JPH02164723A - Magneto-optical garnet - Google Patents

Magneto-optical garnet

Info

Publication number
JPH02164723A
JPH02164723A JP31843288A JP31843288A JPH02164723A JP H02164723 A JPH02164723 A JP H02164723A JP 31843288 A JP31843288 A JP 31843288A JP 31843288 A JP31843288 A JP 31843288A JP H02164723 A JPH02164723 A JP H02164723A
Authority
JP
Japan
Prior art keywords
garnet
magnetic
sensitivity constant
wavelength
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31843288A
Other languages
Japanese (ja)
Inventor
Yoichi Honda
本田 洋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP31843288A priority Critical patent/JPH02164723A/en
Publication of JPH02164723A publication Critical patent/JPH02164723A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Compounds Of Iron (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain the magneto-optical garnet having a large sensitivity constant and a small temp. fluctuation range and useful for a magnetic-field sensor by using a specified compd. consisting of yttrium, terbium, bismuth, iron, and oxygen as the essential component of the garnet. CONSTITUTION:The magneto-optical garnet is expressed by chemical formula I (0.05<=X<=1.0 and 0.5<=Y<=2.0). The magnetic garnet expressed by formula II is exemplified as the magnetic garnet of formula I. When the sensitivity constant of the garnet at 0.8mu wavelength is measured at 250-350K, the sensitivity constant changes only within + or -1% at 250-350K with the sensitivity constant at 300 K as a reference. The rate of change is smaller than that in the conventionally proposed magnetic garnet of formula III, and the garnet is excellent as the material for a magnetic field sensor having a good temp. characteristic. In addition, the temp. change in the resistivity constant of the magnetic garnet of formula II is extremely low also at the wavelength other than 0.8mu wavelength.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、磁界センサに用いられる磁気光学ガーネット
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a magneto-optic garnet used in a magnetic field sensor.

[従来の技術] 磁性ガーネットには、その飽和磁化よりも小さな外部磁
界中では、ファラデー回転能が外部磁界に比例するとい
う性質がある(第5図参照)。
[Prior Art] Magnetic garnet has a property that in an external magnetic field smaller than its saturation magnetization, its Faraday rotation ability is proportional to the external magnetic field (see FIG. 5).

この性質を利用して、磁性ガーネットの磁界センサへの
応用が提案されている。
Utilizing this property, the application of magnetic garnet to magnetic field sensors has been proposed.

このセンサの分解能を高めるために、磁性ガーネットに
Biをドープし単位磁界当たりのファラデー回転能(飽
和磁界中でのファラデー回転θ。
In order to increase the resolution of this sensor, magnetic garnet is doped with Bi to obtain Faraday rotation per unit magnetic field (Faraday rotation θ in a saturated magnetic field).

と飽和磁界M との比θ、/M8.以下これを感度定数
Cと記す)を大きくした(YLaBi)3F e s 
O12が提案されてい°る(J、 Magn、 Soc
、 Jpn、VIl、11.Supplement、N
O,Sl(19g?)401−404)  。
and the saturation magnetic field M θ, /M8. This is hereinafter referred to as the sensitivity constant C) is increased (YLaBi)3F e s
O12 has been proposed (J, Magn, Soc
, Jpn, VIl, 11. Supplement, N
O, Sl (19g?) 401-404).

[発明が解決しようとする課題] 磁性ガーネットを使用する磁界センサの実用化には、実
用温度範囲(例えば250〜350K)で感度定数Cが
可能な限り変化しないことが望まれるが上記(YLaB
i)3Fe50I2では、波長0.8μmの300Kに
おける感度定数C(300K)を基準にすると250K
における感度定数C(250K)、350Kにおける感
度定数CC300K)は、第6図に示すように、夫々2
(%)、+2(%)変動する。
[Problem to be solved by the invention] In order to put a magnetic field sensor using magnetic garnet into practical use, it is desirable that the sensitivity constant C does not change as much as possible in the practical temperature range (for example, 250 to 350 K).
i) For 3Fe50I2, the sensitivity constant C (300K) at 300K at a wavelength of 0.8 μm is 250K.
The sensitivity constant C at 250K and the sensitivity constant CC300K at 350K are respectively 2 as shown in Figure 6.
(%), +2 (%) fluctuation.

