JPH0757693B2 - Magneto-optic garnet - Google Patents

Magneto-optic garnet

Info

Publication number
JPH0757693B2
JPH0757693B2 JP14109289A JP14109289A JPH0757693B2 JP H0757693 B2 JPH0757693 B2 JP H0757693B2 JP 14109289 A JP14109289 A JP 14109289A JP 14109289 A JP14109289 A JP 14109289A JP H0757693 B2 JPH0757693 B2 JP H0757693B2
Authority
JP
Japan
Prior art keywords
sensitivity constant
oxide
garnet
change
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14109289A
Other languages
Japanese (ja)
Other versions
JPH038724A (en
Inventor
洋一 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP14109289A priority Critical patent/JPH0757693B2/en
Publication of JPH038724A publication Critical patent/JPH038724A/en
Publication of JPH0757693B2 publication Critical patent/JPH0757693B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Thin Magnetic Films (AREA)
  • Compounds Of Iron (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は,磁界センサに用いられる磁気光学ガーネット
に関するものである。
TECHNICAL FIELD The present invention relates to a magneto-optical garnet used in a magnetic field sensor.

[従来の技術] 磁性ガーネットには,第5図に示すように,その飽和磁
化よりも小さな外部磁界中では,ファラデー回転能が外
部磁界に比例するという性質がある。この性質を利用し
て,磁性ガーネットの磁界センサへの応用が提案されて
いる。
[Prior Art] As shown in FIG. 5, magnetic garnet has a property that the Faraday rotation capability is proportional to the external magnetic field in the external magnetic field smaller than its saturation magnetization. Utilizing this property, application of magnetic garnet to a magnetic field sensor has been proposed.

このセンサの分解能を高めるために,磁性ガーネットBi
をドープし,単位磁界当たりのファラデー回転能(飽和
磁界中でのファラデー回転θと飽和磁界MSとの比θF/
MS,以下,これを感度定数Cと記す。)を大きくした
(Y,La,Bi)3Fe5O12が提案されている(J.Magn.Soc.Jp
n.,Vol.11,Supplement,NO.Sl(1987)401−404)。
To increase the resolution of this sensor, magnetic garnet Bi
Faraday rotation capability per unit magnetic field (ratio of the Faraday rotation θ F in the saturation magnetic field to the saturation magnetic field M S θ F /
M S , hereinafter referred to as sensitivity constant C. ) Has been proposed (Y, La, Bi) 3 Fe 5 O 12 (J.Magn.Soc.Jp
n., Vol. 11, Supplement, NO. Sl (1987) 401-404).

[発明が解決しようとする課題] しかしながら,磁性ガーネットを使用する磁界センサに
実用化には,実用温度範囲(例えば,250〜350K)で感度
定数Cが可能な限り変化しないことが望まれるが,上記
(Y,La,Bi)3Fe5O12では,波長0.8μmの300Kにおける
感度定数C(300K)を基準にすると,250Kにおける感度定数
C(250K),350Kにおける感度定数C(350K)は,第6図に示
すように,夫々,−2(%),+2(%)変動する。
[Problems to be Solved by the Invention] However, in order to put the magnetic field sensor using magnetic garnet into practical use, it is desirable that the sensitivity constant C does not change as much as possible in the practical temperature range (for example, 250 to 350K). In the above (Y, La, Bi) 3 Fe 5 O 12 , the sensitivity constant at 250K is based on the sensitivity constant C (300K) at 0.8K wavelength of 300K.
As shown in FIG. 6, the sensitivity constant C (350K) at C (250K) and 350K fluctuates by -2 (%) and +2 (%), respectively.

そこで,本発明の技術的課題は,上記欠点に鑑み,Biを
ドープした感度定数Cの大きな磁性ガーネットにおい
て,250〜350Kの温度範囲で,その感度定数Cの変動が極
めて小さい磁界センサ用材料を提供することにある。
Therefore, in view of the above-mentioned drawbacks, the technical problem of the present invention is to provide a magnetic garnet doped with Bi having a large sensitivity constant C in the temperature range of 250 to 350 K, in which the variation of the sensitivity constant C is extremely small. To provide.

