JPH02194949A - Thermosetting resin composition - Google Patents

Thermosetting resin composition

Info

Publication number
JPH02194949A
JPH02194949A JP1014124A JP1412489A JPH02194949A JP H02194949 A JPH02194949 A JP H02194949A JP 1014124 A JP1014124 A JP 1014124A JP 1412489 A JP1412489 A JP 1412489A JP H02194949 A JPH02194949 A JP H02194949A
Authority
JP
Japan
Prior art keywords
film
tape
thermosetting resin
resin composition
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1014124A
Other languages
Japanese (ja)
Other versions
JP2710383B2 (en
Inventor
Takashi Fujiwara
隆 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP1014124A priority Critical patent/JP2710383B2/en
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to CA 2026113 priority patent/CA2026113C/en
Priority to PCT/JP1990/000085 priority patent/WO1990008802A1/en
Priority to KR1019900702133A priority patent/KR930003894B1/en
Priority to DE69032210T priority patent/DE69032210D1/en
Priority to EP90902370A priority patent/EP0541795B1/en
Publication of JPH02194949A publication Critical patent/JPH02194949A/en
Priority to US08/034,171 priority patent/US5597631A/en
Priority to US08/709,188 priority patent/US5770313A/en
Application granted granted Critical
Publication of JP2710383B2 publication Critical patent/JP2710383B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To form a film or tape reinforced thermosetting resin composition useful for sporting goods, a printed wiring board or writing materials such as a rule by reinforcing the thermosetting resin composition by a film or tape composed of an org. polymer having a specific m.p., specific tensile strength and specific tensile modulus. CONSTITUTION:This material is reinforced by a film or tape composed of an org. polymer having no m.p. of below 300 deg.C, tensile strength of 35kg/mm<2> and tensile modulus of 700kg/mm<2> or more. The film or tape used as a reinforcing tensile material is composed of aramide, polyimide or polybenzbisthiazole. In order to sufficiently develop reinforcing effect, the film or tape and a thermosetting resin pref. have sufficient adhesive strength and the thickness of the film or sheet is pref. about 5-100mum.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、スポーツ・レジャー用具、プリント配線基板
、物差等の文具等として有用なフィルム又はテープで補
助された熱硬化性樹脂組成物に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a thermosetting resin composition assisted with a film or tape useful as sports/leisure equipment, printed wiring boards, stationery such as rulers, etc. It is something.

(従来技術及びその問題点) エポキシ樹脂やフェノール樹脂等の熱硬化性樹脂を、カ
ーボン繊維、ガラス繊維、アラミド繊維、スチール繊維
等で補強して使用することは慣用の技術として知られて
いる。補強用繊維は、フィラメントヤーン、織布、短繊
維等の形で用いられる。
(Prior Art and its Problems) It is known as a conventional technique to use thermosetting resins such as epoxy resins and phenol resins by reinforcing them with carbon fibers, glass fibers, aramid fibers, steel fibers, etc. The reinforcing fibers are used in the form of filament yarns, woven fabrics, staple fibers, and the like.

補強用繊維は、その機能を十分に果すために、高強度、
高弾性率、高圧縮強度等が要求され、用途によっては、
これらに加えて、低比重であることが要求される。
In order to fully perform its function, reinforcing fibers have high strength and
Depending on the application, high elastic modulus, high compressive strength, etc. are required.
In addition to these, low specific gravity is required.

ところで、最近の技術の進歩を反映して、コンポジット
にも多くの機能を兼備していることが要求されるように
なってきた。例えば、他の性能を満足しても電導性のた
めにカーボン繊維やカーボンウィスカーは使用できない
し、約0.5 mm以下というような薄いコンポジット
製品を長繊維補強でつくることは困難であり、耐衝撃性
にすぐれた補強用繊維として注目されるアラミド繊維は
、それのコンポジットを切削加工したり穴あけ加工した
ときアラミド繊維がひき出されて端面がきれいに仕上ら
ないし、また長繊維補強コンポジットには共通して寸法
安定性の異方性という欠点が存在しており、これらの諸
欠点のないコンポジット製品が要望されてきている。
Incidentally, reflecting recent technological advances, composites are now required to have many functions. For example, even if other properties are met, carbon fibers and carbon whiskers cannot be used due to their electrical conductivity, and it is difficult to make thin composite products of approximately 0.5 mm or less with long fiber reinforcement. Aramid fibers are attracting attention as reinforcing fibers with excellent impact resistance, but when a composite of the aramid fibers is cut or drilled, the aramid fibers are pulled out and the edges cannot be finished neatly, and this is common in long fiber reinforced composites. However, composite products free from these drawbacks have been desired.

