JPH0369597A - Magneto-optical garnet - Google Patents

Magneto-optical garnet

Info

Publication number
JPH0369597A
JPH0369597A JP20293989A JP20293989A JPH0369597A JP H0369597 A JPH0369597 A JP H0369597A JP 20293989 A JP20293989 A JP 20293989A JP 20293989 A JP20293989 A JP 20293989A JP H0369597 A JPH0369597 A JP H0369597A
Authority
JP
Japan
Prior art keywords
oxide
garnet
saturation magnetization
magnetic field
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20293989A
Other languages
Japanese (ja)
Inventor
Yoichi Honda
本田 洋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP20293989A priority Critical patent/JPH0369597A/en
Publication of JPH0369597A publication Critical patent/JPH0369597A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase saturation magnetization by rendering a compsn. represented by a specified chemical formula. CONSTITUTION:Oxides such as yttrium oxide, iron oxide, scandium oxide, lead oxide, bismuth oxide and boron oxide are mixed and melted by heating and the resulting melt is grown on a magnetic garnet substrate by a liq. phase epitaxial method to obtain a film of a magnetic garnet single crystal having a high saturation magnetization and a compsn. represented by the chemical formula wherein R is at least one among Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, A is at least one of Sc and In, 0.1<=X<=2.0 and 0.1<=Y<=1.0. The compsn. may be (Y2.9Bi0.1)(Fe4.9Sc0.1).

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、磁気光学ガーネットに関するもので、詳しく
は、磁界センサに適した磁気光学ガーネットに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a magneto-optic garnet, and more particularly to a magneto-optic garnet suitable for a magnetic field sensor.

[従来の技術] 磁気光学ガーネットには、第1図に示すように、その飽
和磁化よりも小さな外部磁界中では、ファラデー回転能
が外部磁界に比例するという性質がある。この性質を利
用して、磁気光学ガーネットの磁界センサへの応用が提
案されている。
[Prior Art] As shown in FIG. 1, magneto-optic garnet has the property that in an external magnetic field smaller than its saturation magnetization, its Faraday rotation ability is proportional to the external magnetic field. Utilizing this property, the application of magneto-optic garnet to magnetic field sensors has been proposed.

このセンサ性能を高めるために、磁気光学ガーネットに
Biをドープし、単位磁界当たりのファラデー回転能(
飽和磁界中でのファラデー回転。
In order to improve this sensor performance, magneto-optic garnet is doped with Bi, and the Faraday rotation power per unit magnetic field (
Faraday rotation in a saturated magnetic field.

θ と飽和磁界Msとの比θp / M s +以下こ
れを感度定数Cと記す。)を大きくした(Y、La。
The ratio between θ and the saturation magnetic field Ms is θp/Ms+, which is hereinafter referred to as a sensitivity constant C. ) was increased (Y, La.

Bi)3 Fes o12が提案されている(J、 H
ag。
Bi) 3 Fes o12 is proposed (J, H
ag.

Soc、 Jpn、、Vol、11.Suppleme
nt、No、  S 1 (1987)401−404
) 。
Soc, Jpn,, Vol, 11. Supplement
nt, No. S 1 (1987) 401-404
).

[発明が解決しようとする課題] 第1図から明らかなように、磁気光学ガーネットを使用
する磁界センサが測定しうる最大の磁界強度は、磁性ガ
ーネットの飽和磁界Msとなる。
[Problems to be Solved by the Invention] As is clear from FIG. 1, the maximum magnetic field strength that can be measured by a magnetic field sensor using magneto-optic garnet is the saturation magnetic field Ms of the magnetic garnet.

ちなみに、上記(Y、La、B i) 3Fe、0.2
では、第1表に示すように、飽和磁化が1800Gであ
1、それ以上の磁界を測定することは、不可能であった
By the way, the above (Y, La, B i) 3Fe, 0.2
In this case, as shown in Table 1, the saturation magnetization was 1800G, which was 1, and it was impossible to measure a magnetic field larger than that.

