JPH0219994B2 - - Google Patents

Info

Publication number
JPH0219994B2
JPH0219994B2 JP13529982A JP13529982A JPH0219994B2 JP H0219994 B2 JPH0219994 B2 JP H0219994B2 JP 13529982 A JP13529982 A JP 13529982A JP 13529982 A JP13529982 A JP 13529982A JP H0219994 B2 JPH0219994 B2 JP H0219994B2
Authority
JP
Japan
Prior art keywords
copper foil
zinc
layer
copper
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13529982A
Other languages
Japanese (ja)
Other versions
JPS5925297A (en
Inventor
Takeshi Yamagishi
Masayoshi Ando
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Denkai Co Ltd
Original Assignee
Nippon Denkai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Denkai Co Ltd filed Critical Nippon Denkai Co Ltd
Priority to JP13529982A priority Critical patent/JPS5925297A/en
Publication of JPS5925297A publication Critical patent/JPS5925297A/en
Publication of JPH0219994B2 publication Critical patent/JPH0219994B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、銅箔と基材とからの銅張積層板の
高温加熱後の接着特性を顕著に改善した印刷回路
用銅箔に関するものである。 最近、印刷回路の緻密化に伴い、使用する銅箔
に対して、基材との剥離強度、耐半田性、耐薬品
性以外に、銅箔と基材とを積層後、例えばこれに
180℃で48時間という長時間の加熱を行つた場合
でも、銅箔と基材面との間の剥離強度の良い銅箔
の出現が要望されている。 従来、耐熱性の印刷回路用銅箔を得るための方
法として、特公昭51−35711号公報(アメリカ特
許第3585010号公報に対応のもの)には、銅箔の
片面に、亜鉛、インジウム、黄銅とからなる群か
ら選ばれる金属電着被覆を設けたもの、また特公
昭53−39376号公報(アメリカ特許第3857681号に
対応するもの)には、銅箔に少くとも第1および
第2の2種類の粗化処理を施し、2番目の処理に
より形成された粗面に、亜鉛、真鍮などの薄層を
形成させたものの使用が有効であると開示されて
いる。しかし、上記従来法は、銅箔粗面を基材と
加熱加圧して銅張積層板となす際に、予じめ銅箔
粗面に形成させた亜鉛主体金属薄層が銅箔と合金
化し、これによつて積層板となした場合の銅箔と
基材との剥離強度を維持し、かつ銅箔と基材との
接合面に発生し易い褐色のしみ、いわゆる積層汚
点の発生防止をねらつたものである。しかし、上
記従来法の第1の欠点は、銅張積層板の製造に当
り、銅箔と基材との接着力向上のため、予じめ電
解処理によつて銅箔粗面に樹枝状銅層を形成さ
せ、その上に亜鉛などの異種金属を電析により形
成させるものであり、これにより樹枝状銅の一部
分が亜鉛などの異種金属の薄層で覆われるため、
該面と基材とを加熱加圧して銅張積層板となす際
に、銅箔と基材との間の剥離強度が低下するのを
回避できないものである。また第2の欠点は、銅
箔面にメツキにより形成した亜鉛層は長期放置中
に、その放置条件により、酸化亜鉛、炭酸亜鉛、
塩基性亜鉛などに変化し、粉化脱落し易いという
欠点があつた。 この中第1の欠点は印刷回路の緻密化に伴う銅
箔と基材面との剥離強度を増強するための大きな
障害となる。さりとて剥離強度の向上のみを考慮
し、銅箔粗面に強力な電解粗化を施せば、形成さ
せた樹枝状銅が脱落し易くなり、いわゆる積層汚
点の発生を防止できなくなる。 また第2の欠点は、銅箔の長期保存ないし銅箔
の輸出に当つて考慮すべき問題である。 本発明者等は、銅箔粗面側に、クロメート処理
層を設け、該面を前記一般式YRSiX3(式中のY
は高分子物と反応する官能基、RはYとケイ素原
子とを連結する鎖状または環状の炭化水素を含む
結合基、Xはケイ素原子に結合する有機または無
機の加水分解性の基を表わす。)で示されるシラ
ンカツプリング剤溶液で処理後、基材と接着させ
ると該銅箔と基材との接着力を顕著に向上できる
ことを認め、すでに昭和55年特許願第162367号
(特公昭60−15654号)として特許出願している。
しかし、その後の研究によると、該出願の方法で
得た銅張積層板は、現在業界において要求されて
いる、例えば180℃、48時間という加熱処理を行
つた後において、銅箔と基材との剥離強度を保持
させる点においては未だ欠点があることを認め
た。そこで引続き銅箔粗面の処理条件などについ
て各種検討を行つてきた。その結果、銅箔の粗面
に直接または軽度の粗化を行つた後、該面に亜鉛
または亜鉛合金の薄層を形成し、該層に公知の方
法でクロメート処理層を設け、その上に、前記一
般式の化合物による処理層を形成させた銅箔を基
材と積層したものは、上記180℃、48時間の加熱
処理後においても、剥離強度が良く、その他の特
性においても従来のものと同等であることを多数
の実験により確認できた。本発明は上記実験結果
に基づいて、ここに完成をみたものである。 本発明の銅箔は、シランカツプリング剤が、ク
ロメート処理した銅箔と基材との接着力を強くす
るため、前記特公昭53−39376号公報に開示のも
ののように銅箔面に苛酷になり易い粗化処理の必
要なく、従来の銅箔以上の剥離強度を保持し得
る。従つて本発明銅箔粗面を基材と積層後エツチ
ングにより印刷回路板としても、絶縁基板中に樹
枝状銅残留物による積層汚点を生じる恐れはな
い。また本発明の銅箔粗面側に形成する亜鉛また
は亜鉛合金層に関しても、該層上に施すクロメー
ト処理層が、その防蝕性を増すため、銅箔の長期
保存が可能となるという利点がある。また出願中
の明細書において、縷々説明したように、クロメ
ート処理層上に形成したシランカツプリング剤薄
膜が銅箔と基材とを強固に接着する作用効果をも
つため、前記特公昭51−35711号公報に開示され
ているように銅箔粗面に、亜鉛とインジウムと黄
銅とからなる群から選ばれる少くとも4マイクロ
インチ(0.1μ)以上の電着層を形成させる必要も
なく0.1μ以下の亜鉛または亜鉛合金層を形成して
も、十分その効果を発揮できるものである。従つ
て、この発明は業界に極めて有効な印刷回路用銅
箔を提供する発明であると考える。 本発明についての説明を続けると、本発明にお
いて銅箔面に形成する亜鉛合金としては、スズ、
ニツケル、銅、カドミウム、マグネシウムなどの
通常メツキで合金とすることが可能な金属であ
り、これらの金属は、公知の電解浴を用いれば、
銅箔粗面への電析が可能である。しかし、本発明
においては、電析にかえて真空蒸着法、スパツタ
リング法などの乾式法により形成することもでき
る。なお銅箔粗面に亜鉛層を形成した場合に較
べ、亜鉛合金層を形成させれば、銅張積層板製作
後、回路板となす場合に、その耐塩酸性を著しく
向上できる。 また本発明において、亜鉛または亜鉛合金層上
に形成するクロメートの薄膜は、重クロム酸ナト
リウムまたは三酸化クロムの水溶液を用い、この
水溶液中に亜鉛または亜鉛合金層を形成させてあ
る銅箔を浸漬するか或いは、この溶液中で該銅箔
を陰極として通電すれば、該金属または合金層上
に容易に形成することが可能である。 引続き本発明において、前記クロム薄膜上に形
成させるシランカツプリング剤の薄膜の形成につ
いて述べると、使用するシランカツプリング剤
は、本発明者等が、すでに出願中の昭和55年特許
願162367号の明細書に記載したものが、いずれも
使用でき、代表的なものを記載するとγ−アミノ
プロピルトリエトキシシラン、N−2−アミノエ
チル−3−アミノプロピルトリメトキシシラン、
γ−クロロプロピル−トリメトキシシラン、γ−
グリシドオキシプロピル−トリメトキシシランな
どである。 また、使用するシランカツプリング剤液の処理
濃度も前記出願中の明細書に述べたと同様0.001
〜5%の範囲のもので良い。以下、本発明を実施
例を掲げて、さらに具体的に説明する。 実施例 1 公知の硫酸銅メツキ浴を使用し、チタン製陰極
面に電析形成させた33μの銅箔を剥離し、これを
硫酸亜鉛150g/、硫酸アルミニウム30g/、
塩化アンモニウム15g/からなる亜鉛メツキ浴
中に浸漬し、該銅箔を陰極、鉛板を陽極として用
い、浴温25℃、電流密度1A/dm2において銅箔
粗面にそれぞれ厚さ0.05μと0.12μの亜鉛薄層を形
成した多数の試料を作製した。ついでこの試料を
濃度0.3%の重クロム酸ナトリウム水溶液に浸漬
し、試料の亜鉛形成面を陰極として浴温25℃、電
流密度0.3A/dm2において5秒間通電を行い、
亜鉛層上にクロメート薄膜を形成後、別に調製し
たシランカツプリング剤であるγ−アミノプロピ
ルトリエトキシシランの濃度0.03%、0.3%およ
び3.0%の3種類の液中に常温で1分間浸漬し取
出して乾燥後、亜鉛層形成面をガラスクロスを基
材としたエポキシ樹脂板に重ね、155℃、圧力100
Kg/cm2の条件で30分間処理し、250mm×250mm×2
mmの銅張積層板を試作した。またこの積層板の特
性と比較するため、亜鉛層を設けない銅箔のみの
ものおよび亜鉛層とクロメート薄膜を設け、その
上にカツプリング薄膜を形成させない試料からも
銅張積層板を試作し、これら各試料の180℃、48
時間の加熱処理前後における基材と銅箔との間の
剥離強度を測定してみた。結果は表1の通りであ
る。
This invention relates to a copper foil for printed circuits that has significantly improved adhesive properties after heating a copper clad laminate between the copper foil and a base material at high temperatures. Recently, as printed circuits have become more dense, the copper foil used has been required to have peel strength with the base material, solder resistance, and chemical resistance.
