JPS59232437A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59232437A
JPS59232437A JP10707283A JP10707283A JPS59232437A JP S59232437 A JPS59232437 A JP S59232437A JP 10707283 A JP10707283 A JP 10707283A JP 10707283 A JP10707283 A JP 10707283A JP S59232437 A JPS59232437 A JP S59232437A
Authority
JP
Japan
Prior art keywords
opening
oxidation
semiconductor substrate
film
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10707283A
Other languages
Japanese (ja)
Inventor
Toyoki Takemoto
竹本 豊樹
Kenji Kawakita
川北 憲司
Hiroyuki Sakai
坂井 弘之
Tsutomu Fujita
勉 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10707283A priority Critical patent/JPS59232437A/en
Publication of JPS59232437A publication Critical patent/JPS59232437A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/763Polycrystalline semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
    • H01L21/76281Lateral isolation by selective oxidation of silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
    • H01L21/76286Lateral isolation by refilling of trenches with polycristalline material

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To form oxide films on a side surface and a bottom surface of an element forming region by a method wherein anti-oxidizing films are formed selectively to apertures formed on a semiconductor substrate. CONSTITUTION:A high density N type diffusion layer 52 is formed in a P type semiconductor substrate 51 and a low density N type epitaxial layer 53 is formed on it. Apertures 58 are drilled in the expitaxial layer 53 and then oxide layers 54, 55 and silicon nitride films 56, 57 are formed. Apertures which reach the N type diffusion layer 52 are formed by etching the bottoms of the apertures and then silicon nitride films 60, 61 are formed on the bottoms of the apertures and the silicon nitride film 56. An oxide layer 62 is formed beneath the epitaxial layer 53 by an oxidizing process. After that, the apertures are filled with polycrystalline silicon films 63 and an oxide film 64 is formed on the polycrystalline silicon films 63.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高密度,高速性を備えてなる半導体集積回路装
置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a semiconductor integrated circuit device having high density and high speed.

従来例の構成とその問題点 半導体集積回路は、高密IW化,筒速化,低消費電力化
が進んでいるが、かかる装置において、問題となるのが
,寄生容量である,1例えば、バイポーラ素子において
は、コレクタと基板間に発生する寄生容量であり,MO
S素子においては,ソース,ドレインと基板間VC発生
する寄生容量である。
Conventional configurations and their problems Semiconductor integrated circuits are becoming more dense IW, faster, and have lower power consumption, but in such devices, parasitic capacitance is a problem. In an element, it is a parasitic capacitance that occurs between the collector and the substrate, and MO
In the S element, this is a parasitic capacitance generated between the source, drain, and substrate.

この寄生容量を削減することが出来れば、より高速で低
消費電力の半心体素子を形成することが可能である。そ
のためこの容置削減の方法として、多くの試みが実施さ
れて米た。
If this parasitic capacitance can be reduced, it is possible to form a half-core element with higher speed and lower power consumption. Therefore, many attempts have been made to reduce this storage capacity.

その一例は、単結晶の絶縁物基板たとえば、ザファイア
などを使用して,その上{てシリコン層を気相成長させ
る方法で通常S O S ( Silicon  On
Saphire )と呼ばれている方法である。このS
OS基板を使用し、そのシリ:1ン気Aロ成長層内に形
成された素子は、寄生容量も少なく優れた特長を有して
いるが、次の様な欠点がある。
An example of this is to use a single crystal insulator substrate such as zaphire and grow a silicon layer thereon in a vapor phase.
This method is called Saphire. This S
A device using an OS substrate and formed within its silicon-air-grown layer has excellent features such as low parasitic capacitance, but has the following drawbacks.

(1)  基板として単結晶のザファイアを使用してい
るため高価である。
(1) It is expensive because it uses single crystal zaphire as a substrate.

(2)素子製作のプロセスとしてr5温処理をする際に
ザフ1イア基板からアルミナ( A1203 )が蒸発
又は拡散し、電気炉等を汚染さする。
(2) Alumina (A1203) evaporates or diffuses from the XAF1IA substrate during R5 temperature treatment as part of the device manufacturing process, contaminating the electric furnace and the like.

