JPS60254629A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60254629A
JPS60254629A JP10992484A JP10992484A JPS60254629A JP S60254629 A JPS60254629 A JP S60254629A JP 10992484 A JP10992484 A JP 10992484A JP 10992484 A JP10992484 A JP 10992484A JP S60254629 A JPS60254629 A JP S60254629A
Authority
JP
Japan
Prior art keywords
single crystal
grooves
semiconductor
silicon layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10992484A
Other languages
Japanese (ja)
Inventor
Shuichi Miyamoto
秀一 宮本
Kunihiko Wada
邦彦 和田
Hitoshi Hasegawa
長谷川 斉
Nobuo Niwayama
庭山 信夫
Masanori Kobayashi
正典 小林
Tsutomu Ogawa
力 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP10992484A priority Critical patent/JPS60254629A/en
Publication of JPS60254629A publication Critical patent/JPS60254629A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To form reproducibly grooves with precise depth and shape on a semiconductor surface, by forming a single crystal semiconductor layer over the surface of the semiconductor substrate, and then by removing the insulating film pattern. CONSTITUTION:After a silicon dioxide film is formed over a silicon substrate 1, it is patterned to form a plural of mask patterns 6 at redetermined intervals. A single crystal silicon layer 7 is formed over the exposed surface of the silicon substrate 1. The mask patterns 6 are removed to form grooves which are defined by the silicon substrate 1 and the single crystal silicon layer 7. A silicon dioxide film 8 with a thickness sufficient to bury the separation grooves 3 resulting from thermal oxidation is grown inside the grooves 3 and over the surface of the single crystal silicon layer 7. The silicon dioxide film 8 over the single crystal silicon layer 7 is selectively removed so that element isolation regions 5 consisting of the grooves 3 in which the silicon dioxide film 8 is being buried can be completed.

Description

【発明の詳細な説明】 (a)発明の技術分野 本発明は半導体装置の製造方法に係り、特に素子間分離
領域或いはキャパシタに用いる半導体による溝構造の形
成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of forming a groove structure using a semiconductor for use in an element isolation region or a capacitor.

(b)技術の背景 半導体集積回路装置の高集積化は著しく、最近までは主
として個々の素子の大きさを縮小することによって咳高
集積化が実現されて来た。
(b) Background of the Technology The degree of integration of semiconductor integrated circuit devices has been remarkable, and until recently, high integration has been achieved mainly by reducing the size of individual elements.

然しこの方法による高集積化には限界があり、この限界
を破るべく開発されたのが、半導体表面に溝を形成し、
この溝を素子分離やキャパシタとして使用する方法であ
る (C)従来技術と問題点 一般に半導体表面の溝は、第1図に示すような方法によ
り形成されていた。
However, there is a limit to high integration using this method, and in order to overcome this limit, a method was developed that formed grooves on the semiconductor surface.
(C) Prior art and problems Grooves on the surface of a semiconductor are generally formed by the method shown in FIG. 1.

即ち第1図(a)に示すように、半導体基板例えばシリ
コン基板1上にレジスト等からなるマスク・パターン2
を形成し、次いで第1図(blに示すように該マスク・
パターン2の開孔を介して基板面に対して垂直方向の異
方性を有する例えば反応性イオンエツチング手段により
前記開孔内に表出する基板1面のエツチングを行い、該
基板面に所定の深さを有する分離溝3を形成するもので
ある。
That is, as shown in FIG. 1(a), a mask pattern 2 made of resist or the like is placed on a semiconductor substrate, for example, a silicon substrate 1.
is formed, and then the mask is formed as shown in FIG. 1 (bl).
Through the openings of pattern 2, the surface of the substrate exposed in the openings is etched using, for example, reactive ion etching means having anisotropy in the direction perpendicular to the substrate surface, and a predetermined pattern is etched on the substrate surface. A separation groove 3 having a depth is formed.

然し此の方法には第1゛図(b)に示すように、反応性
イオンエツチングに際して溝3の内面にイオン衝撃のダ
メージや金属汚染による欠陥りが生成され、該欠陥りに
よる電流リークが生ずると言う問題や、同図に示すよう
に深さが溝幅に対して著しく深い溝3の場合、形状が中
程で拡がる傾向があリ、又深さを再現性良く制御するの
が難しい等、量産上好ましくない問題があった。
However, in this method, as shown in FIG. 1(b), defects are generated on the inner surface of the groove 3 due to ion bombardment damage and metal contamination during reactive ion etching, and current leakage occurs due to the defects. In the case of groove 3, which is significantly deeper than the groove width as shown in the figure, the shape tends to widen in the middle, and it is difficult to control the depth with good reproducibility. However, there were problems that were undesirable for mass production.