There is a demand for a copper foil that has good peel strength between the copper foil and the base material surface even when heated at 180°C for a long time of 48 hours. Conventionally, as a method for obtaining heat-resistant copper foil for printed circuits, Japanese Patent Publication No. 51-35711 (corresponding to U.S. Pat. No. 3,585,010) discloses that zinc, indium, and brass are added to one side of the copper foil. The copper foil is provided with a metal electrodeposition coating selected from the group consisting of: It is disclosed that it is effective to use a material that has been subjected to various types of roughening treatment and a thin layer of zinc, brass, etc. is formed on the rough surface formed by the second treatment. However, in the above conventional method, when forming a copper-clad laminate by heating and pressing the rough surface of the copper foil with the base material, the thin zinc-based metal layer previously formed on the rough surface of the copper foil is alloyed with the copper foil. This maintains the peel strength between the copper foil and the base material when it is made into a laminate, and prevents the occurrence of so-called lamination stains, which are brown stains that tend to occur on the bonding surface between the copper foil and the base material. It was intentional. However, the first drawback of the above-mentioned conventional method is that when manufacturing copper-clad laminates, in order to improve the adhesion between the copper foil and the base material, dendritic copper is applied to the rough surface of the copper foil by electrolytic treatment in advance. A layer is formed, and a dissimilar metal such as zinc is deposited on top of the dissimilar metal by electrodeposition.As a result, a portion of the dendritic copper is covered with a thin layer of dissimilar metal such as zinc.
When heating and pressing the surface and the base material to form a copper-clad laminate, it is inevitable that the peel strength between the copper foil and the base material will decrease. The second drawback is that when the zinc layer formed by plating on the copper foil surface is left for a long time, depending on the storage conditions, zinc oxide, zinc carbonate, etc.
It has the disadvantage that it turns into basic zinc and is easily powdered and fallen off. The first drawback among these is a major obstacle to increasing the peel strength between the copper foil and the base material surface as printed circuits become more dense. If strong electrolytic roughening is applied to the rough surface of the copper foil with only the improvement of peel strength taken into consideration, the formed dendritic copper will easily fall off, making it impossible to prevent the occurrence of so-called lamination stains. The second drawback is a problem that must be taken into account when storing copper foil for a long time or exporting copper foil. The present inventors provided a chromate treatment layer on the rough surface side of the copper foil, and applied the above general formula YRSiX 3 (Y in the formula
is a functional group that reacts with a polymer, R is a bonding group containing a chain or cyclic hydrocarbon that connects Y and a silicon atom, and X is an organic or inorganic hydrolyzable group that is bonded to a silicon atom. . ) It was recognized that the adhesion between the copper foil and the base material could be significantly improved by adhesion to the base material after treatment with a silane coupling agent solution shown in A patent application has been filed as (No.-15654).
However, subsequent research has shown that copper-clad laminates obtained by the method of the application can be heat-treated at 180°C for 48 hours, which is currently required in the industry, and then the copper foil and base material can be separated. It was acknowledged that there are still deficiencies in maintaining the peel strength. Therefore, various studies have been carried out regarding processing conditions for the rough surface of copper foil. As a result, after directly or slightly roughening the rough surface of the copper foil, a thin layer of zinc or zinc alloy is formed on the surface, a chromate treatment layer is provided on the layer by a known method, and then a chromate treatment layer is applied on the surface. , a copper foil laminated with a base material on which a treated layer made of the compound of the above general formula is formed has good peel strength even after the above heat treatment at 180°C for 48 hours, and has other properties that are superior to conventional ones. It was confirmed through numerous experiments that it is equivalent to The present invention has now been completed based on the above experimental results. In the copper foil of the present invention, in order to strengthen the adhesive force between the chromate-treated copper foil and the base material, the silane coupling agent is applied harshly to the copper foil surface as disclosed in the above-mentioned Japanese Patent Publication No. 53-39376. It can maintain peel strength higher than that of conventional