JPH02196100A - Magneto-optical garnet - Google Patents

Magneto-optical garnet

Info

Publication number
JPH02196100A
JPH02196100A JP1514789A JP1514789A JPH02196100A JP H02196100 A JPH02196100 A JP H02196100A JP 1514789 A JP1514789 A JP 1514789A JP 1514789 A JP1514789 A JP 1514789A JP H02196100 A JPH02196100 A JP H02196100A
Authority
JP
Japan
Prior art keywords
magnetic field
sensitivity constant
garnet
magneto
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1514789A
Other languages
Japanese (ja)
Inventor
Yoichi Honda
本田 洋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP1514789A priority Critical patent/JPH02196100A/en
Publication of JPH02196100A publication Critical patent/JPH02196100A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain magneto-optical garnet for a magnetic field sensor having such superior characteristics as a high sensitivity constant C which is hardly affected by temp. by using a compd. represented by a specified chemical formula. CONSTITUTION:This magneto-optical garnet for a magnetic field sensor is made of a compd. represented by a chemical formula (Y3-x-yHoxBiy)Fe5O12 (where 0.1<=x<=1.6 and 0.5<=y<=2.0), e.g. (Y1.5Ho0.1Bi1.4)Fe5O12. When a magnetic field sensor using magnetic garnet is put to practical use, the Faraday rotation ability [the ratio (thetaF/MS) (sensitivity constant C) of Faraday rotation thetaF in a satd. magnetic field to the satd. magnetic field MS] of the garget per a unit magnetic field in a practical temp. range, e.g. of 250-350K is desirably made as unchanged as possible. This magneto-optical garnet has such superior characteristics as a high sensitivity constant C which is hardly affected by temp.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、磁界センサに用いられる磁気光学ガーネット
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a magneto-optic garnet used in a magnetic field sensor.

[従来の技術] 磁性ガーネットには、第5図に示すように、その飽和磁
化よりも小さな外部磁界中では、ファラデー回転能が外
部磁界に比例するという性質がある。この性質を利用し
て、磁性ガーネットの磁界センサへの応用が提案されて
いる。
[Prior Art] As shown in FIG. 5, magnetic garnet has the property that in an external magnetic field smaller than its saturation magnetization, its Faraday rotation ability is proportional to the external magnetic field. Utilizing this property, the application of magnetic garnet to magnetic field sensors has been proposed.

このセンサの分解能を高めるために、磁性ガーネットに
Biをドープし単位磁界当たりのファラデー回転能(飽
和磁界中でのファラデー回転θ。
In order to increase the resolution of this sensor, magnetic garnet is doped with Bi to obtain Faraday rotation per unit magnetic field (Faraday rotation θ in a saturated magnetic field).

と飽和磁界M との比θ /M  、以下これを感S 
   F  S 度定数Cと記す)を大きくした(Y、La、Bi)3F
e5012が提案されている(J、 Magn、 So
c、 Jpn、、  Vol、11. 5upplcv
ent、  NO,5I(1987)401−404)
and the saturation magnetic field M θ /M, hereinafter referred to as S
F S degree constant C) is increased (Y, La, Bi) 3F
e5012 has been proposed (J, Magn, So
c, Jpn,, Vol, 11. 5upplcv
ent, NO, 5I (1987) 401-404)
.

[発明が解決しようとする課題] 磁性ガーネットを使用する磁界センサの実用化には、実
用温度範囲(例えば、250〜350K)で感度定数C
が可能な限り変化しないことが望ま終るが、上記(Y、
La、Bt)  Fe5O12では、波長0.8μmの
300Kにおける感度定数C+5oox)を基準にする
と250Kにおける感度定数C(2,。K)、350K
における感度定数C(3,。。
[Problem to be solved by the invention] In order to put a magnetic field sensor using magnetic garnet into practical use, it is necessary to maintain a sensitivity constant C in a practical temperature range (for example, 250 to 350 K).
Although it is desired that the above changes as little as possible, (Y,
La, Bt) For Fe5O12, based on the sensitivity constant C+5oox) at 300K at a wavelength of 0.8 μm, the sensitivity constant C(2,.K) at 350K
The sensitivity constant C(3,.

は、第6図に示すように、夫々−2(%)、+2(%)
変動する。
are -2 (%) and +2 (%), respectively, as shown in Figure 6.
fluctuate.