そこで、本発明の技術的課題は、Biをドープした感度
定数Cの大きな磁性ガーネットにおいて、250〜30
0にの温度範囲で、その感度定数Cの変動が極めて小さ
い磁界センサ用材料を提供することにある。
Therefore, the technical problem of the present invention is to obtain a Bi-doped magnetic garnet with a large sensitivity constant C of 250 to 30
It is an object of the present invention to provide a material for a magnetic field sensor whose sensitivity constant C has extremely small fluctuations in a temperature range of 0.

[課題を解決するための手段] 本発明によれば、(Y    Tb  Bi  )3−
X−Y   X   Y Fe5012(但し、0.05≦ X ≦1.0゜0.
5≦Y ≦2.0)の化学式で表されることを特徴とす
る磁界センサ用磁気光学ガーネットが得られる。
[Means for solving the problem] According to the present invention, (Y Tb Bi )3-
X-Y X Y Fe5012 (However, 0.05≦X≦1.0゜0.
A magneto-optical garnet for magnetic field sensors is obtained, which is represented by the chemical formula (5≦Y≦2.0).

[実施例] 以下本発明の実施例について説明する。[Example] Examples of the present invention will be described below.

(実施例1) 酸化イツトリウム、酸化テルビウム、酸化ビスマス、酸
化鉄、酸化鉛、酸化ボロンを混合、加熱溶解した融液よ
りカルシウム、マグネシウム、ジルコニウム置換がトリ
ニウム、ガリウム、ガーネット単結晶基板に(Y   
Tb   Bi   )FO,950,052,0 e50□2なる組成を有する磁性ガーネット単結晶膜を
LPE (リキッド・フェイズ・エピタキシャル)法に
より育成した。この磁性ガーネット膜の波長0.8μm
における感度定数Cを250〜350にの温度範囲でδ
I定したところ第1図のような結果を得た。この図にお
いて、300Kにおける感度定数C(300K)を基準
にすると250〜350にの温度範囲全域で、感度定数
Cの値は、±1(%)以内の変化を示したにすぎなかっ
た。この変化率は、(YLaBi)  Fe5O12に
於ける変化率よりも小さく、温度特性の良好な磁界セン
サ用材料として優れている。
(Example 1) Calcium, magnesium, and zirconium substitutions were made on thorinium, gallium, and garnet single crystal substrates from a melt obtained by mixing and heating yttrium oxide, terbium oxide, bismuth oxide, iron oxide, lead oxide, and boron oxide (Y
A magnetic garnet single crystal film having a composition of Tb Bi )FO, 950,052,0 e50□2 was grown by the LPE (liquid phase epitaxial) method. The wavelength of this magnetic garnet film is 0.8 μm
The sensitivity constant C in the temperature range from 250 to 350 δ
When the temperature was determined, the results shown in Figure 1 were obtained. In this figure, when the sensitivity constant C at 300K (300K) is used as a reference, the value of the sensitivity constant C only showed a change within ±1 (%) over the entire temperature range from 250 to 350°C. This rate of change is smaller than the rate of change in (YLaBi)Fe5O12, making it an excellent material for magnetic field sensors with good temperature characteristics.

また、この(Y   Tb   Bi   )Fe50
.95  0.05  2.0 012は波長0.8μmのみならず、他の波長における
感度定数の温度変化も極めて小さかった。
Moreover, this (Y Tb Bi )Fe50
.. 95 0.05 2.0 012 had extremely small temperature changes in the sensitivity constant not only at the wavelength of 0.8 μm but also at other wavelengths.