(d)発明の目的 本発明は従来方法の上記問題点を除去し、素子分離に用
いた場合素子特性を劣化せしめることがなく、且つキャ
パシタに用いた場合その容量値が再現性よく得られるよ
うな、半導体よりなる溝の形成方法を提供することを目
的とする。
(d) Purpose of the Invention The present invention eliminates the above-mentioned problems of the conventional method, so that when used for device isolation, the device characteristics do not deteriorate, and when used for a capacitor, the capacitance value can be obtained with good reproducibility. Another object of the present invention is to provide a method for forming a trench made of semiconductor.

(PI)発明の構成 上記本発明の目的は、半導体基板上に絶縁膜パターンを
形成し、該半導体基板の表出面上に選択エピタキシャル
成長法により単結晶半導体層を形成した後、該絶縁膜パ
ターンを除去することによって、該半導体基板面に半導
体層によってなる溝状構造を形成する工程をを含む本発
明による半導体装置の製造方法によって達成される。
(PI) Structure of the Invention The object of the present invention is to form an insulating film pattern on a semiconductor substrate, form a single crystal semiconductor layer on the exposed surface of the semiconductor substrate by selective epitaxial growth, and then remove the insulating film pattern. This is achieved by the method for manufacturing a semiconductor device according to the present invention, which includes the step of forming a groove-like structure made of a semiconductor layer on the surface of the semiconductor substrate by removing the semiconductor layer.

即ち本発明においては、半導体基板上に溝に相当する幅
を有し且つ凹凸の無いほぼ垂直な側面を有する絶縁膜マ
スク・パターンを形成し、選択エピタキシャル成長によ
り表出基板面に選択的に単結晶半導体層を成長せしめ、
前記マスク・パターンを除去して該マスク・パターンに
整合する凹凸の無いほぼ垂直な側面を持つ分離溝を形成
するものである。
That is, in the present invention, an insulating film mask pattern having a width corresponding to a groove and substantially vertical side surfaces with no unevenness is formed on a semiconductor substrate, and a single crystal is selectively grown on the exposed substrate surface by selective epitaxial growth. grow a semiconductor layer,
The mask pattern is removed to form a separation trench having substantially vertical side surfaces without irregularities that match the mask pattern.

かくて、 溝の深さは選択エピタキシャル成長層の厚みによって決
定されるため、再現性よく且つ精度良く決定される、 溝形状は絶縁膜マスクのエツチング形状で決定されるが
、該絶縁膜をパターンニングする際の該絶縁膜の除去部
分が通常能動素子領域に対応して幅広い面積を有するた
めエツチングが均一に行われるので、正確な形状制御が
可能である、ダメージや金属汚染がない、 基板と選択エピタキシャル成長層との不純物型や濃度を
独立に決定できるので、例えば基板に高濃度p型をエピ
タキシャル層に低濃度p型を用いることによって、0M
O3のランチアップの防止やα線対策に寄与し得る、 等積々の効果が得られる。
In this way, the depth of the groove is determined by the thickness of the selective epitaxial growth layer, so it can be determined with good reproducibility and accuracy.The groove shape is determined by the etching shape of the insulating film mask, but when the insulating film is patterned Since the removed portion of the insulating film during etching usually has a wide area corresponding to the active device area, etching is performed uniformly, allowing accurate shape control, and selecting a substrate with no damage or metal contamination. Since the impurity type and concentration of the epitaxial growth layer can be determined independently, for example, by using a high concentration p-type for the substrate and a low concentration p-type for the epitaxial layer, 0M
This can provide multiple effects such as preventing O3 launch-up and countermeasures against alpha rays.

(f)発明の実施例 以下本発明を、第2図(a)乃至(elに示す一実施例
の工程断面図及び第3図(a)乃至(d)に示す他の一
実施例の工程断面図を参照し具体的に説明する。
(f) Embodiments of the Invention The present invention will be described below with cross-sectional views of the process of one embodiment shown in FIGS. A detailed explanation will be given with reference to a cross-sectional view.

第3図に示すのは、上記溝構造を素子間分離に用いる場
合における溝内を熱酸化膜によって完全に埋める実施例
である。
FIG. 3 shows an embodiment in which the trench is completely filled with a thermal oxide film when the trench structure is used for isolation between elements.