この2点の欠点のため、SOS基板は現在迄広く使用さ
れるに至っていない。
Due to these two drawbacks, SOS substrates have not been widely used to date.

第2の従来例としては、シリコンの多孔質化により、基
板を絶縁物化する方法である。第1図はその製造工程を
示す断面図である。
A second conventional example is a method in which the substrate is made into an insulator by making silicon porous. FIG. 1 is a sectional view showing the manufacturing process.

第1図aはn型ンリコン基板1に高濃度のp型不純物層
2を形成し、この上にn型のエビタギシャル層3を気相
成長させ,エビタギ/ヤル層3に選択的にp型不純物層
4を形成したものである。
In Figure 1a, a highly concentrated p-type impurity layer 2 is formed on an n-type silicon substrate 1, an n-type epitaxial layer 3 is grown in a vapor phase on this layer, and the p-type impurity layer 3 is selectively doped. Layer 4 was formed.

次に、第1図b vc示すように、p型不純物層2。Next, as shown in FIG. 1 b vc, a p-type impurity layer 2 is formed.

4を多孔質化させ多孔質領域5を形成する。ここで、多
孔質処理は通常、HF(沸酸)溶媒内で、電界を印加す
ることにより、p型不純物層が選択的に多孔質化される
ことを利用している。この多孔質領域らは表面積が多い
ため、酸化されやすく、酸化処理をすることにより,容
易に酸化膜6に変化する(第1図O)。
4 is made porous to form a porous region 5. Here, the porous treatment usually utilizes the fact that the p-type impurity layer is selectively made porous by applying an electric field in an HF (hydrofluoric acid) solvent. Since these porous regions have a large surface area, they are easily oxidized, and are easily transformed into an oxide film 6 by oxidation treatment (FIG. 1O).

第1図に示す方法で製造されたものは素子形成領域の側
面部と底面部が酸化されており、寄生容量も小さくなり
良好であるが、次の様な欠点を有する。
The device manufactured by the method shown in FIG. 1 has oxidized side and bottom portions of the element forming region and has a small parasitic capacitance, which is good, but it has the following drawbacks.

(1)高濃度のp型不純物層を埋込むため、気相成長さ
れた層に不純物が拡散されやすく、薄いn型層が形成さ
t′L.にくい。
(1) Since the p-type impurity layer is buried at a high concentration, the impurity is easily diffused into the vapor-phase grown layer, and a thin n-type layer is formed. Hateful.

(2)第1図aにおけるp散拡散層4の大きさ(断面,
開孔口等)Kより多孔質化の状態が太きく作用される。
(2) Size (cross section,
(pore openings, etc.) The state of porosity is affected more strongly than by K.

(3)酸化工程により多孔質領域は膨脂し、多孔質領域
の大きさにより膜厚が均一とならない。
(3) The porous region swells due to the oxidation process, and the film thickness becomes uneven depending on the size of the porous region.

等の欠点が存在する。There are drawbacks such as:

第3の例を,第2図に示す。第2図aはp型/リコン基
板11にn型領域12を拡散形成し、その後n型たとえ
ばQ.6Ω−CaHの気相成長層13を形成し、その上
に酸化シリコン層14を付着さぜ、最上部に耐酸化性物
質たとえばシリコン窒化膜( Si3N,、膜)15を
形成し、開口後、シリコン基板11を異方性エノチング
したものである。シリコン窒化膜1siシリコン基板1
1のエノチングにより、その先端部16はひさし状にな
るが、開口部17ば、異方性エノチングたとえばR・工
・E・( Re?Lctire  ion  etch
ing ) VCより、ほぼ垂直に開口される。第2図
bにおいては、シリコン窒化膜11をマスクとして酸化
処理を行い酸化膜18を薄く形成した後、全面にシリコ
ン窒化膜19。
A third example is shown in FIG. In FIG. 2a, an n-type region 12 is diffused into a p-type/recon substrate 11, and then an n-type region 12, for example, Q. A 6Ω-CaH vapor phase growth layer 13 is formed, a silicon oxide layer 14 is deposited thereon, an oxidation-resistant material such as a silicon nitride film (Si3N, film) 15 is formed on top, and after opening, A silicon substrate 11 is anisotropically etched. Silicon nitride film 1si silicon substrate 1
1, the tip 16 becomes a canopy, but the opening 17 is anisotropically etched, such as R・E・(Re?Lctire ion etch).
ing) It is opened almost perpendicularly from the VC. In FIG. 2b, an oxidation process is performed using the silicon nitride film 11 as a mask to form a thin oxide film 18, and then a silicon nitride film 19 is formed over the entire surface.