そこで、本発明の技術的課題は、Biをドープした感度
定数Cの大きな磁性ガーネットにおいて、250〜35
0にの温度範囲で、その感度定数Cの変動が極めて小さ
い磁界センサ用材料を提供することにある。
Therefore, the technical problem of the present invention is to obtain a Bi-doped magnetic garnet with a large sensitivity constant C of 250 to 35
It is an object of the present invention to provide a material for a magnetic field sensor whose sensitivity constant C has extremely small fluctuations in a temperature range of 0.

[課題を解決するための手段] 本発明によれば、(Y3−xイ  、  。[Means to solve the problem] According to the present invention, (Y3-xi,).

Ho   Bi   ) Fe501□(但し、0.1≦ X ≦1.6゜0.5
≦Y ≦2.0)の化学式で表されることを特徴とする
磁界センサ用磁気光学ガーネットが得られる。
Ho Bi ) Fe501□ (However, 0.1≦X≦1.6゜0.5
A magneto-optical garnet for magnetic field sensors is obtained, which is represented by the chemical formula: ≦Y≦2.0).

[実施例コ 以下、本発明の実施例について説゛明する。[Example code] Examples of the present invention will be described below.

(実施例1) 酸化イツトリウム、酸化ホルミウム、酸化ビスマス、酸
化鉄、酸化鉛、酸化ボロンを混合、加熱溶解した融液よ
りカルシウム、マグネシウム、ジルコニウム置換ガドリ
ニウム、ガリウム、ガーネット単結晶基板に(Y   
Ho   Bi   )1.5  0.1  1.4 F e 50□2なる組成を有する磁性ガーネット単結
晶膜をLPE (リキッド・フェイズ・エピタキシャル
)法により育成した。この磁性ガーネット膜の波長0,
8μmにおける感度定数Cを250〜350にの温度範
囲で測定したところ第1図のような結果を得た。300
Kにおける感度定数 C3,。1)Klを基準にすると
250〜350にの温度範囲全域で、感度定数Cの値は
、±1(%)以内の変化を示したにすぎなかった。この
変化率は、(Y、La、Bi)  Fes O□2に於
ける変化率よりも小さく、温度特性の良好な磁界センサ
用材料として優れている。
(Example 1) Yttrium oxide, holmium oxide, bismuth oxide, iron oxide, lead oxide, and boron oxide were mixed, heated, and melted to form a calcium, magnesium, and zirconium-substituted gadolinium, gallium, and garnet single crystal substrate (Y
A magnetic garnet single crystal film having a composition of Ho Bi ) 1.5 0.1 1.4 Fe 50□2 was grown by the LPE (liquid phase epitaxial) method. The wavelength of this magnetic garnet film is 0,
When the sensitivity constant C at 8 .mu.m was measured in a temperature range of 250 to 350, the results shown in FIG. 1 were obtained. 300
Sensitivity constant at K C3,. 1) The value of the sensitivity constant C showed only a change within ±1 (%) over the entire temperature range from 250 to 350 with Kl as the standard. This rate of change is smaller than the rate of change in (Y, La, Bi) Fes O□2, making it an excellent material for magnetic field sensors with good temperature characteristics.

また、この(Y   Ho   Bi   )Fe51
.5  0.1  1.4 012は波長0.8μmのみならず、他の波長における
感度定数の温度変化も極めて小さかった。
Also, this (Y Ho Bi )Fe51
.. 5 0.1 1.4 012 had extremely small temperature changes in the sensitivity constant not only at the wavelength of 0.8 μm but also at other wavelengths.