(実施例2) 酸化イツトリウム、酸化テルビウム、酸化ビスマス、酸
化鉄、酸化鉛、酸化ボロンを混合、加熱溶解した融液よ
りカルシウム、マグネシウム、ジルコニウム置換ガドリ
ニウム、ガリウム、ガーネット単結晶基板に(Y   
Tb   Bi   )Fl、0  0.2  1.8 e50.2なる組成を有する磁性ガーネット単結晶膜を
LPE (リキッド・フェイズ・エピタキシャル)法に
より育成した。この磁性ガーネット膜の波長0.8μm
における感度定数Cを250〜350 Kの温度範囲で
711j定したところ第2図のような結果を得た。この
図において300Kにおける感度定数C(300K)を
基準にすると250〜350にの温度範囲全域で、感度
定数Cの値は、±1(%)以内の変化を示したに過ぎな
かった。この変化率は、(Y L a B i)  F
 e 5012に於ける変化率よりも小さく、温度特性
の良好な磁界センサ用材料として優れている。
(Example 2) Yttrium oxide, terbium oxide, bismuth oxide, iron oxide, lead oxide, and boron oxide were mixed, heated, and melted to form a calcium, magnesium, and zirconium-substituted gadolinium, gallium, and garnet single crystal substrate (Y
A magnetic garnet single crystal film having a composition of Tb Bi ) Fl, 0 0.2 1.8 e50.2 was grown by the LPE (liquid phase epitaxial) method. The wavelength of this magnetic garnet film is 0.8 μm
When the sensitivity constant C was determined at 711j in the temperature range of 250 to 350 K, the results shown in FIG. 2 were obtained. In this figure, when the sensitivity constant C at 300K (300K) is used as a reference, the value of the sensitivity constant C only showed a change within ±1 (%) over the entire temperature range from 250 to 350°C. This rate of change is (Y L a B i) F
The rate of change is smaller than that of e5012, making it an excellent material for magnetic field sensors with good temperature characteristics.

また、この(Y   T b   B 1) F e 
sl、0  0.2  1.8 0.2は波長0.8μmのみならず、他の波長における
感度定数の温度変化も極めて小さかった。
Also, this (Y T b B 1) Fe
sl, 0 0.2 1.8 0.2 had extremely small temperature changes in the sensitivity constant not only at the wavelength of 0.8 μm but also at other wavelengths.

(実施例3) 酸化イツトリウム、酸化テルビウム、酸化ビスマス、酸
化鉄、酸化鉛、酸化ボロンを混合、加熱溶解した融液よ
りカルシウム、マグネシウム、ジルコニウム置換ガドリ
ニウム、ガリウム、ガーネット単結晶基板に(Y   
Tb   Bi   )1.3  0.3  1.5 F e 50□2なる組成を宵する磁性ガーネット単結
晶膜をLPE (リキッド・フェイズ・エピタキシャル
)法により育成した。この磁性ガーネット膜の波長0.
8μmにおける感度定数Cを250〜350にの温度範
囲で測定したところ第3図のような結果を得た。この図
において、300Kにおける感度定数C(300K)を
基準にすると250〜350にの温度範囲全域で、感度
定数Cの値は、土0.5(%)以内の変化を示したに過
ぎなかった。
(Example 3) Yttrium oxide, terbium oxide, bismuth oxide, iron oxide, lead oxide, and boron oxide were mixed, heated, and melted to form a calcium, magnesium, and zirconium-substituted gadolinium, gallium, and garnet single crystal substrate (Y
A magnetic garnet single crystal film having a composition of Tb Bi )1.3 0.3 1.5 Fe 50□2 was grown by the LPE (liquid phase epitaxial) method. The wavelength of this magnetic garnet film is 0.
When the sensitivity constant C at 8 .mu.m was measured in a temperature range of 250 to 350, the results shown in FIG. 3 were obtained. In this figure, based on the sensitivity constant C at 300K (300K), the value of the sensitivity constant C only showed a change within 0.5 (%) over the entire temperature range from 250 to 350. .

この変化率は、(YLaBi)3Fe5012に於ける
変化率よりも小さく、温度特性の良好な磁界センサ用材
料として優れている。
This rate of change is smaller than the rate of change in (YLaBi)3Fe5012, making it an excellent material for magnetic field sensors with good temperature characteristics.

また、この(Y   T b   B i) F e 
51.3  0.3   L、5 0.2は波長0.8μmのみならず、他の波長における
感度定数の温度変化も極めて小さかった。
Also, this (Y T b B i) F e
For 51.3 0.3 L and 5 0.2, the temperature change in the sensitivity constant was extremely small not only at the wavelength of 0.8 μm but also at other wavelengths.