[課題を解決するための手段] 本発明によれば,(Eu3-X-YHoXBiY)Fe5O12(但し,0.1
≦X≦1.6,0.5≦Y≦2.0)の化学式で表されることを特
徴とする磁気光学ガーネットが得られる。
[Means for Solving the Problems] According to the present invention, (Eu 3-XY Ho X Bi Y ) Fe 5 O 12 (provided that 0.1
It is possible to obtain a magneto-optical garnet characterized by being represented by a chemical formula of ≦ X ≦ 1.6, 0.5 ≦ Y ≦ 2.0).

[実施例] 以下,本発明の実施例について,図面を参照して説明す
る。
Embodiments Embodiments of the present invention will be described below with reference to the drawings.

(実施例1) カルシウム,マグネシウム,ジルコニウム置換ガドリニ
ウム,ガリウメ,ガーネット単結晶基板に,酸化ユーロ
ピウム,酸化ホルミニウム,酸化ビスマス,酸化鉄,酸
化鉛,酸化ボロンを混合,加熱溶解した融液から,(Eu
1.5Ho0.1Bi1.4)Fe5O12なる組成を有する磁性ガーネッ
ト単結晶膜を,LPE(リキッド・フェイズ・エピタキシャ
ル)法により,育成した。この磁性ガーネット膜の波長
0.8μmにおける感度定数Cを,250〜350Kの温度範囲で
測定したところ,第1図のような結果を得た。300Kにお
ける感度定数C(300K)を基準にすると250〜350Kの温度範
囲全域で,感度定数Cの値は,±1(%)以内の変化を
示したにすぎなかった。この変化率は,(Y,La,Bi)3Fe
5O12に於ける変化率よりも小さく,温度特性の良好な磁
界センサ用材料として優れている。
Example 1 From a melt obtained by mixing europium oxide, holmium oxide, bismuth oxide, iron oxide, lead oxide, and boron oxide on a calcium, magnesium, zirconium-substituted gadolinium, gallium, and garnet single crystal substrate and heating and melting the mixture (Eu
A magnetic garnet single crystal film having a composition of 1.5 Ho 0.1 Bi 1.4 ) Fe 5 O 12 was grown by the LPE (Liquid Phase Epitaxial) method. Wavelength of this magnetic garnet film
When the sensitivity constant C at 0.8 μm was measured in the temperature range of 250 to 350 K, the results shown in FIG. 1 were obtained. Based on the sensitivity constant C (300K) at 300K, the value of the sensitivity constant C showed a change within ± 1 (%) over the entire temperature range of 250 to 350K. This rate of change is (Y, La, Bi) 3 Fe
It is smaller than the rate of change in 5 O 12 and is excellent as a material for magnetic field sensors with good temperature characteristics.

また,この(Eu1.5Ho0.1Bi1.4)Fe5O12は波長0.8μmの
みならず,他の波長における感度定数の温度変化も極め
て小さかった。
Moreover, this (Eu 1.5 Ho 0.1 Bi 1.4 ) Fe 5 O 12 has an extremely small temperature change of the sensitivity constant at other wavelengths as well as at a wavelength of 0.8 μm.