第2図(a)参照 先ず所望の導電型を有するシリコン基板1上に、熱酸化
法若しくはCVD法により例えば1〜5μm程度の厚さ
の二酸化シリコン(SiO□)膜を形成し、例えばりア
クティブ・イオンエツチング法によりパターンニングを
おこなって、該シリコン基板l上に例えば0.5〜1μ
m程度の幅を有し且つ凹凸の無いほぼ垂直な側面を有す
る複数のSiO□マスク・パターン6を所定の間隔で形
成する。
Refer to FIG. 2(a) First, a silicon dioxide (SiO□) film having a thickness of, for example, 1 to 5 μm is formed on a silicon substrate 1 having a desired conductivity type by thermal oxidation or CVD.・Perform patterning by ion etching to form a layer of, for example, 0.5 to 1 μm on the silicon substrate.
A plurality of SiO□ mask patterns 6 having a width of approximately m and substantially vertical side surfaces with no unevenness are formed at predetermined intervals.

第2図(b)参照 次いで塩素系の反応ガス即ち四塩化珪素(SiC14)
、トリクロルシラン(SiHCls) 、ジクロルシラ
ン(SiHzCh ) 、モノクロルシラン(SiHs
Cl)等を用いる通常の選択エピタキシャル成長技術に
より、表出しているシリコン基板1面に所望導電型を有
する例えば1〜5μm程度の厚さの単結晶シリコン層7
を形成する。此の際単結晶シリコン層7はSi0gマス
ク・パターン6より厚くても支障は無い。
Refer to FIG. 2(b) Next, a chlorine-based reaction gas, i.e., silicon tetrachloride (SiC14)
, trichlorosilane (SiHCls), dichlorosilane (SiHzCh), monochlorosilane (SiHs)
A single crystal silicon layer 7 having a desired conductivity type and having a thickness of, for example, 1 to 5 μm is grown on the exposed surface of the silicon substrate by a normal selective epitaxial growth technique using Cl) or the like.
form. In this case, there is no problem even if the single crystal silicon layer 7 is thicker than the Si0g mask pattern 6.

第2図1c)参照 次いで弗酸系の液を用いる通常のウェット・エンチング
方法によりSiO□マスク・パターン6を除去して、シ
リコン基板1と単結晶シリコン層7によって構成される
溝3を形成する。この陳情3の側面は5iftマスク・
パターン6に整合して凹凸の無いほぼ垂直な面に形成さ
れる。
Refer to FIG. 2 1c) Next, the SiO □ mask pattern 6 is removed by a normal wet etching method using a hydrofluoric acid solution to form a groove 3 formed by the silicon substrate 1 and the single crystal silicon layer 7. . The side of this petition 3 is the 5ift mask.
It is formed on a substantially vertical surface with no unevenness in alignment with the pattern 6.

第2図(dl参照 次いで例えばウェット酸素中で行う通常の熱酸化法によ
り上記分離溝3の内面及び該港内に表出する単結晶シリ
コン層7の上面に、分離溝3を埋める厚さく溝幅にほぼ
相当する)の熱酸化5iOz膜8を成長させる。なお前
述したように溝3の側面には凹凸部が形成されていない
ので熱酸化SiO□膜8の内部に空洞が形成されること
はない。
FIG. 2 (see dl) Then, by a normal thermal oxidation method carried out in wet oxygen, for example, the inner surface of the separation groove 3 and the upper surface of the single crystal silicon layer 7 exposed in the port are thickened to fill the separation groove 3. A thermally oxidized 5iOz film 8 approximately corresponding to . Note that, as described above, since no unevenness is formed on the side surface of the groove 3, no cavity is formed inside the thermally oxidized SiO□ film 8.

又上記熱酸化SiO□膜8を形成するに際しての溝幅の
拡がりは溝幅の2分の1程度で済むので、分離領域の幅
は従来の選択酸化法によるものにくらべて大幅に縮小で
きる。
Furthermore, since the trench width only increases by about half the trench width when forming the thermally oxidized SiO□ film 8, the width of the isolation region can be significantly reduced compared to the conventional selective oxidation method.

第2図(el参照 次いで従来同様の平面研磨法(機械的な平面研磨手段、
プラズマによる平面研磨手段等)により単結晶シリコン
層7上の熱酸化SiO□膜8を選択的に除去し、熱酸化
SiO□膜8が埋め込まれた溝3よりなる素子間分離領
域5が完成する。
Figure 2 (see el) Next, the conventional surface polishing method (mechanical surface polishing means,
The thermally oxidized SiO□ film 8 on the single-crystal silicon layer 7 is selectively removed using a surface polishing method using plasma, etc., and the element isolation region 5 consisting of the groove 3 in which the thermally oxidized SiO□ film 8 is embedded is completed. .

第3図は溝の内部が多結晶シリコン層で埋められる素子
間分離領域の変形例である。
FIG. 3 shows a modification of the element isolation region in which the inside of the trench is filled with a polycrystalline silicon layer.