(実施例2) 酸化イツトリウム、酸化ホルミウム、酸化ビスマス、酸
化鉄、酸化鉛、酸化ボロンを混合、加熱溶解した融液よ
りカルシウム、マグネシウム、ジルコニウム置換ガドリ
ニウム、ガリウム、ガーネット単結晶基板に (Y  
 Ho   Bi   )0.8  0.8  1.4 F e 5012なる組成を有する磁性ガーネット単結
晶膜をLPE (リキッド・フェイズ・エピタキシャル
)法により育成した。この磁性ガーネット膜の波長0.
8μmにおける感度定数Cを250〜350にの温度範
囲で測定したところ第2図のような結果を得た。この図
において、300Kにおける感度定数CL300K)を
基準にすると、250〜350にの温度範囲全域で、感
度定数Cの値は、±0.1(%)以内の変化を示したに
過ぎなかった。この変化率は、(Y、La、B i) 
3Fe501゜に於ける変化率よりも小さく、温度特性
の良好な磁界センサ用材料として優れている。
(Example 2) Yttrium oxide, holmium oxide, bismuth oxide, iron oxide, lead oxide, and boron oxide were mixed and melted by heating to form a melt on a single crystal substrate of gadolinium, gallium, and garnet substituted with calcium, magnesium, and zirconium (Y
A magnetic garnet single crystal film having a composition of Ho Bi ) 0.8 0.8 1.4 Fe 5012 was grown by the LPE (liquid phase epitaxial) method. The wavelength of this magnetic garnet film is 0.
When the sensitivity constant C at 8 .mu.m was measured in a temperature range of 250 to 350, the results shown in FIG. 2 were obtained. In this figure, when the sensitivity constant CL at 300K (300K) is used as a reference, the value of the sensitivity constant C only showed a change within ±0.1 (%) over the entire temperature range from 250 to 350K. This rate of change is (Y, La, B i)
The rate of change is smaller than that of 3Fe501°, making it an excellent material for magnetic field sensors with good temperature characteristics.

また、この(Y   Ho   B l   ) F 
e 50.8  0.8  1.4 0.2は波長0.8μmのみならず、他の波長における
感度定数の温度変化も極めて小さかった。
Also, this (Y Ho B l ) F
For e 50.8 0.8 1.4 0.2, temperature changes in the sensitivity constant not only at the wavelength of 0.8 μm but also at other wavelengths were extremely small.

(実施例3) 酸化イツトリウム、酸化ホルミウム、酸化ビスマス、酸
化鉄、酸化鉛、酸化ボロンを混合、加熱溶解した融液よ
りカルシウム、マグネシウム、ジルコニウム置換ガドリ
ニウム、ガリウム、ガーネット単結晶基板に(Y   
Ho   Bi   )0.5  0.5  2.0 Fe50.□なる組成を有する磁性ガーネッ) 41結
品膜をLPE (リキッド・フェイズ・エピタキシャル
)法により育成した。この磁性ガーネット膜の波長0,
8μmにおける感度定数Cを250〜350にの温度範
囲で測定したところ、第3図のような結果を得た。30
0Kにおける感度定数C+5oox+を基準にすると2
50〜350にの温度範囲全域で、感度定数Cの値は、
±0.5(%)以内の変化を示したに過ぎなかった。こ
の変化率は、(Y、La、Bi)  Fe5O12に於
ける変化率よりも小さく、温度特性の良好な磁界センサ
用材料として優れている。
(Example 3) Yttrium oxide, holmium oxide, bismuth oxide, iron oxide, lead oxide, and boron oxide were mixed and melted by heating to form a melt on a calcium, magnesium, and zirconium-substituted gadolinium, gallium, and garnet single crystal substrate (Y
Ho Bi )0.5 0.5 2.0 Fe50. A magnetic garnet (41) conjunctival film having a composition of □ was grown by the LPE (liquid phase epitaxial) method. The wavelength of this magnetic garnet film is 0,
When the sensitivity constant C at 8 .mu.m was measured in a temperature range of 250 to 350, the results shown in FIG. 3 were obtained. 30
Based on the sensitivity constant C+5oox+ at 0K, it is 2
Over the temperature range from 50 to 350, the value of the sensitivity constant C is
It only showed a change within ±0.5 (%). This rate of change is smaller than the rate of change in (Y, La, Bi) Fe5O12, making it an excellent material for magnetic field sensors with good temperature characteristics.

また、この(Y   Ho   B 1   ) F 
e so、5  0.5  2.0 0.12は波長0.8μmのみならず、他の波長におけ
る感度定数の温度変化も極めて小さかった。
Also, this (Y Ho B 1 ) F
For e so, 5 0.5 2.0 0.12, temperature changes in the sensitivity constant not only at the wavelength of 0.8 μm but also at other wavelengths were extremely small.