(実施例2) 酸化ユーロピウム,酸化ホルミニウム,酸化ビスマス,
酸化鉄,酸化鉛,酸化ボロンを混合,加熱溶解した融液
より,カルシウム,マグネシウム,ジルコニウム置換ガ
ドリニウム,ガリウム,ガーネット単結晶基板に,(Eu
1.0Ho1.0Bi1.0)Fe5O12なる組成を有する磁性ガーネッ
ト単結晶膜をLPE(リキッド・フェイズ・エピタキシャ
ル)法により育成した。この磁性ガーネット膜の波長0.
8μmにおける感度定数Cを250〜350Kの温度範囲で測定
したところ,第2図のような結果を得た。この図におい
て,300Kにおける感度定数C(300K)を基準にすると,250〜
350Kの温度範囲全域で,感度定数Cの値は,±0.1
(%)以内の変化を示したに過ぎなかった。この変化率
は,(Y,La,Bi)3Fe5O12に於ける変化率よりも小さく,
温度特性の良好な磁界センサ用材料として優れている。
(Example 2) Europium oxide, holmium oxide, bismuth oxide,
From the melt of iron oxide, lead oxide and boron oxide mixed and heated and melted, calcium, magnesium, zirconium-substituted gadolinium, gallium and garnet single crystal substrates were prepared (Eu
A magnetic garnet single crystal film having a composition of 1.0 Ho 1.0 Bi 1.0 ) Fe 5 O 12 was grown by the LPE (Liquid Phase Epitaxial) method. The wavelength of this magnetic garnet film is 0.
When the sensitivity constant C at 8 μm was measured in the temperature range of 250 to 350 K, the results shown in FIG. 2 were obtained. In this figure, if the sensitivity constant C (300K) at 300K is used as the reference,
The sensitivity constant C is ± 0.1 over the entire temperature range of 350K.
It only showed a change within (%). This rate of change is smaller than the rate of change in (Y, La, Bi) 3 Fe 5 O 12 .
Excellent as a magnetic field sensor material with good temperature characteristics.

また,この(Eu1.0Ho1.0Bi1.0)Fe5O12は波長0.8μmの
みならず,他の波長における感度定数の温度変化も極め
て小さかった。
In addition, this (Eu 1.0 Ho 1.0 Bi 1.0 ) Fe 5 O 12 has a very small temperature change of the sensitivity constant at other wavelengths as well as at a wavelength of 0.8 μm.

(実施例3) 酸化ユーロピウム,酸化ホルミニウム,酸化ビスマス,
酸化鉄,酸化鉛,酸化ボロンを混合,加熱溶解した融液
より,カルシウム,マグネシウム,ジルコニウム置換ガ
ドリニウム,ガリウム,ガーネット単結晶基板に,(Eu
0.5Ho0.5Bi2.0)Fe5O12なる組成を有する磁性ガーネッ
ト単結晶膜をLPE(リキッド・フェイズ・エピタキシャ
ル)法により育成した。この磁性ガーネット膜の波長0.
8μmにおける感度定数Cを250〜350Kの温度範囲で測定
したところ,第3図のような結果を得た。300Kにおける
感度定数C(300K)を基準にすると250〜350Kの温度範囲全
域で,感度定数Cの値は,±0.5(%)以内の変化を示
したに過ぎなかった。この変化率は,(Y,La,Bi)3Fe5O
12に於ける変化率よりも小さく,温度特性の良好な磁界
センサ用材料として優れている。
(Example 3) Europium oxide, holmium oxide, bismuth oxide,
From the melt of iron oxide, lead oxide and boron oxide mixed and heated and melted, calcium, magnesium, zirconium-substituted gadolinium, gallium and garnet single crystal substrates were prepared (Eu
A magnetic garnet single crystal film having a composition of 0.5 Ho 0.5 Bi 2.0 ) Fe 5 O 12 was grown by the LPE (Liquid Phase Epitaxial) method. The wavelength of this magnetic garnet film is 0.
When the sensitivity constant C at 8 μm was measured in the temperature range of 250 to 350 K, the results shown in FIG. 3 were obtained. Based on the sensitivity constant C (300K) at 300K, the value of the sensitivity constant C showed only within ± 0.5 (%) over the temperature range of 250 to 350K. This rate of change is (Y, La, Bi) 3 Fe 5 O
It is smaller than the rate of change in 12 and is excellent as a material for magnetic field sensors with good temperature characteristics.

また,この(Eu0.5Ho0.5Bi2.0)Fe5O12は波長0.8μmの
みならず,他の波長における感度定数の温度変化も極め
て小さかった。
In addition, this (Eu 0.5 Ho 0.5 Bi 2.0 ) Fe 5 O 12 has an extremely small temperature change in the sensitivity constant at other wavelengths as well as at a wavelength of 0.8 μm.