そこで、本発明の技術的課題は、Biをドープした感度
定数Cの大きな磁気光学ガーネットにおいて、その飽和
磁化Msか大きく、最大測定磁界の大きな磁界センサに
適した磁気光学ガーネットを提供することにある。
Therefore, the technical problem of the present invention is to provide a magneto-optic garnet doped with Bi with a large sensitivity constant C, which has a large saturation magnetization Ms and is suitable for a magnetic field sensor with a large maximum measured magnetic field. .

[課題を解決するための手段] 本発明によれば、(R3−X B i x )  (F
 e 5−YAY)O12(但し、RはY、La、Pr
、Nd。
[Means for solving the problem] According to the present invention, (R3-X B i x ) (F
e 5-YAY)O12 (However, R is Y, La, Pr
, Nd.

Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Y
b、Luのうち少なくとも1種、Aは5cIn(7)う
ち少なくとも1種、0.1≦X≦2.0゜0.1≦Y≦
1.0)の化学式で表されることを特徴とする磁気光学
ガーネットが得られる。
Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Y
b, at least one kind among Lu, A at least one kind among 5cIn (7), 0.1≦X≦2.0゜0.1≦Y≦
A magneto-optical garnet characterized by being represented by the chemical formula 1.0) is obtained.

[実施例] 以下、本発明の実施例について説明する。[Example] Examples of the present invention will be described below.

実施例1゜ 酸化イツトリウム、酸化鉄、酸化スカンジウム。Example 1゜ Yttrium oxide, iron oxide, scandium oxide.

酸化鉛、酸化ビスマス、酸化ボロンを混合、加熱溶解し
た融液よ1、非磁性ガーネット基板上に(Y2.9  
B i o、+ )  (F C4,er  S Co
、+  )  012なる組成を有する磁性ガーネット
単結晶膜をLPE(リキッド、フェイズ、エピタキシャ
ル)法により育成した。この磁性ガーネットの飽和磁化
Msを測定したところ、第1表に示すように。
A melt of lead oxide, bismuth oxide, and boron oxide mixed and heated was placed on a non-magnetic garnet substrate (Y2.9
B io, + ) (F C4,er S Co
, +)012 was grown by the LPE (liquid, phase, epitaxial) method. When the saturation magnetization Ms of this magnetic garnet was measured, it was as shown in Table 1.

2000Gであった。この値は、比較例(Y。It was 2000G. This value is based on the comparative example (Y.

La、  B i) 3 F e、012における飽和
磁化の値。
La, B i) 3 Fe, saturation magnetization value at 012.

1800Gよりも大きく、最大測定磁界の大きなセンサ
材料として優れている。
It is larger than 1800G and is excellent as a sensor material with a large maximum measurable magnetic field.

実施例2゜ 酸化イツトリウム、酸化鉄、酸化スカンジウム。Example 2゜ Yttrium oxide, iron oxide, scandium oxide.

酸化鉛、酸化ビスマス、酸化ボロンを混合、加熱溶解し
た融液よ1、非磁性ガーネット基板上に(Yl、5  
B i 1.5 )  (F C4,5S C0,5)
  012なる組成を有する磁性ガーネット単結晶膜を
LPE(リキッド、フェイズ、エピタキシャル)法によ
り育成した。この磁性ガーネットの飽和磁化Msを測定
したところ、第1表に示すように。
A melt of lead oxide, bismuth oxide, and boron oxide mixed and heated is placed on a non-magnetic garnet substrate (Yl, 5
B i 1.5) (F C4,5S C0,5)
A magnetic garnet single crystal film having a composition of 012 was grown by an LPE (liquid, phase, epitaxial) method. When the saturation magnetization Ms of this magnetic garnet was measured, it was as shown in Table 1.

