域に加わるストレスを活性領域が小さな場合でも非
常に小さくすることができるので、半導体素子(例えば
、バイポーラトランジスタ、MOS)ランジスタなと)
を微細な活性領域内に形成することが可能となり、また
、分離溝の部分にくぼみが発生しないので、AI配線等
の断線、短絡がおこらず、さらに、厚い熱酸化膜を用い
ているので配線容量が少なくなり、高密度、高速、かつ
高歩留な半導体集積回路の製造に大きく寄与するもので
ある。
Effects of the Invention As described above, according to the present invention, the stress applied to the active region by the element isolation process can be extremely reduced even when the active region is small, so that it is possible to reduce the stress applied to the active region by the device isolation process. and)
It is now possible to form a microelectrode in the active region, and since there are no depressions in the isolation trench, there is no disconnection or short circuit of AI wiring, etc. Furthermore, since a thick thermal oxide film is used, the wiring can be easily formed. This reduces the capacity and greatly contributes to the production of high-density, high-speed, and high-yield semiconductor integrated circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例の分離構造の形成工程断面図
、第2図は従来例における分離構造の形成工程断面図で
ある。 11・・・半導体基板、12・・・埋め込み層、13・
・・エピタキシャル層、14・・・熱酸化膜、 15・
・・分離層、 16・・・酸化膜、 17・・・チャネ
ルストッパ領域、18・・・シリコン窒化膜、19・・
・多結晶シリコン膜、20・・・熱酸化膜、21・・・
活性領域。 代理人の氏名 弁理士 粟野重孝 はか1名第1I!i
l!
FIG. 1 is a sectional view of the process of forming an isolation structure according to an embodiment of the present invention, and FIG. 2 is a sectional view of the process of forming an isolation structure in a conventional example. 11... Semiconductor substrate, 12... Buried layer, 13.
...Epitaxial layer, 14...Thermal oxide film, 15.
... Separation layer, 16... Oxide film, 17... Channel stopper region, 18... Silicon nitride film, 19...
・Polycrystalline silicon film, 20... Thermal oxide film, 21...
active area. Name of agent: Patent attorney Shigetaka Awano Haka 1 person 1st I! i
l!

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上に、絶縁膜を形成する工程、前記絶
縁膜及び半導体基板を選択的にエッチングし、凹部を形
成する工程、前記凹部に所定の厚さの酸化膜を形成する
工程、前記凹部内の酸化膜を形成後、酸化防止膜を堆積
する工程、前期酸化防止膜上に半導体薄膜を堆積する工
程、前記半導体薄膜を選択的に除去して、前記凹部にの
み前記半導体薄膜を残す工程を含み、前記基板表面上の
絶縁膜が、前記凹部上の絶縁膜の膜厚とほぼ等しいこと
を特徴とする半導体装置の製造方法。
(1) a step of forming an insulating film on a semiconductor substrate; a step of selectively etching the insulating film and the semiconductor substrate to form a recess; a step of forming an oxide film of a predetermined thickness in the recess; After forming an oxide film in the recess, depositing an oxidation prevention film; depositing a semiconductor thin film on the oxidation prevention film; and selectively removing the semiconductor thin film, leaving the semiconductor thin film only in the recess. 1. A method of manufacturing a semiconductor device, the method comprising the step of: an insulating film on the surface of the substrate having a thickness substantially equal to a thickness of an insulating film on the recess.
(2)半導体薄膜に多結晶シリコン膜を用いていること
を特徴とする特許請求の範囲第1項に記載の半導体装置
の製造方法。
(2) The method for manufacturing a semiconductor device according to claim 1, wherein a polycrystalline silicon film is used as the semiconductor thin film.
JP2417889A 1989-02-02 1989-02-02 Manufacture of semiconductor device Pending JPH02203549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2417889A JPH02203549A (en) 1989-02-02 1989-02-02 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2417889A JPH02203549A (en) 1989-02-02 1989-02-02 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH02203549A true JPH02203549A (en) 1990-08-13

Family

ID=12131094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2417889A Pending JPH02203549A (en) 1989-02-02 1989-02-02 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH02203549A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5445988A (en) * 1993-07-13 1995-08-29 Siemens Aktiengesellschaft Method for manufacturing a trench in a substrate for use in smart-power technology
US6255704B1 (en) 1996-06-28 2001-07-03 Sharp Kabushiki Kaisha Semiconductor device and method for fabricating the same
KR100338938B1 (en) * 1999-11-10 2002-05-31 박종섭 Manufacturing method for isolation in semiconductor device
US6969665B2 (en) * 2002-11-05 2005-11-29 Hynix Semiconductor Inc. Method of forming an isolation film in a semiconductor device
KR100729017B1 (en) * 2006-01-05 2007-06-14 주식회사 케이이씨 Isolation structure method of making of of semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5445988A (en) * 1993-07-13 1995-08-29 Siemens Aktiengesellschaft Method for manufacturing a trench in a substrate for use in smart-power technology
US6255704B1 (en) 1996-06-28 2001-07-03 Sharp Kabushiki Kaisha Semiconductor device and method for fabricating the same
KR100342313B1 (en) * 1996-06-28 2002-07-02 마찌다 가쯔히꼬 semiconductor device and method for fabricating the same
US6573577B1 (en) 1996-06-28 2003-06-03 Sharp Kabushiki Kaisha Semiconductor device and method for fabricating the same
US6927463B2 (en) 1996-06-28 2005-08-09 Sharp Kabushiki Kaisha Semiconductor device and method for fabricating the same
KR100338938B1 (en) * 1999-11-10 2002-05-31 박종섭 Manufacturing method for isolation in semiconductor device
US6969665B2 (en) * 2002-11-05 2005-11-29 Hynix Semiconductor Inc. Method of forming an isolation film in a semiconductor device
KR100729017B1 (en) * 2006-01-05 2007-06-14 주식회사 케이이씨 Isolation structure method of making of of semiconductor device

Similar Documents

Publication Publication Date Title
US4746630A (en) Method for producing recessed field oxide with improved sidewall characteristics
US5512509A (en) Method for forming an isolation layer in a semiconductor device
KR100318640B1 (en) Manufacturing method of semiconductor device
US4981813A (en) Pad oxide protect sealed interface isolation process
JPH02203549A (en) Manufacture of semiconductor device
US7192840B2 (en) Semiconductor device fabrication method using oxygen ion implantation
JPH05849B2 (en)
JPS60176265A (en) Semiconductor memory device
KR100340864B1 (en) Method of fabricating silicon on insulator using bird's beak
JPH08241922A (en) Manufacture of semiconductor device
KR100319186B1 (en) Method for fabricating a trench isolation
KR100895824B1 (en) Method for forming isolation layer of semiconductor device
JPS58190040A (en) Preparation of semiconductor device
KR0172724B1 (en) Method of manufacturing field oxide film on the semiconductor device
KR930010985B1 (en) Ic isolation method using multi-local polyoxide
KR0135068B1 (en) Method of forming active well on the semiconductor device
JPH0278247A (en) Manufacture of semiconductor device
KR0126645B1 (en) Isolation oxide film forming method of semiconductor device
KR100236057B1 (en) Method for fabricating soi wafer
KR970009273B1 (en) Method for forming the field oxide on the semiconductor element
JPH02142117A (en) Manufacture of semiconductor integrated circuit
KR950007422B1 (en) Semiconductor device isolation method
KR100422960B1 (en) Method for forming isolation layer of semiconductor device
JPS6017929A (en) Manufacture of semiconductor device
JPS60254629A (en) Manufacture of semiconductor device