(実施例4) 酸化ユーロピウム,酸化ホルミニウム,酸化ビスマス,
酸化鉄,酸化鉛,酸化ボロンを混合,加熱溶解した融液
より,カルシウム,マグネシウム,ジルコニウム置換ガ
ドリニウム,ガリウム,ガーネット単結晶基板に,(Eu
0.9Ho1.6Bi0.5)Fe5O12なる組成を有する磁性ガーネッ
ト単結晶膜LPE(リキッド・フェイズ・エピタキシャ
ル)法により育成した。この磁性ガーネット膜の波長0.
8μmにおける感度定数Cを250〜350Kの温度範囲で測定
したところ,第4図のような結果を得た。300Kにおける
感度定数C(300K)を基準にすると250〜350Kの温度範囲全
域で,感度定数Cの値は,±0.1(%)以内の変化を示
したに過ぎなかった。この変化率は,(Y,La,Bi)3Fe5O
12に於ける変化率よりも小さく,温度特性の良好な磁界
センサ用材料として優れている。
(Example 4) Europium oxide, holmium oxide, bismuth oxide,
From the melt of iron oxide, lead oxide and boron oxide mixed and heated and melted, calcium, magnesium, zirconium-substituted gadolinium, gallium and garnet single crystal substrates were prepared (Eu
A magnetic garnet single crystal film having a composition of 0.9 Ho 1.6 Bi 0.5 ) Fe 5 O 12 was grown by the LPE (Liquid Phase Epitaxial) method. The wavelength of this magnetic garnet film is 0.
When the sensitivity constant C at 8 μm was measured in the temperature range of 250 to 350 K, the results shown in FIG. 4 were obtained. Based on the sensitivity constant C (300K) at 300K, the value of the sensitivity constant C showed a change within ± 0.1 (%) over the entire temperature range of 250 to 350K. This rate of change is (Y, La, Bi) 3 Fe 5 O
It is smaller than the rate of change in 12 and is excellent as a material for magnetic field sensors with good temperature characteristics.

また,この(Eu0.9Ho1.6Bi0.5)Fe5O12は波長0.8μmの
みならず,他の波長における感度定数の温度変化も極め
て小さかった。
In addition, this (Eu 0.9 Ho 1.6 Bi 0.5 ) Fe 5 O 12 had a very small temperature change of the sensitivity constant at other wavelengths as well as at a wavelength of 0.8 μm.

[発明の効果] 以上説明したように,本発明によれば,感度定数が大き
く,なお且つ,その温度変動が極めて小さいという優れ
た特性を有する磁界センサ用磁気光学ガーネットを得る
ことが可能となり,工業的利用価値は極めて大である。
[Effects of the Invention] As described above, according to the present invention, it is possible to obtain a magneto-optical garnet for a magnetic field sensor having excellent characteristics that the sensitivity constant is large and the temperature fluctuation thereof is extremely small. The industrial utility value is extremely high.

【図面の簡単な説明】[Brief description of drawings]