copper foil without the need for roughening treatment. Therefore, even if the rough surface of the copper foil of the present invention is laminated with a base material and then etched to form a printed circuit board, there is no risk of lamination stains due to dendritic copper residues occurring in the insulating substrate. Further, regarding the zinc or zinc alloy layer formed on the rough side of the copper foil of the present invention, the chromate treatment layer applied on the layer increases its corrosion resistance, so there is an advantage that the copper foil can be stored for a long time. . In addition, as explained in detail in the pending specification, the silane coupling agent thin film formed on the chromate treatment layer has the effect of strongly adhering the copper foil and the base material. As disclosed in the above publication, there is no need to form an electrodeposition layer of at least 4 microinches (0.1μ) or less selected from the group consisting of zinc, indium, and brass on the rough surface of the copper foil, and it is not necessary to form an electrodeposition layer of at least 4 microinches (0.1μ) or less on the rough surface of the copper foil. Even if a zinc or zinc alloy layer is formed, the effect can be sufficiently exhibited. Therefore, it is believed that this invention provides an extremely effective copper foil for printed circuits to the industry. Continuing the explanation of the present invention, in the present invention, the zinc alloy formed on the copper foil surface includes tin,
Metals such as nickel, copper, cadmium, and magnesium that can be made into alloys by ordinary plating, and these metals can be made into alloys by using known electrolytic baths.
Electrodeposition on rough surfaces of copper foil is possible. However, in the present invention, instead of electrodeposition, it may be formed by a dry method such as a vacuum evaporation method or a sputtering method. In addition, compared to the case where a zinc layer is formed on the rough surface of the copper foil, by forming a zinc alloy layer, the hydrochloric acid resistance of the copper clad laminate can be significantly improved when the copper clad laminate is manufactured and then used as a circuit board. In addition, in the present invention, the chromate thin film formed on the zinc or zinc alloy layer is formed using an aqueous solution of sodium dichromate or chromium trioxide, and the copper foil on which the zinc or zinc alloy layer is formed is immersed in this aqueous solution. Alternatively, it can be easily formed on the metal or alloy layer by energizing the copper foil as a cathode in this solution. Continuing with the present invention, the formation of a thin film of a silane coupling agent to be formed on the chromium thin film will be described. Any of those described in the specification can be used; typical examples include γ-aminopropyltriethoxysilane, N-2-aminoethyl-3-aminopropyltrimethoxysilane,
γ-Chloropropyl-trimethoxysilane, γ-
Examples include glycidoxypropyl-trimethoxysilane. In addition, the treatment concentration of the silane coupling agent solution used is 0.001 as stated in the above-mentioned specification.
A range of ~5% is sufficient. EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 Using a known copper sulfate plating bath, a 33μ copper foil electrodeposited on the titanium cathode surface was peeled off, and zinc sulfate 150g/aluminum sulfate 30g/, aluminum sulfate 30g/,
The copper foil was immersed in a galvanizing bath consisting of 15 g of ammonium chloride, and the copper foil was used as a cathode and the lead plate as an anode. A number of samples were fabricated with a 0.12μ thin layer of zinc. Next, this sample was immersed in a sodium dichromate aqueous solution with a concentration of 0.3%, and current was applied for 5 seconds at a bath temperature of 25°C and a current density of 0.3A/ dm2 , using the zinc-formed surface of the sample as a cathode.
After forming a chromate thin film on the zinc layer, it was immersed for 1 minute at room temperature in three different solutions of γ-aminopropyltriethoxysilane, a silane coupling agent, with concentrations of 0.03%, 0.3%, and 3.0%, which were prepared separately, and then taken out. After drying, the surface on which the zinc layer was formed was placed on an epoxy resin plate made of glass cloth as a base material, and heated at 155℃ and 100℃ under pressure.
Treated for 30 minutes under Kg/cm 2 conditions, 250mm x 250mm x 2
We prototyped a copper-clad laminate with a diameter of 1 mm. In addition, in order to compare the characteristics of this laminate, we made prototype copper-clad laminates from a sample with only copper foil without a zinc layer and a sample with a zinc layer and chromate thin film but no coupling thin film formed thereon. 180℃ for each sample, 48
The peel strength between the base material and the copper foil was measured before and after the heat treatment. The results are shown in Table 1.