20、21を形成する。ここで、19は開[1部17の
側面に付着したもの、20ほシリコン窒化膜15−ヒに
、21は開口部17の底面に付着したものである。次に
、第2図Cにおいては、ノリコン基板11を、異方性の
エツチングにより、シリコン窒化膜20.21を除去す
る。尚、側面に付着しているシリコン窒化膜19は異方
性エツチングのために除去されない。ここで、開口1部
17の底面22は酸化膜18が露出した状態となる。こ
の後、シリコン窒化膜1ら、18をマスクとして酸化処
理を行ない、酸化膜23を形成する(第2図d)。
20 and 21 are formed. Here, 19 is what is attached to the side surface of the opening 17, 20 is what is attached to the silicon nitride film 15-1, and 21 is what is attached to the bottom of the opening 17. Next, in FIG. 2C, the silicon nitride films 20 and 21 of the Noricon substrate 11 are removed by anisotropic etching. Note that the silicon nitride film 19 adhering to the side surfaces is not removed due to anisotropic etching. Here, the oxide film 18 is exposed on the bottom surface 22 of the opening 1 portion 17. Thereafter, an oxidation process is performed using the silicon nitride films 1 and 18 as masks to form an oxide film 23 (FIG. 2d).

ここで、本工程では開口部17の側面に耐酸性物質であ
るシリコン窒化膜19が被着さ1%でいるために、横方
向へは酸化が進甘ず、そのため垂直な方向に伸びる酸化
膜23が形成される。
Here, in this step, since the silicon nitride film 19, which is an acid-resistant material, is deposited on the side surface of the opening 17 at a rate of 1%, oxidation does not proceed in the lateral direction, and therefore the oxide film extends in the vertical direction. 23 is formed.

この従来例は、酸化膜が横に広がらず活性領域がその1
壕残るため側面の分離法としては優れでいるが、活性領
域底部は酸化膜が形成されておらず%1til1面の寄
生容量のみしか削減できない欠点を有する。
In this conventional example, the oxide film does not spread horizontally and the active region is
This method is excellent as a side surface isolation method because a trench remains, but it has the disadvantage that no oxide film is formed at the bottom of the active region and only the parasitic capacitance of the %1til1 plane can be reduced.

発明の目的 本発明は素子形成領域の側面ばかりでなく、底面にも絶
縁膜を形成でさる半導体装置の製造方法を提供せんとす
るものである。
OBJECTS OF THE INVENTION The present invention provides a method for manufacturing a semiconductor device in which an insulating film is formed not only on the side surfaces of an element forming region but also on the bottom surface.

発明の構成 本発明の半導体装置の製造方法は半導体基体に形成した
開口部に選択的に耐酸化性被膜を形成し、この被膜をマ
スクとして半導体基体を酸化し、底面及び側面が酸化膜
で包囲された活性領域を形成するものである。
Structure of the Invention The method for manufacturing a semiconductor device of the present invention includes selectively forming an oxidation-resistant film on an opening formed in a semiconductor substrate, oxidizing the semiconductor substrate using this film as a mask, and surrounding the bottom and side surfaces with the oxide film. This forms an active region.