切削加工性にすぐれ、薄層のコンポジット製品をつくる
ために、フィルムを補強材として使うことが考えられる
が、一般にフィルムは繊維に比べて強度、弾性率が一桁
以上小さく、また、マトリンクス樹脂との接着界面が繊
維に比べて相対的にかなり小さいという欠点があるため
、当業者であればある程、コンポジットの補強材として
適当ではないと考えられてきた。
Films can be considered to be used as reinforcing materials to create thin-layer composite products with excellent machinability, but films generally have an order of magnitude lower strength and elastic modulus than fibers, and also have a lower strength than matrix resins. It has been considered by those skilled in the art to be unsuitable as reinforcing materials for composites due to the drawback that the bonding interface is relatively small compared to fibers.

(発明が解決しようとする課題) 本発明は、かかる点に迄みてなされたもので、最近開発
された引張強度及び引張弾性率の非常に大きいフィルム
を用いることにより、コンポジットの基本特性的に繊維
補強コンポジットに遜色のない、及び可薄性、寸法安定
性、耐衝撃性等に優れたコンポジットを得ることのでき
る熱硬化性樹脂組成物を提供することを目的とする。
(Problems to be Solved by the Invention) The present invention has been made in view of this point, and by using a recently developed film with extremely high tensile strength and tensile modulus, the basic characteristics of the composite are The object of the present invention is to provide a thermosetting resin composition that is comparable to reinforced composites and that can yield a composite that is excellent in thinness, dimensional stability, impact resistance, etc.

(課題を解決するための手段) 即ち、本発明は、 300°C未満には融点をもたない有機系重合体から実
質的になり、35kg/mm”以上の引張強度および7
00kg/mm”以上の引張弾性率を有する有機系重合
体のフィルム又はテープで補強された熱硬化性樹脂組成
物、である。
(Means for Solving the Problems) That is, the present invention consists essentially of an organic polymer that does not have a melting point below 300°C, and has a tensile strength of 35 kg/mm” or more and a
This is a thermosetting resin composition reinforced with an organic polymer film or tape having a tensile modulus of 00 kg/mm" or more.

本発明において、補強用の杭張体として用いるフィルム
又はテープは、以下に詳述する要件を備えている必要が
ある。
In the present invention, the film or tape used as a reinforcing pile member must meet the requirements detailed below.

まず、第1に、フィルム又はテープは、300°C未満
には融点をもたない有機系重合体から実質的に構成され
ている必要がある。融点が、300°C未満であると、
樹脂の硬化等のコンポジットの製造工程で、融解したり
、熱変形したりするので好ましくなく、また製品化され
たあとも、使用環境が少し厳しくなると性能が著しく低
下することがあるので好ましくない。このような高融点
の有機系重合体としては、アラミド、ポリイミド、ポリ
エーテルエーテルケトン、全芳香族ポリエステル、ポリ
ベンツイミダゾール、ポリベンツビスチアゾール等が挙
げられるが、樹脂との接着の良さや以下に述べる高強度
、高弾性率の発現のし易さからアラミドとポリイミド、
中でもアラミドが好ましい。本発明に用いられるフィル
ム又はテープが特定の有機系重合体から実質的になると
いう意味は、上記した特定の有機系重合体以外の成分が
、本発明の効果を損わない範囲で少量含まれていてもよ
いことであり、例えば上記した以外の有機系重合体、有
機系低分子化合物、無機化合物などを少量含有してもよ
い。
First, the film or tape must consist essentially of an organic polymer that does not have a melting point below 300°C. The melting point is less than 300°C,
This is undesirable because it melts or thermally deforms during the composite manufacturing process such as curing the resin, and even after it is commercialized, the performance may deteriorate significantly if the usage environment becomes slightly harsh, which is undesirable. Examples of such high melting point organic polymers include aramid, polyimide, polyether ether ketone, wholly aromatic polyester, polybenzimidazole, polybenzibisthiazole, etc. Aramid and polyimide are preferred because of their ease of exhibiting high strength and high modulus of elasticity.
Among them, aramid is preferred. The meaning that the film or tape used in the present invention consists essentially of a specific organic polymer means that components other than the above-mentioned specific organic polymer may be contained in small amounts within the range that does not impair the effects of the present invention. For example, small amounts of organic polymers, organic low-molecular compounds, inorganic compounds, etc. other than those mentioned above may be contained.