【表】 表から、亜鉛層とクロメート処理膜のみを設け
た試料からのものは、カツプリング剤処理膜を設
けたものよりも剥離強度が加熱処理前、処理後と
も著しく劣り、本発明のカツプリング剤処理の効
果は明白である。また銅箔粗面に設けた亜鉛層は
0.1μ以下としても、その効果は十分発揮できるこ
とを知り得た。 実施例 2 実施例1で述べたと同様の銅箔粗面を、公知の
硫酸銅メツキ浴を用いて電解してその表面に樹枝
状銅層を形成させた。 ついで、これを硫酸亜鉛40g/、硫酸第一ス
ズ40g/、硫酸75g/、フエノール7.5g/
、ゼラチン2g/からなる亜鉛〜スズ合金メ
ツキ浴に浸漬し、前記処理銅箔を陰極、鉛板を陽
極に用いて、浴温25℃、電流密度1A/dm2にお
いて、樹枝状の銅層上に厚さ0.05μと0.12μの亜鉛
〜スズ合金の薄層を設けた試料を形成させた。 引続き、上記試料を実施例1において述べたと
同様、重クロム酸ナトリウムの水溶液で処理し、
該試料の亜鉛〜スズ合金薄層上にクロメート薄膜
を形成後、実施例1と同一条件でシランカツプリ
ング剤溶液で処理し、カツプリング剤被膜を形成
後、実施例1と同様の銅張積層板を試作した。こ
れとは別に、合金層を形成させる前の銅箔および
合金層とクロメート処理膜を設けただけの銅箔か
らも前記と同一の銅張積層板を作り、これら試作
積層板につき180℃、48時間の加熱処理を施す前
後において、銅箔と基材との間の剥離強度を測定
してみた。結果は表2に示す通りである。
[Table] From the table, it can be seen that the peel strength of samples provided with only a zinc layer and a chromate-treated film was significantly inferior to that of samples provided with a coupling agent-treated film, both before and after heat treatment. The effect of the treatment is obvious. In addition, the zinc layer provided on the rough surface of the copper foil
It was found that the effect can be sufficiently exhibited even if the thickness is 0.1μ or less. Example 2 A copper foil rough surface similar to that described in Example 1 was electrolyzed using a known copper sulfate plating bath to form a dendritic copper layer on the surface. Next, this was mixed with 40 g of zinc sulfate, 40 g of stannous sulfate, 75 g of sulfuric acid, and 7.5 g of phenol.
, immersed in a zinc-tin alloy plating bath consisting of 2 g of gelatin, using the treated copper foil as the cathode and the lead plate as the anode, at a bath temperature of 25°C and a current density of 1 A/dm 2 on the dendritic copper layer. Samples were formed with thin layers of zinc-tin alloy of 0.05μ and 0.12μ thickness. Subsequently, the above sample was treated with an aqueous solution of sodium dichromate as described in Example 1,
After forming a chromate thin film on the zinc-tin alloy thin layer of the sample, it was treated with a silane coupling agent solution under the same conditions as in Example 1 to form a coupling agent film, and then a copper-clad laminate similar to that in Example 1 was prepared. We made a prototype. Separately, the same copper-clad laminates as above were made from copper foil before forming the alloy layer and from copper foil with only the alloy layer and chromate treatment film. The peel strength between the copper foil and the base material was measured before and after the heat treatment for several hours. The results are shown in Table 2.