実施例の説明 〔実施例1〕 第3図は本発明の一実施例を示す工程断面図である。第
3図aで31はp型(111)基板で比抵抗は0.6〜
1Ω〜ctnである。32は高濃度のn型埋込み層でA
s が拡散されている。33は気相成長法で形成された
n型エピタギ/ヤル層で0.5〜0.6Ω−Cmの比抵
抗である。34は熱酸化膜、35は耐酸化性被膜たとえ
ばシリコン窒化膜(5i5N4膜)で、分離領域になる
部分のみを選択的に開口し、そこから基板をエツチング
除去する。エツチングの方法は、異方性の強いドライエ
ッチ法たとえば反応性イオンエッチ(R,1,E・)を
使って行ない、垂直にp型基板31に達する深さ迄エツ
チングして開1」部36を形成する。次に、第3図すに
示す如く、ノリ:1ン窒化膜35をマスクとして熱酸化
を行ない酸化膜3了を形成する。その後全面にシリコン
窒化膜38,39.40を減圧CVD法で形成する。こ
こで、38は開1]部36の側面、39はシリコン窒化
膜36上、40は開口部36底面に形成さiたノリコン
窒化膜である。尚、減圧CVD法でのシリコン窒化膜の
生成は、開j」部36の側面へシリコン窒化膜を均質に
付着させるためである。その後、活性イオンエツチング
法で異方性の強いエツチングを行なつと、開口部36の
側壁部のシリコン窒化膜38のみを残して、シリコン窒
化膜39,40が除去される(第3図C)。
Description of Examples [Example 1] FIG. 3 is a process sectional view showing an example of the present invention. In Figure 3a, 31 is a p-type (111) substrate with a specific resistance of 0.6~
It is 1Ω~ctn. 32 is a high concentration n-type buried layer A
s is diffused. 33 is an n-type epitaxial layer formed by vapor phase growth and has a specific resistance of 0.5 to 0.6 Ω-Cm. 34 is a thermal oxide film, and 35 is an oxidation-resistant film such as a silicon nitride film (5i5N4 film). Only the portion that will become the isolation region is selectively opened, and the substrate is etched away from there. The etching method is a highly anisotropic dry etching method, such as reactive ion etching (R, 1, E. form. Next, as shown in FIG. 3, thermal oxidation is performed using the glue nitride film 35 as a mask to form an oxide film 3. Thereafter, silicon nitride films 38, 39, and 40 are formed on the entire surface by low pressure CVD. Here, 38 is a side surface of the opening 36, 39 is a silicon nitride film formed on the silicon nitride film 36, and 40 is a silicon nitride film formed on the bottom surface of the opening 36. The silicon nitride film is generated by the low pressure CVD method in order to uniformly adhere the silicon nitride film to the side surface of the opening 36. Thereafter, when highly anisotropic etching is performed using active ion etching, the silicon nitride films 39 and 40 are removed, leaving only the silicon nitride film 38 on the side wall of the opening 36 (FIG. 3C). .

この後、酸化膜37を除去し、基板31を等方向なエツ
チングたとえば湿式のエツチングを行ない開[」都41
を形成する(第3図d)。そして、シリコン窒化膜を、
暴力性の強い付着法たとえばスパッタ法あるいはプラズ
マ法を使い形成する。従って、シリコン窒化膜42.4
3は図の如く形成され、開口部36の側面、特に、開口
部41の41111面44にはシリコン窒化膜は付着さ
7″1.ない(第3図e)。その後、高圧酸化法で約7
気圧の圧力下で酸化すると、被酸化領域は、シリコン窒
化膜35.38.421 43が覆われていない領域に
限定される為、開口部41の側面44の方向に酸化が進
み、同時に膨張した酸化膜は、開口部36を埋めるべく
上部へ伸びるように形成され、結果として、分離された
エヒリギンヤル層33の底面及び側面に酸化膜45が形
成さnる(第3図f)。
Thereafter, the oxide film 37 is removed, and the substrate 31 is etched in an isodirectional manner, for example, by wet etching.
(Fig. 3d). Then, the silicon nitride film is
It is formed using a highly violent adhesion method, such as a sputtering method or a plasma method. Therefore, the silicon nitride film 42.4
No. 3 is formed as shown in the figure, and the silicon nitride film is not attached to the side surface of the opening 36, especially the 41111 surface 44 of the opening 41 (see FIG. 7
When oxidized under atmospheric pressure, the oxidized area is limited to the area where the silicon nitride film 35, 38, 421 43 is not covered, so the oxidation progresses in the direction of the side surface 44 of the opening 41 and expands at the same time. The oxide film is formed to extend upward to fill the opening 36, and as a result, an oxide film 45 is formed on the bottom and side surfaces of the separated secondary layer 33 (FIG. 3f).