次に本発明に用いられるフィルム又はテープは35kg
/mm2以上の引張強度および700 kg/n+m”
以上の引張弾性率を有している必要がある。これらの性
質は、本発明においてフィルム又はテープが熱硬化性樹
脂組成物中において杭張体として機能することと密接に
関連している。また、軽薄短小の製品を実現するために
要求される性質であり、好ましくは45kg/mmz以
上の引張強度を有していることであり、又は1000k
g/mm”以上の引張弾性率を有していることである。
Next, the film or tape used in the present invention weighs 35 kg.
/mm2 or more tensile strength and 700 kg/n+m”
It is necessary to have a tensile modulus of elasticity equal to or higher than that. These properties are closely related to the fact that the film or tape functions as a stake member in the thermosetting resin composition in the present invention. In addition, it is a property required to realize a light, thin, short and small product, preferably having a tensile strength of 45 kg/mmz or more, or 1000 kg/mmz or more.
It has a tensile modulus of elasticity of g/mm" or more.

フィルム又はテープは、コンポジット製品としての抗張
力の必要な方向に引張強度や引張弾性率を増強した謂ゆ
るテンシライズドタイプが用いられてもよい。もちろん
、フィルムやテープとして、等方的な性能を有するもの
を用いた方が、寸法安定性に方向性がないという点でよ
い。本発明において、引張強度と引張弾性率は少くとも
1つの方向が前記した値を満たしていればよいが、好ま
しくは、任意に選んだ互いに直交する2つの方向の特性
の平均値が前記した値を満していることである。
The film or tape may be of a so-called tensilized type, which has increased tensile strength and tensile modulus in the direction required for tensile strength as a composite product. Of course, it is better to use a film or tape that has isotropic performance in that there is no directionality in dimensional stability. In the present invention, it is sufficient that the tensile strength and tensile modulus satisfy the above-mentioned values in at least one direction, but preferably, the average value of the properties in two arbitrarily selected directions orthogonal to each other satisfies the above-mentioned values. It is important to meet the following criteria.

本発明において、補強効果を十分に発現させるために、
フィルム又はテープと熱硬化性樹脂とが十分な接着力を
もつことが好ましい。大きな接着力は、フィルム又はテ
ープの表面を粗にする(製膜上の工夫、製膜後の物理的
又は化学的なエツチング等)、表面に化学活性種を導入
する(コロナ放電処理、プラズマ処理、化学分解等)、
接着用の含浸前処理をする(エポキシ化合物、イソシア
ネート化合物、レゾルシン・ホルマリン・ラテックス混
合物等)、又はこれらを組み合わせる等の方法が好まし
く用いられ、それにより達成される。
In the present invention, in order to fully express the reinforcing effect,
It is preferable that the film or tape and the thermosetting resin have sufficient adhesive strength. A large adhesive force can be achieved by roughening the surface of the film or tape (devices in film formation, physical or chemical etching after film formation, etc.), or by introducing chemically active species to the surface (corona discharge treatment, plasma treatment, etc.). , chemical decomposition, etc.),
Preferably, methods such as impregnation pretreatment for adhesion (epoxy compound, isocyanate compound, resorcinol/formalin/latex mixture, etc.) or a combination of these are used and achieved.

本発明に用いられるフィルム又はシートの厚みは通常約
5〜100μmであり、好ましく10〜50μmである
The thickness of the film or sheet used in the present invention is usually about 5 to 100 μm, preferably 10 to 50 μm.