(実施例4) 酸化イツトリウム、酸化ホルミウム、酸化ビスマス、酸
化鉄、酸化鉛、酸化ボロンを混合、加熱溶解した融液よ
りカルシウム、マグネシウム、ジルコニウム置換ガドリ
ニウム、ガリウム、ガーネット単結晶基板に (Y  
 Ho   Bi   )0.9  1.6  0.5 F e 5012なる組成を有する磁性ガーネット単結
晶膜をLPE (リキッド・フェイズ・エピタキシャル
)法により育成した。この磁性ガーネット膜の波長0.
8μmにおける感度定数Cを250〜350にの温度範
囲で測定したところ、第4図のような結果を得た。30
0Kにおける感度定数C+*oox+を基準にすると、
250〜350にの温度範囲全域で、感度定数Cの値は
、±1,0(%)以内の変化を示したに過ぎなかった。
(Example 4) Yttrium oxide, holmium oxide, bismuth oxide, iron oxide, lead oxide, and boron oxide were mixed, heated, and melted to form a calcium, magnesium, and zirconium-substituted gadolinium, gallium, and garnet single crystal substrate (Y
A magnetic garnet single crystal film having a composition of Ho Bi ) 0.9 1.6 0.5 Fe 5012 was grown by the LPE (liquid phase epitaxial) method. The wavelength of this magnetic garnet film is 0.
When the sensitivity constant C at 8 .mu.m was measured in a temperature range of 250 to 350, the results shown in FIG. 4 were obtained. 30
Based on the sensitivity constant C++*oox+ at 0K,
Over the entire temperature range from 250 to 350 degrees Celsius, the value of the sensitivity constant C showed only a change within ±1.0 (%).

この変化率は、(Y、La、Bi)  Fe5O12に
於ける変化率よりも小さく、温度特性の良好な磁界セン
サ用材料として優れている。
This rate of change is smaller than the rate of change in (Y, La, Bi) Fe5O12, making it an excellent material for magnetic field sensors with good temperature characteristics.

また、この(Y   Ho   B i) F e s
O,91,80,5 0,2は波長0.8μmのみならず、他の波長における
感度定数の温度変化も極めて小さかった。
Also, this (Y Ho Bi) Fe s
For O,91,80,50,2, temperature changes in the sensitivity constant not only at the wavelength of 0.8 μm but also at other wavelengths were extremely small.

[発明の効果コ 以上説明したように本発明を用いれば、感度定数Cが大
きく、なお且つその温度変動が極めて小さいという優れ
た特性をHする磁界センサ用磁気光学ガーネットを得る
ことが可能となり、工業的利用価値は極めて大である。
[Effects of the Invention] As explained above, by using the present invention, it is possible to obtain a magneto-optical garnet for a magnetic field sensor that has the excellent characteristics of having a large sensitivity constant C and extremely small temperature fluctuation. The industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は(Y   Ho   Bi   )Fe501
.5  0.1  1.4 1゜の波長0.8μmでの感度定数Cの温度変動を示す
図、第2図は (Y   Ho   Bi   )0.
8  0.8  1.4 F e s O12の波長0.8μmでの感度定数Cの
温度変動を示す図、第3図は(Y   Ho   Bi
O,50,5 1,5)Fe5012の波長0.8.czmでの感度定
数Cの温度変動を示す図、第4図は (Y   H。 0.9 Bi   )Fe50,2の波長0.8μmでの1.8
  0.5 感度定数Cの温度変動を示す図、第5図は磁界中での磁
性ガーネットのファラデー回転を示す図、第6図は(Y
 IL a 、 B t )  F e s OI 2
の波長0.8μmでの感度定数Cの温度変動を示す図で
ある。 T(K) 第5図 タト部石μ界強rg:、C0e) T (K)
Figure 1 shows (Y Ho Bi )Fe501
.. 5 0.1 1.4 Figure 2 shows the temperature fluctuation of the sensitivity constant C at a wavelength of 0.8 μm at 1°.
8 0.8 1.4 F e s A diagram showing the temperature fluctuation of the sensitivity constant C at a wavelength of 0.8 μm in O12, Figure 3 is (Y Ho Bi
O,50,5 1,5) Wavelength of Fe5012 0.8. Figure 4 shows the temperature variation of the sensitivity constant C in czm.
0.5 A diagram showing the temperature fluctuation of the sensitivity constant C, Figure 5 is a diagram showing the Faraday rotation of magnetic garnet in a magnetic field, and Figure 6 is a diagram showing the (Y
IL a, B t ) Fe s OI 2
It is a figure which shows the temperature fluctuation of the sensitivity constant C at the wavelength of 0.8 micrometer. T (K) Fig. 5 Tatobeishi μ field strength rg:, C0e) T (K)