尚、最適な条件と、活性領域の距離を狭くすると、横に
伸びた酸化膜46同士は、活性領域下部で接続すること
となる。
Note that when the optimum conditions and the distance between the active regions are narrowed, the horizontally extending oxide films 46 are connected to each other at the bottom of the active regions.

〔実施例2〕 第4図は本発明の他の実施例を示す工程断面図である。[Example 2] FIG. 4 is a process sectional view showing another embodiment of the present invention.

葦ず、第4図aで、51はp型基板であるが、N型でも
良い。52は高濃度のn型拡散層”?l’、コノ上に低
濃度のn型エピタキシャルJf453が形成されている
。エビタキ/ヤル層に開口部をもうけ、酸化層54と、
開口部側壁の酸化層55を酸化]二程により成長させ、
第1の実施例に詳述したごとぐ、!11I酸化性被膜た
とえばシリコン窒化膜56.57を形成する。図で明ら
かなように開口部58の底部に基板61が露出している
。この後、弗酸と硝酸の混合液でエツチングする。エツ
チングは当初緩やかであるが、液が高a度の拡散層62
に達した時、早くなり非等方的な形状を示し、開口部5
9が形成される(第4図b)。次に、シリコン窒化膜を
スパッター等の方法で異方的に付着させ、開口部69の
底面」二、シリコン窒化膜66上にそれぞれシリコン窒
化膜6Q、61を形成する(第4図C)。次に、シリコ
ン窒化膜57゜60.61をマスクに酸化処理を行ない
、分離されたエピタキシャル層53下に酸化膜62が形
成される1で酸化処理をする(第4図d)。この後、通
常の溝埋込み法により、多結晶シリコン膜63を開口部
36に埋込み、多結晶シリコン膜63」二に酸化膜64
を形成する(第4図e)。
In FIG. 4a, 51 is a p-type substrate, but it may be an n-type substrate. 52 is a high concentration n-type diffusion layer "?l', and a low concentration n-type epitaxial layer Jf453 is formed on top of it. An opening is made in the epitaxial/yellow layer, and an oxide layer 54 is formed.
The oxide layer 55 on the side wall of the opening is grown by two steps,
As detailed in the first embodiment! A 11I oxidizing film, such as a silicon nitride film 56,57, is formed. As is clear from the figure, the substrate 61 is exposed at the bottom of the opening 58. After that, it is etched with a mixture of hydrofluoric acid and nitric acid. Etching is gradual at first, but the etching is at a high a degree in the diffusion layer 62.
When reaching , it becomes faster and shows an anisotropic shape, and the opening 5
9 is formed (Fig. 4b). Next, a silicon nitride film is anisotropically deposited by a method such as sputtering to form silicon nitride films 6Q and 61 on the bottom surface of the opening 69 and on the silicon nitride film 66, respectively (FIG. 4C). Next, an oxidation process is performed using the silicon nitride film 57.60.61 as a mask, and an oxidation process is performed at step 1 to form an oxide film 62 under the separated epitaxial layer 53 (FIG. 4d). Thereafter, a polycrystalline silicon film 63 is filled in the opening 36 by a normal trench filling method, and then the polycrystalline silicon film 63 and the oxide film 64 are filled.
(Fig. 4e).

以上の工程により、単結晶領域であるエピタキシャル層
53が酸化膜で囲こ寸れた構造が形成される。
Through the above steps, a structure in which the epitaxial layer 53, which is a single crystal region, is surrounded by an oxide film is formed.

本実施例の場合は分離すべきエピタキシャル層53の間
が犬のときでも、多結晶シリコン膜を埋め込むのみで分
離が可能となる利点を有する。更に、本実施例では高濃
度の拡散層62をエツチングしているので、容易に非等
方的形状の開口部5つを形成でさる利点を有する。
This embodiment has the advantage that even if there is a gap between the epitaxial layers 53 to be separated, separation is possible simply by embedding a polycrystalline silicon film. Furthermore, in this embodiment, since the highly-concentrated diffusion layer 62 is etched, there is an advantage that five openings having anisotropic shapes can be easily formed.