【表】 表から、通常の樹枝状銅層を設けた銅箔を用い
ても、本発明処理により、加熱処理後の剥離強度
のよい銅張積層板が得られ、従来の亜鉛合金層の
みを形成した銅箔からの積層板に較べて、その効
果は顕著であり、本発明のカツプリン剤膜を設け
ることが有効であることは明らかである。 実施例 3 実施例2と同一銅箔の粗面に、実施例2と同様
の樹枝状銅層を電析形成後、この銅箔を、シアン
化銅50g/、シアン化亜鉛30g/、シアン化
ナトリウム90g/、炭酸ナトリウム30g/、
ロツセル塩45g/からなる亜鉛〜銅合金メツキ
浴に浸漬し、該銅箔を陰極、鉛板を陽極とし、浴
温40℃、電流密度1A/dm2において該銅箔の樹
枝状銅層に、それぞれ0.05μと0.12μ厚さの亜鉛〜
銅合金薄層を形成した。ついでこの試料を濃度
0.3%の重クロム酸ナトリウム水溶液に常温で5
秒間浸漬し、前記亜鉛〜銅合金層上に、クロメー
ト薄膜を形成させ、該薄膜上にシランカツプリン
グ剤であるN−2−アミノエチル−3−アミノプ
ロピルトリメトキシシランを用い実施例1で述べ
たと同様の濃度液で処理し、亜鉛〜銅合金層、ク
ロメート薄膜、カツプリング剤膜を有する銅箔を
試作し、実施例1と同様の基材と積層して同一大
きさの銅張積層板を試作した。また比較のため合
金層を設けない銅箔及び合金層とクロメート薄膜
を設け、カツプリング剤膜は形成させない銅箔か
らも銅張積層板を試作し、これら積層板の180℃、
48時間熱処理前後における銅箔と基材との剥離強
度を測定した。結果は表3に示す通りである。
[Table] From the table, even if copper foil with a normal dendritic copper layer is used, copper-clad laminates with good peel strength after heat treatment can be obtained by the treatment of the present invention, and with only a conventional zinc alloy layer. The effect is more remarkable than that of a laminate made of copper foil, and it is clear that the provision of the cutoff agent film of the present invention is effective. Example 3 After forming a dendritic copper layer similar to that in Example 2 by electrodeposition on the rough surface of the same copper foil as in Example 2, this copper foil was coated with 50 g of copper cyanide, 30 g of zinc cyanide, and 30 g of cyanide. Sodium 90g/, Sodium carbonate 30g/,
The dendritic copper layer of the copper foil was immersed in a zinc-copper alloy plating bath consisting of 45 g of Lotusel salt, using the copper foil as a cathode and the lead plate as an anode, at a bath temperature of 40°C and a current density of 1A/ dm2 . Zinc ~ 0.05μ and 0.12μ thickness respectively
A thin copper alloy layer was formed. Next, this sample is concentrated
5 in 0.3% sodium dichromate aqueous solution at room temperature.
A chromate thin film was formed on the zinc-copper alloy layer by dipping for a second, and a silane coupling agent N-2-aminoethyl-3-aminopropyltrimethoxysilane was used on the thin film as described in Example 1. A copper foil having a zinc-copper alloy layer, a chromate thin film, and a coupling agent film was produced by treating it with a solution with the same concentration as in Example 1, and laminated with the same base material as in Example 1 to form a copper-clad laminate of the same size. I made a prototype. For comparison, we also prototyped copper-clad laminates using copper foil without an alloy layer and copper foil with an alloy layer and a chromate thin film but without a coupling agent film.
The peel strength between the copper foil and the base material was measured before and after heat treatment for 48 hours. The results are shown in Table 3.