(実施例4) 酸化イツトリウム、酸化テルビウム、酸化ビスマス、酸
化鉄、酸化鉛、酸化ボロンを混合、加熱溶解した融液よ
りカルシウム、マグネシウム、ジルコニウム置換ガドリ
ニウム、ガリウム、ガーネット11結晶基板に (Y 
  Tb   Bi   )1.5  1.0  0.
5 F e s O12なる組成を有する磁性ガーネット単
結晶膜をLPE (リキッド・フェイズ・エピタキシャ
ル)法により育成した。この磁性ガーネット膜の波長0
.8μmにおける感度定数Cを250〜350にの温度
範囲でall定したところ第4図のような結果を得た。
(Example 4) Yttrium oxide, terbium oxide, bismuth oxide, iron oxide, lead oxide, and boron oxide were mixed, heated and melted, and then melted to form a calcium, magnesium, and zirconium-substituted gadolinium, gallium, and garnet 11 crystal substrate (Y
Tb Bi )1.5 1.0 0.
A magnetic garnet single crystal film having a composition of 5 F e s O12 was grown by the LPE (liquid phase epitaxial) method. The wavelength of this magnetic garnet film is 0.
.. When the sensitivity constant C at 8 .mu.m was determined in a temperature range of 250 to 350, the results shown in FIG. 4 were obtained.

この図において、300Kにおける感度定数C(300
K)を基準にすると、250〜350にの温度範囲全域
で、感度定数Cの値は、±1.0(%)以内の変化を示
したに過ぎなかった。この変化率は、(YLaB i)
 3Fes O12に於ける変化率よりも小さく、温度
特性の良好な磁界センサ用材料として優れている。
In this figure, the sensitivity constant C at 300K (300
K), the value of the sensitivity constant C only showed a change within ±1.0 (%) over the entire temperature range from 250 to 350°C. This rate of change is (YLaB i)
The rate of change is smaller than that of 3Fes O12, making it an excellent material for magnetic field sensors with good temperature characteristics.

また、この(Y   T b   B i) F e 
51.5  1.0  0.5 012は波長068μmのみならず、他の波長における
感度定数の温度変化も極めて小さかった。
Also, this (Y T b B i) F e
51.5 1.0 0.5 012 had extremely small temperature changes in the sensitivity constant not only at the wavelength of 068 μm but also at other wavelengths.

[発明の効果] 以上説明したように本発明を用いれば、感度定数Cが大
きくなお且つその温度変動が極めて小さいという優れた
特性を有する磁界センサ用磁気光学ガーネットを得るこ
とが可能となり、工業的利用価値は極めて大である。
[Effects of the Invention] As explained above, by using the present invention, it is possible to obtain a magneto-optical garnet for magnetic field sensors that has excellent characteristics such as a large sensitivity constant C and extremely small temperature fluctuation, and is suitable for industrial use. The utility value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は(Y   Tb   Bi   )Fe500
.95  0.05  2.0 1□の波長0.8μmでの感度定数Cの温度変動を示す
図、第2図は(Y   Tb   Bi   )Fl、
0  0.2  1.8 e50I2の波長0.8μmでの感度定数Cの温度変動
を示す図、第3図は(Y   Tb   Bil、3 
 0.3  1゜ 5)Fe5012の波長18μmでの感度定数Cの温度
変動を示す図、第4図は(Y   Tb1.5  1.
0 −ai   )Fe5012の波長0.8μmでの感度
0.5 定数Cの温度変動を示す図、第5図は磁界中での磁性ガ
ーネットのファラデー回転を示す図、第6図は(YLa
Bi)3Fe5012の波長0.8μmでの感度定数C
の温度変動を示す図である。 第1図 第2図 温 度 (K) 潟 廖 (K) 度 (K) 外邪磁RζG) 第4図 第6図 濡 厘 (K)
Figure 1 shows (Y Tb Bi )Fe500
.. 95 0.05 2.0 1□ A diagram showing the temperature fluctuation of the sensitivity constant C at a wavelength of 0.8 μm, Figure 2 is (Y Tb Bi ) Fl,
0 0.2 1.8 Figure 3 shows the temperature fluctuation of the sensitivity constant C at a wavelength of 0.8 μm for e50I2.
0.3 1°5) Figure 4 is a diagram showing the temperature fluctuation of the sensitivity constant C of Fe5012 at a wavelength of 18 μm.
0 - ai ) Fe5012 at a wavelength of 0.8 μm Sensitivity 0.5 A diagram showing the temperature fluctuation of constant C, Figure 5 is a diagram showing the Faraday rotation of magnetic garnet in a magnetic field, and Figure 6 is (YLa
Bi) Sensitivity constant C of 3Fe5012 at wavelength 0.8 μm
FIG. Figure 1 Figure 2 Temperature (K) Temperature (K) Degree (K) Figure 4 Figure 6 Temperature (K)