3000Gであった。この値は、比較例(Y。It was 3000G. This value is based on the comparative example (Y.

La、  B i) 3 F C50+2における飽和
磁化の値。
La, B i) Value of saturation magnetization at 3F C50+2.

1800Gよりも大きく、最大測定磁界の大きなセンサ
祠料として優れている。
It is larger than 1800G and is excellent as a sensor abrasive material with a large maximum measurable magnetic field.

実施例3゜ 酸化イツトリウム、酸化鉄、酸化スカンジウム。Example 3゜ Yttrium oxide, iron oxide, scandium oxide.

酸化鉛、酸化ビスマス、酸化ボロンを混合、加熱溶解し
た融液よ1、非磁性ガーネット基板上に(Yl、  B
 i2.o )  (F C4,o  SC+、o )
  012なる組成を有する磁性ガーネット単結晶膜を
LPE(リキッド、フェイズ、エピタキシャル)法によ
り育成した。この磁性ガーネットの飽和磁化Msを測定
したところ、第1表に示すように。
A melt of lead oxide, bismuth oxide, and boron oxide mixed and heated is placed on a non-magnetic garnet substrate (Yl, B
i2. o) (FC4, o SC+, o)
A magnetic garnet single crystal film having a composition of 012 was grown by an LPE (liquid, phase, epitaxial) method. When the saturation magnetization Ms of this magnetic garnet was measured, it was as shown in Table 1.

2000Gであった。この値は、比較例(Y。It was 2000G. This value is based on the comparative example (Y.

La、Bi)3 Fe5O12における飽和磁化の値。La, Bi)3 Value of saturation magnetization in Fe5O12.

1800Gよりも大きく、最大測定磁界の大きなセンサ
材料として優れている。
It is larger than 1800G and is excellent as a sensor material with a large maximum measurable magnetic field.

実施例4゜ 酸化イツトリウム、酸化鉄、酸化スカンジウム酸化鉛、
酸化ビスマス、酸化ボロンを混合、加熱溶解した融液よ
1、非磁性ガーネット基板上に(Y2.9  B i 
o、+ )  (F C4,cr  I nO,I  
)  012なる組成を有する磁性ガーネット単結晶膜
をLPE(リキッド、フェイズ、エピタキシャル)法に
より育成した。この磁性ガーネットの飽和磁化Msを測
定したところ、第1表に示すように32000Gであっ
た。この値は、比較例(Y。
Example 4 Yttrium oxide, iron oxide, scandium oxide, lead oxide,
A melt of bismuth oxide and boron oxide mixed and heated was placed on a non-magnetic garnet substrate (Y2.9 B i
o, + ) (F C4, cr I nO, I
) A magnetic garnet single crystal film having a composition of 012 was grown by the LPE (liquid, phase, epitaxial) method. When the saturation magnetization Ms of this magnetic garnet was measured, it was 32000G as shown in Table 1. This value is the same as that of the comparative example (Y.

La、Bi)3 Fe5 o12における飽和磁化の値
La, Bi) Saturation magnetization value in 3 Fe5 o12.

1800Gよりも大きく、最大測定磁界の大きなセンサ
材料として優れている。
It is larger than 1800G and is excellent as a sensor material with a large maximum measurable magnetic field.

実施例5゜ 酸化イツトリウム、酸化鉄、酸化スカンジウム。Example 5゜ Yttrium oxide, iron oxide, scandium oxide.

酸化鉛、酸化ビスマス、酸化ボロンを混合、加熱溶解し
た融液よ1、非磁性ガーネット基板上に(Yl、  B
 j 1.5 )  (F C4,s  I no、+
 )  012なる組成を有する磁性ガーネット単結晶
膜をLPE(リキッド、フェイズ、エピタキシャル)法
により育成した。この磁性ガーネットの飽和磁化Msを
測定したところ、第1表に示すように。
A melt of lead oxide, bismuth oxide, and boron oxide mixed and heated is placed on a non-magnetic garnet substrate (Yl, B
j 1.5 ) (F C4, s I no, +
) A magnetic garnet single crystal film having a composition of 012 was grown by an LPE (liquid, phase, epitaxial) method. When the saturation magnetization Ms of this magnetic garnet was measured, it was as shown in Table 1.