【表】 表から銅箔粗面に、電析により樹枝状銅層を設
けたものに対しても、本発明の亜鉛〜銅合金層、
クロメート処理膜、カツプリング剤膜を設けた銅
箔からの銅張積層板は、その加熱処理前後におけ
る剥離強度においてすぐれていることがわかつ
た。 追加の関係 この発明は、原出願である特許第1293394号
(特公昭60−15654号)の印刷回路用銅張積層板を
得るために欠くことのできない主要事項である銅
箔の粗面側にクロメート処理膜を、さらにその上
に特定シランカツプリング剤薄膜を形成させてな
る銅箔に代え、銅箔粗面側に、まず亜鉛または亜
鉛合金層を設け、その上にクロメート処理膜、さ
らにその上に前記シランカツプリング剤薄膜を形
成した印刷回路用銅箔であり、耐熱接着性の点に
おいて、よりすぐれた銅張積層板の製造を可能と
したもので、追加の要件を具備するものである。
[Table] From the table, the zinc-copper alloy layer of the present invention,
It was found that a copper-clad laminate made of copper foil provided with a chromate treatment film and a coupling agent film has excellent peel strength before and after heat treatment. Additional Relationships This invention is applicable to the rough side of copper foil, which is an essential item in order to obtain a copper-clad laminate for printed circuits, which is the original application, Patent No. Instead of using a copper foil with a chromate-treated film and a thin film of a specific silane coupling agent formed thereon, a zinc or zinc alloy layer is first provided on the rough side of the copper foil, and then a chromate-treated film is added on top of that. This is a copper foil for printed circuits on which a thin film of the silane coupling agent is formed, making it possible to manufacture copper-clad laminates with better heat-resistant adhesion, and does not meet additional requirements. be.