第1図は(Eu1.5Ho0.1Bi1.4)Fe5O12の波長0.8μmでの
感度定数Cの温度変動を示す図,第2図は(Eu1.0Ho1.0
Bi1.0)Fe5O12の波長0.8μmでの感度定数Cの温度変動
を示す図,第3図は(Eu0.5Ho0.5Bi1.5)Fe5O12の波長
0.8μmでの感度定数Cの温度変動を示す図,第4図は
(Eu0.9Ho1.6Bi0.5)Fe5O12の波長0.8μmでの感度定数
Cの温度変動を示す図,第5図は磁界中での磁性ガーネ
ットのファラデー回転を示す図,第6図は(Y,La,Ba)3
Fe5O12の波長0.8μmでの感度定数Cの温度変動を示す
図である。
Figure 1 shows the temperature variation of the sensitivity constant C of (Eu 1.5 Ho 0.1 Bi 1.4 ) Fe 5 O 12 at wavelength 0.8 μm, and Figure 2 shows (Eu 1.0 Ho 1.0
Fig. 3 shows the temperature fluctuation of the sensitivity constant C at the wavelength of 0.8 μm for Bi 1.0 ) Fe 5 O 12 , and Fig. 3 shows the wavelength of (Eu 0.5 Ho 0.5 Bi 1.5 ) Fe 5 O 12
Fig. 4 shows the temperature variation of the sensitivity constant C at 0.8 µm, Fig. 4 shows the temperature variation of the sensitivity constant C of (Eu 0.9 Ho 1.6 Bi 0.5 ) Fe 5 O 12 at the wavelength of 0.8 µm, and Fig. 5 shows Figure 6 shows the Faraday rotation of magnetic garnet in a magnetic field, and Fig. 6 shows (Y, La, Ba) 3
It is a diagram showing a temperature variation of the sensitivity constant C of the wavelength 0.8μm of Fe 5 O 12.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】(Eu3-X-YHoXBiY)Fe5O12(但し,0.1≦X
≦1.6,0.5≦Y≦2.0)の化学式で表されることを特徴と
する磁気光学ガーネット。
1. (Eu 3-XY Ho X Bi Y ) Fe 5 O 12 (where 0.1≤X
A magneto-optical garnet represented by the chemical formula: ≤1.6, 0.5 ≤ Y ≤ 2.0).
JP14109289A 1989-06-05 1989-06-05 Magneto-optic garnet Expired - Lifetime JPH0757693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14109289A JPH0757693B2 (en) 1989-06-05 1989-06-05 Magneto-optic garnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14109289A JPH0757693B2 (en) 1989-06-05 1989-06-05 Magneto-optic garnet

Publications (2)

Publication Number Publication Date
JPH038724A JPH038724A (en) 1991-01-16
JPH0757693B2 true JPH0757693B2 (en) 1995-06-21

Family

ID=15284012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14109289A Expired - Lifetime JPH0757693B2 (en) 1989-06-05 1989-06-05 Magneto-optic garnet

Country Status (1)

Country Link
JP (1) JPH0757693B2 (en)

Also Published As

Publication number Publication date
JPH038724A (en) 1991-01-16

Similar Documents

Publication Publication Date Title
Brandle et al. Crystal stoichiometry and growth of rare-earth garnets containing scandium
Li et al. Magnetic properties of ferromagnetic GdN
Campbell et al. Single-crystal neutron-diffraction study of a structural phase transitioninduced by a magnetic field in La 1− x Sr x MnO 3
JPH0757693B2 (en) Magneto-optic garnet
US5466388A (en) Material for magnetostatic-wave devices
US4323618A (en) Single crystal of calcium-gallium germanium garnet and substrate manufactured from such a single crystal and having an epitaxially grown bubble domain film
Hillenius et al. Magnetic susceptibility of iron-doped 2 H-Nb Se 2
JPH0288430A (en) Magneto-optical garnet
JPH02164723A (en) Magneto-optical garnet
JPH02196100A (en) Magneto-optical garnet
Kuwamoto et al. Electrical properties and structure of Cr-doped nonstoichiometric V2O3
Takeno et al. Structure and Magnetic Properties of MnBi Thin Films
JPS5680106A (en) (110) garnet liquid phase epitaxial film
JP2679157B2 (en) Terbium iron garnet and magneto-optical element using the same
JPH038725A (en) Magneto-optical garnet
JP3089742B2 (en) Materials for magnetostatic wave devices
Plaskett et al. The Effect of Substrate Orientation and Growth Temperature on the Magnetic Anisotropy of Eu x Y 3− x Fe 5 O 12 Films
JPH0369597A (en) Magneto-optical garnet
JP3614248B2 (en) Garnet crystal for substrate of magneto-optical element and manufacturing method thereof
JPH03282414A (en) Faraday rotor for magnetic field sensor
JPH02125223A (en) Garnet crystal for substrate of magneto-optical element and production thereof
JPH038726A (en) Magneto-optical garnet
Huahui et al. Epitaxial growth of highly Bi-substituted garnet films with narrow FMR linewidth and low optical absorption loss
Powell et al. Magnetic and electronic properties of lead-doped lanthanum manganate
JPH07118094A (en) Magnetic garnet