3000Gであった。この値は、比較例(Y。It was 3000G. This value is based on the comparative example (Y.

La、Bi)3 Fes 012における飽和磁化の値
La, Bi) Saturation magnetization value in 3 Fes 012.

1800Gよりも大きく、最大測定磁界の大きなセンサ
材料として優れている。
It is larger than 1800G and is excellent as a sensor material with a large maximum measurable magnetic field.

実施例6゜ 酸化イツトリウム、酸化鉄、酸化スカンジウム酸化鉛、
酸化ビスマス、酸化ボロンを混合、加熱溶解した融液よ
1、非磁性ガーネット基板上に(Y+、  B i2.
o )  (F e4.o  I n+、o )  0
12なる組成を有する磁性ガーネット単結晶膜をLPE
(リキッド、フェイズ、エピタキシャル)法により育成
した。この磁性ガーネットの飽和磁化Msを測定したと
ころ、第1表に示すように。
Example 6゜Yttrium oxide, iron oxide, scandium oxide, lead oxide,
Bismuth oxide and boron oxide were mixed, heated and melted, and then melted (1) was deposited on a non-magnetic garnet substrate (Y+, B i2.
o ) (F e4. o I n+, o ) 0
A magnetic garnet single crystal film having a composition of 12 was subjected to LPE.
(liquid, phase, epitaxial) method. When the saturation magnetization Ms of this magnetic garnet was measured, it was as shown in Table 1.

2000Gであった。この値は、比較例(Y。It was 2000G. This value is based on the comparative example (Y.

La、Bi)3 Fe5O12における飽和磁化の値。La, Bi)3 Value of saturation magnetization in Fe5O12.

1800Gよりも大きく、最大測定磁界の大きなセンサ
材料として優れている。
It is larger than 1800G and is excellent as a sensor material with a large maximum measurable magnetic field.

以  下  余  白 本発明は、上記実施例のみならず、 化学式 (R:+−x B i x )  (F e 
s−y Ay ) 012(但し、RはY、La、Pr
、Nd、Sm、Eu。
The present invention applies not only to the above-mentioned embodiments, but also to the chemical formula (R:+-x B ix ) (F e
s-y Ay) 012 (However, R is Y, La, Pr
, Nd, Sm, Eu.

Gd、Tb、Dy、Ho、Er、Tm、Yb。Gd, Tb, Dy, Ho, Er, Tm, Yb.

Luのうち少なくとも1種、AはSc、Inのうち少な
くとも1種、0.1≦X≦2.0゜0.1≦Y≦1.0
)の化学式で表される磁気光学ガーネット全般に適用さ
れるものである。
At least one type of Lu, A is at least one type of Sc, In, 0.1≦X≦2.0゜0.1≦Y≦1.0
) is applicable to all magneto-optical garnets represented by the chemical formula:

[発明の効果] 以上説明したように、本発明によれば、Biをドープし
た感度定数Cの大きな磁気光学ガーネット、において、
その飽和磁化Msが大きく、最大測定磁界の大きな磁界
センサに適した磁気光学ガーネットを提供することが可
能となった。
[Effects of the Invention] As explained above, according to the present invention, in a magneto-optic garnet doped with Bi and having a large sensitivity constant C,
It has become possible to provide a magneto-optic garnet that has a large saturation magnetization Ms and is suitable for a magnetic field sensor with a large maximum measured magnetic field.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は磁界中での磁気光学ガーネットのファラデー回
転を示す図である。
FIG. 1 is a diagram showing Faraday rotation of a magneto-optic garnet in a magnetic field.