本発明に用いられる熱硬化性樹脂は特に限定されるもの
ではなく、例えば、エポキシ樹脂、フェノール樹脂、ポ
リイミド樹脂、ポリエステル樹脂などから選ばれる。ま
た、これらの樹脂に、紫外線吸収剤、難燃剤、酸化防止
剤、滑剤、着色剤、熱安定剤、老化防止剤、補強用短繊
維、補強用粉粒体、成形用薬剤、その他通常の樹脂添加
剤が添加されていてもよい。
The thermosetting resin used in the present invention is not particularly limited, and is selected from, for example, epoxy resins, phenol resins, polyimide resins, polyester resins, and the like. In addition, these resins include ultraviolet absorbers, flame retardants, antioxidants, lubricants, colorants, heat stabilizers, anti-aging agents, reinforcing short fibers, reinforcing powders, molding agents, and other ordinary resins. Additives may also be added.

本発明の組成物は、種々の方法で調製することができる
。例えばフィルム又はシートに未硬化の樹脂を塗付や浸
漬などの方法で積層し、更に必要ならばその積層物どう
しを積層したり捲回したり賦形したりして、次いで硬化
させることにより調製できる。
Compositions of the invention can be prepared in a variety of ways. For example, it can be prepared by laminating uncured resin on a film or sheet by coating or dipping, and if necessary, laminating, winding, or shaping the laminate, and then curing it. .

本発明において、フィルム又はシートと熱硬化性樹脂と
の比率は、好ましくは、後者が前者より重量的に多いも
の、より好ましくは2倍以上重量的に多いものが選ばれ
る。
In the present invention, the ratio of the film or sheet to the thermosetting resin is preferably such that the latter is larger in weight than the former, more preferably at least twice as large in weight.

本発明の組成物には、補強材としてフィルム又はシート
を使用することが必須であるが、必要であれば繊維状の
補強材(例えばカーボン繊維、ガラス繊維、アラミド繊
維等のフィラメントヤーン或いは織布等)を併用しても
よい。
In the composition of the present invention, it is essential to use a film or sheet as a reinforcing material, but if necessary, a fibrous reinforcing material (e.g. filament yarns such as carbon fibers, glass fibers, aramid fibers, etc.) or woven fabrics may be used. etc.) may be used in combination.

本発明の組成物は、板状、パイプ状、棒状、或いはその
他の複雑な形状物に成形されて実用に供される。
The composition of the present invention is put into practical use after being molded into a plate, pipe, rod, or other complex shape.

実施例 (フィルムの製造) ■フィルムA 粗面化したアラミドフィルムの製造例を示す。Example (Manufacture of film) ■Film A An example of manufacturing a roughened aramid film is shown.

対数粘度(98%濃硫酸中に溶解して、C= 0.5g
 / 100 mlにて、30°Cで測定)が5.5の
ポリ−p−フェニレンテレフタルアミドを99.5%の
硫酸にポリマー濃度11.8%で溶解し、光学異方性の
あるドープを得た。これに、ナイロン6を追撚し、合計
のポリマー濃度が12.0%になるようにした。
Logarithmic viscosity (dissolved in 98% concentrated sulfuric acid, C = 0.5 g
Poly-p-phenylene terephthalamide (measured at 30 °C in 100 ml) of 5.5 was dissolved in 99.5% sulfuric acid at a polymer concentration of 11.8% to form an optically anisotropic dope. Obtained. This was further twisted with nylon 6 so that the total polymer concentration was 12.0%.

このドープを真空下に脱気し、濾過したのち、ギアポン
プを通じて、スリットダイから押出し、鏡面に磨いたタ
ンタル製のベルトにキャストし、相対湿度約40%の約
90°Cの空気の雰囲気のゾーンを通して、流延ドープ
を光学等方化し、ベルトとともに一20°Cの30%硫
酸水溶液中に導いて凝固させた。次いで、凝固フィルム
をベルトからひきはがし、カセイソーダ水溶液で中和し
、水洗した。洗浄の終了したフィルムを乾燥させずに、
ローラで長さ方向に約1.15倍延伸し、次いでテンタ
ーで幅方向に1.4倍延伸したのち、定長に保持しつつ
、200°Cで乾燥し更に300℃で定長熱処理した。
This dope was degassed under vacuum and filtered, then extruded through a slit die through a gear pump and cast onto a mirror-polished tantalum belt in an air atmosphere at approximately 90°C with a relative humidity of approximately 40%. The dope was made optically isotropic by passing through the dope, and the dope was introduced together with the belt into a 30% aqueous sulfuric acid solution at -20°C to solidify. The coagulated film was then peeled off from the belt, neutralized with an aqueous solution of caustic soda, and washed with water. Without drying the washed film,
The film was stretched by about 1.15 times in the length direction using rollers, and then 1.4 times in the width direction using a tenter, dried at 200° C. while maintaining the length at a constant length, and further heat-treated at 300° C. for a constant length.