崗、以上の実施例は主にバイポーラ集積回路に適用でさ
る活性領域について示しているが、他に一般のMO3型
集積回路や、固体撮像素子、記憶素子とじても使用でき
、一般的なS OX (5iliconon  1ns
ulator )デバイスと同様な用途が期待される。
Although the above embodiments are mainly applied to active regions applied to bipolar integrated circuits, they can also be used in general MO3 type integrated circuits, solid-state image sensors, and memory devices. OX (5iliconon 1ns
Applications similar to those for ulator) devices are expected.

特に、MOSデバイスにおいては、ラッチアップ防止、
α線によるソフトエラー防止等の効果が期待される。
In particular, in MOS devices, latch-up prevention,
It is expected to be effective in preventing soft errors caused by alpha rays.

発明の効果 本発明によれば活性領域の側面及び底面に分離酸化膜を
容易に形成でき、しかも、 (1)製作プロセスが、通常集積回路において多用さ几
ている方法のみを用いて実施でさるため、装置への汚染
等の問題が発生しない。
Effects of the Invention According to the present invention, it is possible to easily form an isolation oxide film on the side and bottom surfaces of the active region, and furthermore, (1) the manufacturing process can be carried out using only methods that are commonly used in normal integrated circuits; Therefore, problems such as contamination of the equipment do not occur.

−(2)絶縁膜がシリコンの熱酸化膜であるので、膜の
ち密性にも優れ、活性領域であるシリコンとの界面での
界面準位も少ない。
-(2) Since the insulating film is a thermally oxidized silicon film, the film has excellent film density and has few interface states at the interface with silicon, which is the active region.

(3)活性領域の太ささ等により酸化時間を長くするこ
とにより、酸化部分の膨張に伴なう歪の発生が考えられ
るが、本発明は活性領域下部すべてを酸化する必要もな
く、歪の発生と寄生容量削減のかねあいで、横方向への
酸化量を決定することが可能である。
(3) By lengthening the oxidation time depending on the thickness of the active region, strain may occur due to expansion of the oxidized portion, but the present invention eliminates the need to oxidize the entire lower part of the active region, and reduces strain. It is possible to determine the amount of oxidation in the lateral direction based on the balance between generation and reduction of parasitic capacitance.

等の効果を有し、工業的価値が高いものである。It has the following effects and is of high industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図IL −Q u多孔質を使った従来の酸化法によ
る工程断面図、第2図a −6は従来法による垂直型絶
縁分離法による工程断面図、第3図a −fは本発明の
第1の実施例を示す工程断面図、第4図a〜eは本発明
の第2の実施例を示す工程断面図である。 35.38,42.43・・・・・・シリコン窒化膜、
36・・・・・・第1の開口部、41・・・・・・第2
の開口部、45・・・・・・酸化膜、52・・・・・・
高濃度拡散層、56゜57.6Q、61・・・・・・ノ
リコン窒化膜、62・・・・・・酸化膜、63・・・・
・・多結晶シリコン膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第3
図 第4図
Figure 1 is a process cross-sectional view of a conventional oxidation method using IL-Q u porous material, Figure 2 a-6 is a process cross-section view of a conventional vertical insulation separation method, and Figure 3 a-f is a process cross-sectional view of the present invention. FIGS. 4A to 4E are process cross-sectional views showing the second embodiment of the present invention. 35.38, 42.43... Silicon nitride film,
36...First opening, 41...Second
opening, 45... oxide film, 52...
High concentration diffusion layer, 56°57.6Q, 61...Noricon nitride film, 62...Oxide film, 63...
...Polycrystalline silicon film. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 3
Figure 4

Claims (5)