第3図(al参照 此の場合は前記実施例と同様な方法でシリコン基板1と
単結晶シリコン層7で構成される分離溝3を形成した後
、通常の熱酸化法により溝3の内面及び単結晶シリコン
層7の上面に厚さ例えば500人程度の熱酸化SiO□
膜8を形成し、次いで該溝3の内面及び単結晶シリコン
層7の上部にCVD法により厚さ例えば1000〜20
00人程度の窒化シリコン膜9を形成し、次いでCVD
法により該主面上に溝3を埋めるに充分な例えば1μm
程度の厚さを有する多結晶シリコン層10を形成する。
FIG. 3 (see al) In this case, after forming a separation trench 3 made up of a silicon substrate 1 and a single crystal silicon layer 7 in the same manner as in the previous embodiment, the inner surface of the trench 3 and Thermal oxidation SiO□ is applied to the upper surface of the single crystal silicon layer 7 to a thickness of, for example, about 500 mm.
A film 8 is formed on the inner surface of the groove 3 and on the top of the single crystal silicon layer 7 to a thickness of, for example, 1,000 to 20 nm by CVD.
A silicon nitride film 9 of about 0.000 mm is formed, and then CVD
For example, 1 μm is sufficient to fill the groove 3 on the main surface by the method.
A polycrystalline silicon layer 10 having a certain thickness is formed.

なお前記実施例同様溝3の側面は平坦に形成されるので
、該溝3内の多結晶シリコン層10に空洞が形成される
ことは無い。
Note that, as in the previous embodiment, since the side surfaces of the groove 3 are formed flat, no cavity is formed in the polycrystalline silicon layer 10 within the groove 3.

第3図(bl参照 次いで前述したような通常の平面研磨手段により上面の
多結晶シリコン層10を窒化シリコン膜9が表出する迄
除去する。
Refer to FIG. 3 (bl) Next, the polycrystalline silicon layer 10 on the upper surface is removed by a conventional surface polishing method as described above until the silicon nitride film 9 is exposed.

第3図(C)参照 次いで通常の熱酸化法により溝3内に埋め込まれている
多結晶シリコン層10の上面に選択的に厚さ例えば20
00〜8000人程度のSi0g絶縁膜11を形成する
Referring to FIG. 3(C), the upper surface of the polycrystalline silicon layer 10 buried in the groove 3 is selectively coated with a thickness of, for example, 20 mm by a conventional thermal oxidation method.
A SiOg insulating film 11 of about 0.00 to 8000 is formed.

第3図(d)参照 次いで燐酸処理等により上面の窒化シリコン膜9を除去
し、次いで弗酸系の液により窒化シリコン膜9下部の熱
酸化SiO□膜8を除去する。
Referring to FIG. 3(d), the silicon nitride film 9 on the upper surface is removed by phosphoric acid treatment or the like, and then the thermally oxidized SiO□ film 8 under the silicon nitride film 9 is removed using a hydrofluoric acid solution.

かくて単結晶シリコン層7面に、熱酸化SiO□膜8及
び窒化シリコン膜9を介して多結晶シリコン層10が埋
め込まれた溝3からなり上部に5in2絶縁膜11を有
する素子間分離領域5が形成される。
In this way, an inter-element isolation region 5 is formed, which consists of a groove 3 in which a polycrystalline silicon layer 10 is embedded in the surface of the single crystal silicon layer 7 through a thermally oxidized SiO□ film 8 and a silicon nitride film 9, and has a 5in2 insulating film 11 on top. is formed.

なお上記窒化シリコン膜は、主として多結晶シリコン層
10の平面研磨の際のストッパの役割、及び分離溝3内
に埋められた多結晶シリコン層10上に形成されるSi
O□絶縁膜11にバーズビークが形成されて分離領域幅
が拡大するのを防止する役割を果たす。
The silicon nitride film mainly serves as a stopper during surface polishing of the polycrystalline silicon layer 10, and serves as a silicon nitride film formed on the polycrystalline silicon layer 10 buried in the separation trench 3.
It plays a role in preventing the formation of a bird's beak in the O□ insulating film 11 and the expansion of the isolation region width.

(g)発明の詳細 な説明したように本発明によれば、深さ及び形状が正確
且つ再現性良く溝を半導体表面に形成する事が可能であ
り、又溝形成に際してのスパック・ダメージや金属汚染
が防止される。更に又基板の上部と下部の不純物型及び
濃度を独立に選択出来るので、半導体ICにおけるラッ
チアップの防止やα線障害の防止を容易になし得る。
(g) Detailed Description of the Invention According to the present invention, it is possible to form grooves with accurate depth and shape on the semiconductor surface with good reproducibility, and it is also possible to prevent spatter damage and metallurgy when forming the grooves. Contamination is prevented. Furthermore, since the impurity type and concentration of the upper and lower parts of the substrate can be selected independently, it is possible to easily prevent latch-up and α-ray damage in semiconductor ICs.