得られたフィルムは少し、失透しており、厚さ20μm
、中心線表面粗さ0.16μm、引張強度が44kg/
−2(長さ方向)及び45kg/嗣2 (幅方向)、引
張弾性率が1350kg/M”  (長さ方向)及び1
290kg/am+”  (幅方向)であり、熱分析し
ても500″C以下では転移温度は全く観測されなかっ
た。このことから、ドープ調製時に添加したナイロン6
は凝固及び洗浄時に完全に溶出され、その結果、表面に
微小な凹凸が形成されるとともに、少し失透したものと
推定された。このフィルムは、クリープが非常に小さい
こともわかった。
The obtained film was slightly devitrified and had a thickness of 20 μm.
, center line surface roughness 0.16μm, tensile strength 44kg/
-2 (length direction) and 45 kg/cm2 (width direction), tensile modulus of 1350 kg/M'' (length direction) and 1
290 kg/am+'' (width direction), and no transition temperature was observed at temperatures below 500''C even in thermal analysis. From this, the nylon 6 added during dope preparation
was completely eluted during coagulation and washing, resulting in the formation of minute irregularities on the surface and a slight devitrification. This film was also found to have very low creep.

■フィルムB このフィルムは、プラズマ処理によってフィルム表面部
に官能基を導入したものである。
■Film B This film has functional groups introduced into the film surface by plasma treatment.

フィルムAの製造において、ナイロン6の追撚をせずに
、それ以外は全く同一条件でフィルムを製造した。
In the production of film A, the film was produced under exactly the same conditions except that nylon 6 was not additionally twisted.

得られたフィルムは透明で、厚さ20μmであった。次
に、このフィルムを、窒素プラズマ雰囲気中連続的に通
して、両表面を活性化した。
The resulting film was transparent and had a thickness of 20 μm. The film was then passed continuously through a nitrogen plasma atmosphere to activate both surfaces.

このフィルムは、中心線表面粗さが0.02μm、引張
強度が48kg/鴫2 (長さ方向)及び47kg/m
m”  (幅方向)、引張弾性率が1470kg / 
mm ”(長さ方向)及び1410kg/w”  (幅
方向)”t’アリ、500°C以下には転移温度はなか
った。このフィルムも、クリープが非常に小さかった。
This film has a centerline surface roughness of 0.02μm, a tensile strength of 48kg/2 (longitudinal direction) and 47kg/m
m” (width direction), tensile modulus is 1470 kg/
mm" (length direction) and 1410 kg/w" (width direction)"t', there was no transition temperature below 500°C. This film also had very small creep.

■フィルムに のフィルムは、共重合アラミドフィルムに、エポキシ樹
脂のエマルジ目ン分散液を前もって含浸させたものであ
る。
(2) The film is a copolymerized aramid film pre-impregnated with an emulsion dispersion of epoxy resin.

単位が5モル%共重合されているポリ−p−フェニレン
テレフタルアミドを使用して、フィルムBとほぼ同様に
フィルム化した。ただし、水洗の終了したフィルムを、
エポキシ樹脂のエマルジョン分散液に浸漬(約4分)し
、そのあと延伸(長さ方向にのみ1.4倍延伸)、乾燥
、熱処理を行い、プラズマ処理は行わなかった。
A film was formed in substantially the same manner as Film B using poly-p-phenylene terephthalamide in which 5 mol% of units were copolymerized. However, after washing the film,
It was immersed in an epoxy resin emulsion dispersion (about 4 minutes), then stretched (stretched 1.4 times only in the length direction), dried, and heat treated, but no plasma treatment was performed.