Claims (1)

【特許請求の範囲】[Claims] 1 銅箔の粗面側に設けた亜鉛または亜鉛合金の
薄層上に、クロメート処理層を形成し、さらに該
層上に一般式YRSiX3(ここにYは高分子物と反
応する官能基、RはYとケイ素原子とを連結する
鎖状または環状の炭化水素を含む結合基、Xはケ
イ素原子に結合する有機または無機の加水分解性
の基を表わすものである。)で示されるシランカ
ツプリング剤層を設けたことを特徴とする印刷回
路用銅箔。
1. A chromate treatment layer is formed on a thin layer of zinc or zinc alloy provided on the rough side of the copper foil, and a chromate treatment layer is further formed on the layer with the general formula YRSiX 3 (where Y is a functional group that reacts with a polymer, R is a bonding group containing a chain or cyclic hydrocarbon that connects Y and the silicon atom, and X represents an organic or inorganic hydrolyzable group bonded to the silicon atom.) A copper foil for printed circuits characterized by being provided with a ring agent layer.
JP13529982A 1982-08-03 1982-08-03 Copper foil for printed circuit Granted JPS5925297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13529982A JPS5925297A (en) 1982-08-03 1982-08-03 Copper foil for printed circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13529982A JPS5925297A (en) 1982-08-03 1982-08-03 Copper foil for printed circuit

Publications (2)

Publication Number Publication Date
JPS5925297A JPS5925297A (en) 1984-02-09
JPH0219994B2 true JPH0219994B2 (en) 1990-05-07

Family

ID=15148453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13529982A Granted JPS5925297A (en) 1982-08-03 1982-08-03 Copper foil for printed circuit

Country Status (1)

Country Link
JP (1) JPS5925297A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005262506A (en) * 2004-03-16 2005-09-29 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil with carrier foil equipped with resin layer for forming insulating layer, copper clad laminated sheet, printed wiring board, manufacturing method of multilayered copper clad laminated sheet and printed wiring board manufacturing method
WO2010038531A1 (en) * 2008-09-30 2010-04-08 イビデン株式会社 Multilayer printed wiring board and method for manufacturing multilayer printed wiring board
WO2010038532A1 (en) * 2008-09-30 2010-04-08 イビデン株式会社 Multilayer printed wiring board and method for manufacturing multilayer printed wiring board