Claims (1)

【特許請求の範囲】[Claims] 1、(Y_3_−_X_−_YHo_XBi_Y)Fe
_5O_1_2(但し、0.1≦X≦1.6、0.5≦
Y≦2.0)の化学式で表されることを特徴とする磁界
センサ用磁気光学ガーネット。
1, (Y_3_-_X_-_YHo_XBi_Y)Fe
_5O_1_2 (However, 0.1≦X≦1.6, 0.5≦
A magneto-optical garnet for magnetic field sensors, characterized in that it is represented by the chemical formula Y≦2.0).
JP1514789A 1989-01-26 1989-01-26 Magneto-optical garnet Pending JPH02196100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1514789A JPH02196100A (en) 1989-01-26 1989-01-26 Magneto-optical garnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1514789A JPH02196100A (en) 1989-01-26 1989-01-26 Magneto-optical garnet

Publications (1)

Publication Number Publication Date
JPH02196100A true JPH02196100A (en) 1990-08-02

Family

ID=11880691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1514789A Pending JPH02196100A (en) 1989-01-26 1989-01-26 Magneto-optical garnet

Country Status (1)

Country Link
JP (1) JPH02196100A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0521527A2 (en) * 1991-07-05 1993-01-07 Mitsubishi Gas Chemical Company, Inc. Magnetic garnet single crystal for measuring magnetic field intensity and optical type magnetic field intensity measuring apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62138396A (en) * 1985-12-12 1987-06-22 Sumitomo Metal Mining Co Ltd Magnetic garnet material for magneto-optical element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62138396A (en) * 1985-12-12 1987-06-22 Sumitomo Metal Mining Co Ltd Magnetic garnet material for magneto-optical element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0521527A2 (en) * 1991-07-05 1993-01-07 Mitsubishi Gas Chemical Company, Inc. Magnetic garnet single crystal for measuring magnetic field intensity and optical type magnetic field intensity measuring apparatus

Similar Documents

Publication Publication Date Title
JPH0354198A (en) Oxide garnet single crystal
Fujii et al. Magnetic properties of single crystals of the system (Fe1− xNix) 2P
US4018692A (en) Composition for making garnet films for improved magnetic bubble devices
Goto et al. Magnetic properties of the (Fe1-xMx) 3P compounds
JPH02196100A (en) Magneto-optical garnet
JPH02164723A (en) Magneto-optical garnet
Williams et al. Anisotropy of single crystal HoxDyyTb1− x− yFe2 Laves phase compounds
Iida et al. Field-Heating Effect–Anomalous Thermomagnetization Curves Observed in Hexagonal LuFe2O4
JPH0288430A (en) Magneto-optical garnet
JPH0757693B2 (en) Magneto-optic garnet
Dumas et al. Spin glass properties of vanadium diluted in Ti2O3
JP2679157B2 (en) Terbium iron garnet and magneto-optical element using the same
Yamaguchi et al. Magnetic properties of iron-boron-oxide and iron-phosphor-oxide glasses prepared by sol-gel method
JPH038725A (en) Magneto-optical garnet
Wada et al. Thermal expansion anomaly and Invar effect of Mn1− xCoxB
JPS5680106A (en) (110) garnet liquid phase epitaxial film
JPH0251494A (en) Material for magneto-optical element
JPH0588126A (en) Magneto-optical material, its production, and optical element using same
JPH03282414A (en) Faraday rotor for magnetic field sensor
JPH0588127A (en) Magnetic-optical material, its production, and optical element using same
JPH038726A (en) Magneto-optical garnet
Schröder et al. The effect of antimony in magneto‐optic thin films on manganese bismuth base. I. Film preparation and studies on the formation process
Abe et al. Magnetic properties of ordered alloy AuMn2
JPH0369597A (en) Magneto-optical garnet
Plaskett et al. The Effect of Substrate Orientation and Growth Temperature on the Magnetic Anisotropy of Eu x Y 3− x Fe 5 O 12 Films