得られた20μmW−のフィルムは、小さなりリープし
か示さず、引張強度が63kg/mm”  (長さ方向
)及び35kg/mm”  (幅方向)、引張弾性率が
2780kg/mm”  (長さ方向)及び650 k
g/mm”(幅方向)であり、500°C以下には転移
温度をもたなかった。
The obtained 20 μm W- film showed only a small leap, had a tensile strength of 63 kg/mm” (longitudinal direction) and 35 kg/mm” (width direction), and a tensile modulus of 2780 kg/mm” (longitudinal direction). ) and 650k
g/mm" (width direction), and did not have a transition temperature below 500°C.

■フィルムD このフィルムは、ポリイミドフィルムにSiO□粉体流
で表面を粗面化したものである。
■Film D This film is a polyimide film whose surface has been roughened using SiO□ powder flow.

ポリイミドフィルムとして市販されている「ユービレッ
クスSjフィルム(25μm厚)を用い、平均粒径約0
.5μmの5iOzをHeガスとともに混合撹拌しつつ
ノズルからフィルム上に吹きつけた。
Ubilex Sj film (25 μm thick), which is commercially available as a polyimide film, was used, and the average particle size was about 0.
.. 5iOz of 5 μm was sprayed onto the film from a nozzle while being mixed and stirred with He gas.

ノズルをフィルム表、裏の全面にわたって動かし、フィ
ルムの両面の粗面化を行った。
The nozzle was moved over the entire front and back sides of the film to roughen both sides of the film.

フィルムは、引張強度が36kg/mm”  (方向性
が殆んどなし)、引張弾性率が850 kg/mm”(
方向性殆んどなし)であり、転移温度は500°C以下
では観測されなかった。
The film has a tensile strength of 36 kg/mm" (almost no directionality) and a tensile modulus of 850 kg/mm" (
(almost no directionality), and no transition temperature was observed below 500°C.

(補強された熱硬化性樹脂組成物の製作)実施例1 フィルムAをエポキシ樹脂未硬化液に浸漬して約20〜
30μm厚に塗付した。これを3枚積層し、離型紙を介
して圧着しながら200°Cで30分間硬化させて、約
0.2 mm厚の積層板をつくった。
(Production of reinforced thermosetting resin composition) Example 1 Film A was immersed in an uncured epoxy resin solution for about 20 to 20 minutes.
It was applied to a thickness of 30 μm. Three sheets of this were laminated and cured at 200° C. for 30 minutes while being pressure-bonded with release paper interposed therebetween, to produce a laminate with a thickness of about 0.2 mm.

この積層板は、腰のある可撓性を示すとともにどの方向
にも12〜18 mm/nun/℃(室温〜200°C
)の熱膨張係数をもっていて寸法安定性にすぐれ、その
方向依存性がきわめて小さく、しかもドリルで穴を容易
にあけることができ穴の周囲が平滑であった。こうして
セミフレキシブルな電子部品の搭載可能なプリント配線
板に適した板ができた。
This laminate exhibits firm flexibility and has a resistance of 12 to 18 mm/nun/°C (room temperature to 200°C) in any direction.
), it has excellent dimensional stability, has very little directional dependence, and can be easily drilled with a drill, and the periphery of the hole is smooth. In this way, a board suitable for use as a printed wiring board on which semi-flexible electronic components can be mounted was created.

実施例2 フィルムBの片面に、エポキシ樹脂未硬化液を約80μ
m厚でコーティングし、未硬化のまま約15画直径のパ
イプ上に約20回捲きつけ、ついで150°Cで2時間
硬化させ、成形用パイプをぬき、外径約20mmで肉厚
的2[IffIIの丈夫なパイプができた。このフィル
ム補強された熱硬化性エポキシからなるパイプは、木工
用のノコギリで容易に切断でき、端面が平滑であった。
Example 2 Approximately 80μ of uncured epoxy resin was applied to one side of film B.
It was coated with a thickness of 20mm and wrapped uncured around a pipe with a diameter of about 15cm about 20 times, then cured at 150°C for 2 hours, and the pipe for forming was removed. A durable Iff II pipe has been created. This film-reinforced thermosetting epoxy pipe could be easily cut with a wood saw, and the end surface was smooth.