Claims (1)

【特許請求の範囲】[Claims] 1、(R_3_−_xBi_x)(Fe_5_−_YA
_Y)O_1_2(但し、RはY、La、Pr、Nd、
Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Y
b、Luのうち少なくとも1種、AはSc、Inのうち
少なくとも1種、0.1≦X≦2.0、0.1≦Y≦1
.0)の化学式で表されることを特徴とする磁気光学ガ
ーネット。
1, (R_3_-_xBi_x) (Fe_5_-_YA
_Y) O_1_2 (However, R is Y, La, Pr, Nd,
Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Y
b, at least one of Lu, A is at least one of Sc, In, 0.1≦X≦2.0, 0.1≦Y≦1
.. A magneto-optical garnet characterized by being represented by the chemical formula 0).
JP20293989A 1989-08-07 1989-08-07 Magneto-optical garnet Pending JPH0369597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20293989A JPH0369597A (en) 1989-08-07 1989-08-07 Magneto-optical garnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20293989A JPH0369597A (en) 1989-08-07 1989-08-07 Magneto-optical garnet

Publications (1)

Publication Number Publication Date
JPH0369597A true JPH0369597A (en) 1991-03-25

Family

ID=16465666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20293989A Pending JPH0369597A (en) 1989-08-07 1989-08-07 Magneto-optical garnet

Country Status (1)

Country Link
JP (1) JPH0369597A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547613A (en) * 1994-07-05 1996-08-20 Fdk Corporation Magneto-optical element material formed of magnetic garnet single crystals
US5616176A (en) * 1994-07-01 1997-04-01 Shin-Etsu Chemical Co., Ltd. Oxide garnet single crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616176A (en) * 1994-07-01 1997-04-01 Shin-Etsu Chemical Co., Ltd. Oxide garnet single crystal
US5547613A (en) * 1994-07-05 1996-08-20 Fdk Corporation Magneto-optical element material formed of magnetic garnet single crystals

Similar Documents

Publication Publication Date Title
Hirosawa et al. The dependence of coercivity on anisotropy field in sintered R-Fe-B permanent magnets
JP3198053B2 (en) Products made of magneto-optical material with low magnetic moment
Van Uitert et al. Control of bubble domain properties in garnets
EP0646826A1 (en) Faraday rotator
EP0811851A3 (en) Faraday rotator having a rectangular shaped hysteresis
US6733587B2 (en) Process for fabricating an article comprising a magneto-optic garnet material
US4138530A (en) Magnetic structures
JPH0369597A (en) Magneto-optical garnet
Vella‐Coleiro Domain wall mobility in epitaxial garnet films
US4698281A (en) Garnet-type magnetic material high faraday rotation magnetic film containing such a material and process for the production thereof
JP3458865B2 (en) Low saturation magnetic field bismuth-substituted rare earth iron garnet single crystal and its use
JP3237031B2 (en) Bismuth-substituted rare earth iron garnet single crystal film, optical isolator and magneto-optical switch
Takayanagi et al. Magnetic properties of antiferromagnetic GdCu6
JPS5613710A (en) Material for magnetic element
JP2874319B2 (en) Magneto-optical material, method of manufacturing the same, and optical element using the same
JP3037474B2 (en) Faraday rotator
JP2867736B2 (en) Magneto-optical material, method of manufacturing the same, and optical element using the same
JPH0288430A (en) Magneto-optical garnet
JP3917859B2 (en) Faraday rotator
JPH03282414A (en) Faraday rotor for magnetic field sensor
Shinagawa et al. A note on the Faraday rotation in Bi/sup 3+/-substituted magnetic garnets
JP2914456B2 (en) Faraday rotator
JPH07118094A (en) Magnetic garnet
JPH038725A (en) Magneto-optical garnet
JPH0588126A (en) Magneto-optical material, its production, and optical element using same