Claims (1)

【特許請求の範囲】[Claims] 1、(Y_3_−_X_−_YTb_XBi_Y)Fe
_5O_1_2(但し、0.05≦X≦1.0,0.5
≦Y≦2.0)の化学式で表されることを特徴とする磁
界センサ用磁気光学ガーネット。
1, (Y_3_-_X_-_YTb_XBi_Y)Fe
_5O_1_2 (However, 0.05≦X≦1.0, 0.5
A magneto-optical garnet for magnetic field sensors, characterized in that it is represented by the chemical formula: ≦Y≦2.0).
JP31843288A 1988-12-19 1988-12-19 Magneto-optical garnet Pending JPH02164723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31843288A JPH02164723A (en) 1988-12-19 1988-12-19 Magneto-optical garnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31843288A JPH02164723A (en) 1988-12-19 1988-12-19 Magneto-optical garnet

Publications (1)

Publication Number Publication Date
JPH02164723A true JPH02164723A (en) 1990-06-25

Family

ID=18099088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31843288A Pending JPH02164723A (en) 1988-12-19 1988-12-19 Magneto-optical garnet

Country Status (1)

Country Link
JP (1) JPH02164723A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5709811A (en) * 1995-04-11 1998-01-20 Matsushita Electric Industrial Co., Ltd. Magnetic material for microwave and high-frequency circuit component using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255696A (en) * 1984-05-30 1985-12-17 Nippon Hoso Kyokai <Nhk> Production of bismuth-substituted magnetic garnet single crystal
JPS63163815A (en) * 1986-12-26 1988-07-07 Toshiba Corp Magnetic field sensor
JPS63285196A (en) * 1987-05-19 1988-11-22 Agency Of Ind Science & Technol Magneto-optical element material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255696A (en) * 1984-05-30 1985-12-17 Nippon Hoso Kyokai <Nhk> Production of bismuth-substituted magnetic garnet single crystal
JPS63163815A (en) * 1986-12-26 1988-07-07 Toshiba Corp Magnetic field sensor
JPS63285196A (en) * 1987-05-19 1988-11-22 Agency Of Ind Science & Technol Magneto-optical element material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5709811A (en) * 1995-04-11 1998-01-20 Matsushita Electric Industrial Co., Ltd. Magnetic material for microwave and high-frequency circuit component using the same

Similar Documents

Publication Publication Date Title
Hirakawa et al. Magnetic properties of potassium iron group fluorides KMF3
Hulliger et al. Magnetic properties of the cerium monochalcogenides
Fujii et al. Magnetic properties of single crystals of the system (Fe1− xNix) 2P
JPH0354198A (en) Oxide garnet single crystal
Yoshioka et al. Magnetic Properties of Fe x TiS2 System
Li et al. Magnetic properties of ferromagnetic GdN
Davis et al. Magnetic properties of thulium metal
Chan et al. Synthesis, magnetic properties, and colossal magnetoresistance of Eu 13.97 Gd 0.03 MnSb 11
JPH02164723A (en) Magneto-optical garnet
Hillenius et al. Magnetic susceptibility of iron-doped 2 H-Nb Se 2
Vasiliu et al. Some magnetic properties and the phase equilibrium of the compounds in the CaxNi1–xFe2O4 system
Iida et al. Field-Heating Effect–Anomalous Thermomagnetization Curves Observed in Hexagonal LuFe2O4
JPH0288430A (en) Magneto-optical garnet
JPH02196100A (en) Magneto-optical garnet
JPH0757693B2 (en) Magneto-optic garnet
JP2679157B2 (en) Terbium iron garnet and magneto-optical element using the same
Plaskett et al. The Effect of Substrate Orientation and Growth Temperature on the Magnetic Anisotropy of Eu x Y 3− x Fe 5 O 12 Films
Meyer et al. Effect of Ni substitution in Gd-Co amorphous thin films
Arons Concentration dependence of the magnetic susceptibility of TbH2− x and TbD2− x
JPH038725A (en) Magneto-optical garnet
Abe et al. Magnetic properties of ordered alloy AuMn2
JPH0369597A (en) Magneto-optical garnet
JPS5680106A (en) (110) garnet liquid phase epitaxial film
Miyata et al. Magneto-thermoelectric powers of nickel single crystals
Liu et al. Magnetic state in GdMg at high pressure