こうしてスポーン用品等(例えば、ゴルフクラブシャフ
ト、ラケット類)や釣竿として有用なパイプが得られた
In this way, pipes useful as spawning supplies, etc. (eg, golf club shafts, rackets) and fishing rods were obtained.

実施例3 フィルムCで補強した熱硬化性の不飽和ポリエステル樹
脂組成物を示す。
Example 3 A thermosetting unsaturated polyester resin composition reinforced with Film C is shown.

フィルムCの両面に未硬化の不飽和ポリエステル塗付し
く約120μm厚)、離型紙を介して、約350°Cに
加熱された金型に押し込んで皿状に成形しつつ硬化させ
た。こうして、3次元配線基板に適した成形体が得られ
た。
Uncured unsaturated polyester (approximately 120 μm thick) was coated on both sides of Film C, and the film was pressed into a mold heated to approximately 350° C. through release paper, and cured while being molded into a dish shape. In this way, a molded body suitable for a three-dimensional wiring board was obtained.

実施例4 フィルムDの両面に未硬化のフェノール樹脂を塗付し、
一方、ガラス繊維からなる織布の両面にも未硬化のフェ
ノール樹脂を塗付し、両方を重ね合せつつ、15mmφ
の成形用パイプに捲きつけてパイプ状プレプリグをつく
った。次に230°Cで約25分硬化させたのち、成形
用パイプを抜きとり、外径約25mmのパイプを得た。
Example 4 Applying uncured phenol resin to both sides of film D,
On the other hand, uncured phenol resin was applied to both sides of the woven fabric made of glass fibers, and while the two were overlapped, 15mmφ
A pipe-shaped prepreg was made by wrapping it around a molding pipe. Next, after curing at 230°C for about 25 minutes, the molding pipe was removed to obtain a pipe with an outer diameter of about 25 mm.

(発明の効果) 本発明の熱硬化性樹脂組成物は、高性能の有機系フィル
ムで補強されているため、従来の長繊維補強の熱硬化性
樹脂組成物に比べて、薄いコンポジットをつくることが
可能で、また切削加工性や穴あけ加工(スルーホール加
工)性にすぐれており、寸法安定性が良くしかも寸法安
定性の等方性(方向による差異の少なさ)にすぐれてい
る。
(Effects of the Invention) Since the thermosetting resin composition of the present invention is reinforced with a high-performance organic film, it is possible to create a thinner composite compared to conventional thermosetting resin compositions reinforced with long fibers. It also has excellent machinability and drilling (through-hole machining) properties, and has good dimensional stability as well as excellent isotropy (little difference depending on direction) of dimensional stability.

しかも高性能の有機系フィルムを使っているので、引張
、クリープ、屈曲、疲労、耐熱、耐衝撃などの諸性能が
繊維補強のコンポジットに比べ遜色がなく、また接着性
及び加工性に関しても問題がない。むしろ、繊維補強よ
りも、加工時の工程が簡単化されるという利点すらある
Moreover, since it uses a high-performance organic film, its tensile, creep, bending, fatigue, heat, and impact resistance properties are comparable to those of fiber-reinforced composites, and there are no problems with adhesion or processability. do not have. In fact, it has the advantage that the processing process is simpler than fiber reinforcement.

本発明の組成物は、このような特徴を活かして様々の形
に賦形することによって、例えば、ゴルフクラブのシャ
フト、テニスやバドミントンのラケットシャフト、卓球
ラケット、釣竿、リジッド配線基板、セミフレキシブル
配線基板、立体(3次元)配線基板、ハニカム構造材料
等として有用である。
The composition of the present invention can be shaped into various shapes by taking advantage of these characteristics, such as golf club shafts, tennis and badminton racket shafts, table tennis rackets, fishing rods, rigid wiring boards, and semi-flexible wiring. It is useful as a substrate, three-dimensional (three-dimensional) wiring board, honeycomb structure material, etc.