【特許請求の範囲】[Claims] (1)半導体基体上に形成された第1の耐酸化性被膜を
マスクとして前記半導体基体に第1の開口部を形成する
工程と、第2の耐酸化性被膜を前記半導体基体上に形成
する工程と、異方性エツチングにより前記第1の開口部
側面に前記第2の耐酸化性被膜を残存させる工程と、前
記第1の開口部底部から前記半導体基体をエツチングし
第2の開口部を形成する工程と、前記半導体基体表面か
ら異方的に第3の耐酸化性被膜を付着させ、前記第2の
開口部の底部に前記第3の耐酸化性被膜を形成する工程
と、前記第1〜第3の耐酸化性被膜をマスクとして酸化
性雰囲気で前記半導体基体を熱処理して、前記第1.第
2の開口部に酸化膜を形成する工程とを含むことを特徴
とする半導体装置の製造方法。
(1) Forming a first opening in the semiconductor substrate using a first oxidation-resistant coating formed on the semiconductor substrate as a mask; and forming a second oxidation-resistant coating on the semiconductor substrate. a step of leaving the second oxidation-resistant film on the side surface of the first opening by anisotropic etching, and etching the semiconductor substrate from the bottom of the first opening to form a second opening. a step of anisotropically depositing a third oxidation-resistant coating from the surface of the semiconductor substrate to form the third oxidation-resistant coating on the bottom of the second opening; The semiconductor substrate is heat-treated in an oxidizing atmosphere using the first to third oxidation-resistant films as masks, and the semiconductor substrate is heat-treated in an oxidizing atmosphere using the first to third oxidation-resistant films as masks. A method of manufacturing a semiconductor device, comprising the step of forming an oxide film in the second opening.
(2)酸化物により充たされた第2の開口部が、隣接し
た第3の開口部と酸化物を介して接続されることを特徴
とする特許請求の範囲第1項記載の半導体装置の製造方
法。
(2) The semiconductor device according to claim 1, wherein the second opening filled with oxide is connected to an adjacent third opening via oxide. Production method.
(3)半導体基体上に形成された第1の耐酸化性被膜を
マスクとして前記半導体基体に第1の開口部を形成する
工程と、第2の耐酸化性被膜を前記半導体基体上に形成
する工程と、異方性エツチングにより前記第1の開口部
側面に前記第2の耐酸化性被膜を残存させる工程と、前
記第1の開口部から前記半導体基体をエツチングし、第
2の開口部を形成する工程と、前記半導体基体表面から
異方的第3の耐酸化性被膜を付着させ前記第2の開口部
の底面に前記第3の耐酸化性被膜を形成する工程と、前
記第1〜第3の耐酸化性被膜をマスクとして酸化性雰囲
気で前記半導体基体を熱処理して、前記第2の開口部に
酸化膜を形成する工程と、前記第1の開口部に絶縁膜を
介して半導体層を形成する工程とを含むことを特徴とす
る半導体装置の製造方法。
(3) forming a first opening in the semiconductor substrate using the first oxidation-resistant coating formed on the semiconductor substrate as a mask; and forming a second oxidation-resistant coating on the semiconductor substrate. a step of leaving the second oxidation-resistant film on the side surface of the first opening by anisotropic etching; and etching the semiconductor substrate from the first opening to form a second opening. a step of depositing an anisotropic third oxidation-resistant coating from the surface of the semiconductor substrate to form the third oxidation-resistant coating on the bottom surface of the second opening; heat-treating the semiconductor substrate in an oxidizing atmosphere using a third oxidation-resistant film as a mask to form an oxide film in the second opening; 1. A method for manufacturing a semiconductor device, comprising the step of forming a layer.
(4)第2の開口部を形成すべき半導体基体部分には高
濃度不純物層が形成されていることを特徴とする特許 の製造方法。
(4) A patented manufacturing method characterized in that a high concentration impurity layer is formed in a portion of the semiconductor substrate where the second opening is to be formed.
(5)酸化物により充たされた第2の開口部が、隣接し
た第3の開し1部と酸化物を介して接続されていること
を特徴とする特許請求の範囲第3項記載の半導体装置の
製造方法。
(5) The second opening filled with the oxide is connected to the adjacent third opening via the oxide. A method for manufacturing a semiconductor device.
JP10707283A 1983-06-15 1983-06-15 Manufacture of semiconductor device Pending JPS59232437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10707283A JPS59232437A (en) 1983-06-15 1983-06-15 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10707283A JPS59232437A (en) 1983-06-15 1983-06-15 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS59232437A true JPS59232437A (en) 1984-12-27