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5071520A (en) * 1989-10-30 1991-12-10 Olin Corporation Method of treating metal foil to improve peel strength
US5622782A (en) * 1993-04-27 1997-04-22 Gould Inc. Foil with adhesion promoting layer derived from silane mixture
WO2006137240A1 (en) * 2005-06-23 2006-12-28 Nippon Mining & Metals Co., Ltd. Copper foil for printed wiring board
WO2009063764A1 (en) * 2007-11-14 2009-05-22 Nippon Mining & Metals Co., Ltd. Copper foil including resistive film layer
JP5885054B2 (en) * 2010-04-06 2016-03-15 福田金属箔粉工業株式会社 A treated copper foil for a copper clad laminate, a copper clad laminate obtained by bonding the treated copper foil to an insulating resin substrate, and a printed wiring board using the copper clad laminate.

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005262506A (en) * 2004-03-16 2005-09-29 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil with carrier foil equipped with resin layer for forming insulating layer, copper clad laminated sheet, printed wiring board, manufacturing method of multilayered copper clad laminated sheet and printed wiring board manufacturing method
JP4570070B2 (en) * 2004-03-16 2010-10-27 三井金属鉱業株式会社 Electrolytic copper foil with carrier foil provided with resin layer for forming insulating layer, copper-clad laminate, printed wiring board, method for producing multilayer copper-clad laminate, and method for producing printed wiring board
WO2010038531A1 (en) * 2008-09-30 2010-04-08 イビデン株式会社 Multilayer printed wiring board and method for manufacturing multilayer printed wiring board
WO2010038532A1 (en) * 2008-09-30 2010-04-08 イビデン株式会社 Multilayer printed wiring board and method for manufacturing multilayer printed wiring board
JP2012109631A (en) * 2008-09-30 2012-06-07 Ibiden Co Ltd Multilayer printed wiring board and method of manufacturing multilayer printed wiring board
JP4951674B2 (en) * 2008-09-30 2012-06-13 イビデン株式会社 Multilayer printed wiring board and method for producing multilayer printed wiring board
JP5033192B2 (en) * 2008-09-30 2012-09-26 イビデン株式会社 Multilayer printed wiring board and method for producing multilayer printed wiring board

Also Published As

Publication number Publication date
JPS5925297A (en) 1984-02-09

Similar Documents

Publication Publication Date Title
KR900000865B1 (en) Copper-chromium-polyimide composite and its manufaturiring process
US4387006A (en) Method of treating the surface of the copper foil used in printed wire boards
JP4626390B2 (en) Copper foil for printed wiring boards in consideration of environmental protection
EP0072830B1 (en) Treatment of copper foil
CN102165104B (en) Surface-treated copper foil and copper-clad laminate
JP2620151B2 (en) Copper foil for printed circuits
JPH0329879B2 (en)
US5322975A (en) Universal carrier supported thin copper line
JP5505828B2 (en) Composite metal foil and method for producing the same
US5762778A (en) Non-cyanide brass plating bath and a method of making metallic foil having a brass layer using the non-cyanide brass plating bath
US4061837A (en) Plastic-metal composite and method of making the same
JP2920083B2 (en) Copper foil for printed circuit and manufacturing method thereof
US4311768A (en) Printed circuit board having mutually etchable copper and nickel layers
JPH0219994B2 (en)
KR100575100B1 (en) Process for producing high temperature heat resisting carrier foil clad electrolytic copper foil
JPH08222857A (en) Copper foil and high-density multilayered printed circuit board using the foil for its internal-layer circuit
JP2717910B2 (en) Copper foil for printed circuit and manufacturing method thereof
JP2006028635A (en) Method for manufacturing surface treated copper foil for microfabrication circuit substrate
JP4391449B2 (en) Ultra-thin copper foil with carrier and printed wiring board
JP2501842B2 (en) Printed wiring board manufacturing method
JP2875186B2 (en) Processing method of copper foil for printed circuit
US20140308538A1 (en) Surface treated aluminum foil for electronic circuits
JPH10226009A (en) Copper foil for printed circuit board and its manufacture
JP2006159632A (en) Copper metallized laminated sheet and its manufacturing method
JPH0987888A (en) Treatment of copper foil for printed circuit