従って本発明は、半導体集積回路装置等の製造歩留り及
び集積度を向上せしめるうえに極めて有効である。
Therefore, the present invention is extremely effective in improving the manufacturing yield and degree of integration of semiconductor integrated circuit devices and the like.

なお本発明の方法は、グイナミソクRAMにおける凹部
状のキャパシタを形成する際にも適用される。
Note that the method of the present invention is also applied to the formation of a concave capacitor in a Guinamisoku RAM.

工程断面図、 第2図(al乃至(e)は本発明の方法の一実施例を示
す工程断面図 第3図(al乃至(d)は本発明の方法の他の一実施例
を示す工程断面図である。
2 (al to (e) are process cross-sectional views showing one embodiment of the method of the present invention. Figure 3 (al to (d) are process cross-sectional views showing another embodiment of the method of the present invention. FIG.

図において、1はシリコン基板、3は溝、5は素子間分
離領域、6は二酸化シリコン・マスクパターン、7は単
結晶シリコン層、8熱酸化二酸化シリコン膜を示す。
In the figure, 1 is a silicon substrate, 3 is a trench, 5 is an isolation region, 6 is a silicon dioxide mask pattern, 7 is a single crystal silicon layer, and 8 is a thermally oxidized silicon dioxide film.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に絶縁膜パターンを形成し、該半導体基板
の表出面上に選択エピタキシャル成長法により単結晶半
導体層を形成した後、該絶縁膜パターンを除去すること
によって、該半導体基板面に半導体層によってなる溝状
構造を形成する工程を有することを特徴とする半導体装
置の製造方法。
After forming an insulating film pattern on a semiconductor substrate and forming a single crystal semiconductor layer on the exposed surface of the semiconductor substrate by selective epitaxial growth, the insulating film pattern is removed to form a semiconductor layer on the surface of the semiconductor substrate. 1. A method for manufacturing a semiconductor device, comprising the step of forming a groove-like structure.
JP10992484A 1984-05-30 1984-05-30 Manufacture of semiconductor device Pending JPS60254629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10992484A JPS60254629A (en) 1984-05-30 1984-05-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10992484A JPS60254629A (en) 1984-05-30 1984-05-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60254629A true JPS60254629A (en) 1985-12-16

Family

ID=14522567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10992484A Pending JPS60254629A (en) 1984-05-30 1984-05-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60254629A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07202253A (en) * 1993-12-28 1995-08-04 Nec Corp Manufacture of semiconductor photodetector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07202253A (en) * 1993-12-28 1995-08-04 Nec Corp Manufacture of semiconductor photodetector

Similar Documents

Publication Publication Date Title
CA1159966A (en) Process of forming recessed dielectric regions in a monocrystalline silicon substrate
US4211582A (en) Process for making large area isolation trenches utilizing a two-step selective etching technique
US5989978A (en) Shallow trench isolation of MOSFETS with reduced corner parasitic currents
JPS63314844A (en) Manufacture of semiconductor device
JPH0461494B2 (en)
JPH02214140A (en) Method of forming trench which has round bottom at silicon anlistrate for forming trench isolation of micture
JP3880207B2 (en) Method for forming trench isolation
JPS60147133A (en) Method of producing integrated circuit
KR950004972B1 (en) Method of forming field oxide layer on semiconductor device
JPH0362946A (en) Semiconductor device and manufacture thereof
JPS59232437A (en) Manufacture of semiconductor device
JPS60254629A (en) Manufacture of semiconductor device
JPH06326091A (en) Formation method for field oxide film in semiconductor element
JPS59182538A (en) Semiconductor device and manufacture thereof
JPS60193324A (en) Manufacture of semiconductor substrate
JPH02203549A (en) Manufacture of semiconductor device
JPS6029219B2 (en) Manufacturing method of semiconductor integrated circuit
JPH0684938A (en) Manufacture of semiconductor device
JPS58200554A (en) Manufacture of semiconductor device
JPH02205339A (en) Manufacture of semiconductor device
JPH07135247A (en) Manufacture of semiconductor device
JPS60158642A (en) Semiconductor device
JPH0257701B2 (en)
JPH01179431A (en) Manufacture of semiconductor device
JPS60189235A (en) Production of semiconductor device