Family

ID=14449768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10707283A Pending JPS59232437A (en) 1983-06-15 1983-06-15 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS59232437A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5112771A (en) * 1987-03-20 1992-05-12 Mitsubishi Denki Kabushiki Kaisha Method of fibricating a semiconductor device having a trench
US5661073A (en) * 1995-08-11 1997-08-26 Micron Technology, Inc. Method for forming field oxide having uniform thickness
US6110798A (en) * 1996-01-05 2000-08-29 Micron Technology, Inc. Method of fabricating an isolation structure on a semiconductor substrate
EP1049155A1 (en) * 1999-04-29 2000-11-02 STMicroelectronics S.r.l. Process for manufacturing a SOI wafer with buried oxide regions without cusps
US6465865B1 (en) 1996-01-05 2002-10-15 Micron Technology, Inc. Isolated structure and method of fabricating such a structure on a substrate
US6699742B2 (en) * 1999-03-16 2004-03-02 Micron Technology, Inc. Base current reversal SRAM memory cell and method
US6891213B1 (en) 1999-03-16 2005-05-10 Micron Technology, Inc. Base current reversal SRAM memory cell and method
JP2009508322A (en) * 2005-06-02 2009-02-26 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ Printable semiconductor structure and related manufacturing and assembly methods

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5112771A (en) * 1987-03-20 1992-05-12 Mitsubishi Denki Kabushiki Kaisha Method of fibricating a semiconductor device having a trench
US5661073A (en) * 1995-08-11 1997-08-26 Micron Technology, Inc. Method for forming field oxide having uniform thickness
US6103595A (en) * 1995-08-11 2000-08-15 Micron Technology, Inc. Assisted local oxidation of silicon
US6110798A (en) * 1996-01-05 2000-08-29 Micron Technology, Inc. Method of fabricating an isolation structure on a semiconductor substrate
US6465865B1 (en) 1996-01-05 2002-10-15 Micron Technology, Inc. Isolated structure and method of fabricating such a structure on a substrate
US6479370B2 (en) 1996-01-05 2002-11-12 Micron Technology, Inc. Isolated structure and method of fabricating such a structure on a substrate
US6559032B2 (en) 1996-01-05 2003-05-06 Micron Technology, Inc. Method of fabricating an isolation structure on a semiconductor substrate
US6699742B2 (en) * 1999-03-16 2004-03-02 Micron Technology, Inc. Base current reversal SRAM memory cell and method
US6891213B1 (en) 1999-03-16 2005-05-10 Micron Technology, Inc. Base current reversal SRAM memory cell and method
EP1049155A1 (en) * 1999-04-29 2000-11-02 STMicroelectronics S.r.l. Process for manufacturing a SOI wafer with buried oxide regions without cusps
JP2009508322A (en) * 2005-06-02 2009-02-26 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ Printable semiconductor structure and related manufacturing and assembly methods

Similar Documents

Publication Publication Date Title
US4502913A (en) Total dielectric isolation for integrated circuits
JP3033412B2 (en) Method for manufacturing semiconductor device
JP2831745B2 (en) Semiconductor device and manufacturing method thereof
JPH01117043A (en) Method of forming epitaxial silicon in substrate
JPS63314844A (en) Manufacture of semiconductor device
US4661832A (en) Total dielectric isolation for integrated circuits
JPS62293761A (en) Semiconductor device and manufacture of the same
JPS59232437A (en) Manufacture of semiconductor device
JP2004040007A (en) Method for manufacturing semiconductor device
US5851901A (en) Method of manufacturing an isolation region of a semiconductor device with advanced planarization
JPS59108325A (en) Manufacture of semiconductor device
JPH05102297A (en) Manufacture of semiconductor device
JPS60137037A (en) Manufacture of semiconductor device
JPS60208843A (en) Manufacture of semiconductor device
JPS6130046A (en) Manufacture of semiconductor integrated circuit device
JPS60189235A (en) Production of semiconductor device
JPH01258439A (en) Semiconductor device and manufacture thereof
JPS58159348A (en) Separation of semiconductor device
JPS59149030A (en) Manufacture of semiconductor device
JPH02267963A (en) Manufacture of semiconductor storage device
JPS60161632A (en) Semiconductor device and manufacture thereof
KR0140734B1 (en) Method of semiconductor device
JPH02126650A (en) Manufacture of dielectric isolation semiconductor device
JPH0516181B2 (en)
JPH01238033A (en) Dielectric isolation type semiconductor substrate and its manufacture