特許出願人  旭化成工業株式会社Patent applicant: Asahi Kasei Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 300℃未満には融点をもたない有機系重合体から実質
的になり、35kg/mm^2以上の引張強度および7
00kg/mm^2以上の引張弾性率を有する有機系重
合体のフィルム又はテープで補強された熱硬化性樹脂組
成物
It consists essentially of an organic polymer that has no melting point below 300°C, and has a tensile strength of 35 kg/mm^2 or more and a
Thermosetting resin composition reinforced with an organic polymer film or tape having a tensile modulus of 00 kg/mm^2 or more
JP1014124A 1989-01-25 1989-01-25 Thermosetting resin composition Expired - Lifetime JP2710383B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP1014124A JP2710383B2 (en) 1989-01-25 1989-01-25 Thermosetting resin composition
PCT/JP1990/000085 WO1990008802A1 (en) 1989-01-25 1990-01-25 New prepreg and composite molding, and production of composite molding
KR1019900702133A KR930003894B1 (en) 1989-01-25 1990-01-25 New prepreg and composite molding and production of composite molding
DE69032210T DE69032210D1 (en) 1989-01-25 1990-01-25 PRE-IMPREGNATED COMPOSITE MOLDS AND PRODUCTION OF A COMPOSITE MOLD
CA 2026113 CA2026113C (en) 1989-01-25 1990-01-25 Prepreg, composite molded body, and method of manufacture of the composite molded body
EP90902370A EP0541795B1 (en) 1989-01-25 1990-01-25 New prepreg and composite molding, and production of composite molding
US08/034,171 US5597631A (en) 1989-01-25 1993-02-12 Prepreg, composite molding body, and method of manufacture of the composite molded body
US08/709,188 US5770313A (en) 1989-01-25 1996-09-06 Prepreg, composite molded body and method of manufacture of the composite molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1014124A JP2710383B2 (en) 1989-01-25 1989-01-25 Thermosetting resin composition

Publications (2)

Publication Number Publication Date
JPH02194949A true JPH02194949A (en) 1990-08-01
JP2710383B2 JP2710383B2 (en) 1998-02-10

Family

ID=11852377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1014124A Expired - Lifetime JP2710383B2 (en) 1989-01-25 1989-01-25 Thermosetting resin composition

Country Status (1)

Country Link
JP (1) JP2710383B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003023222A (en) * 2001-07-09 2003-01-24 Ibiden Co Ltd Printed circuit board
JP2004197008A (en) * 2002-12-20 2004-07-15 Nippon Kayaku Co Ltd Polyimide precursor composition
JP2009539659A (en) * 2006-06-16 2009-11-19 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Semi-aromatic polyamide composite article and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003023222A (en) * 2001-07-09 2003-01-24 Ibiden Co Ltd Printed circuit board
JP2004197008A (en) * 2002-12-20 2004-07-15 Nippon Kayaku Co Ltd Polyimide precursor composition
JP2009539659A (en) * 2006-06-16 2009-11-19 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Semi-aromatic polyamide composite article and preparation method thereof

Also Published As

Publication number Publication date
JP2710383B2 (en) 1998-02-10

Similar Documents

Publication Publication Date Title
US5597631A (en) Prepreg, composite molding body, and method of manufacture of the composite molded body
US6737158B1 (en) Porous polymeric membrane toughened composites
US20060057331A1 (en) Self-adhesive prepreg
JP2010229211A (en) Prepreg for fiber reinforced composite material and molded product thereof
KR20180126762A (en) Hybrid type fiber reinforced composite material
EP0326409A1 (en) Hybrid yarn, unidirectional hybrid prepreg and laminated material thereof
JPH02194949A (en) Thermosetting resin composition
JP2012106492A (en) Composite composition
JP2002327374A (en) Carbon fiber for fiber reinforced plastic and fiber reinforced plastic
EP3233960B1 (en) Epoxy-based resin composition for composite materials
JP2003002990A (en) Prepreg
JPH0834864A (en) Impact-resistant prepreg
KR20190018087A (en) Low density prepreg and sandwich composite article including the same
JP2892061B2 (en) Laminate
JP2882638B2 (en) Molding material
RU2560419C1 (en) Glass plastic and article made thereof
JP2001139831A (en) Carbon fiber-based bulk molding compound material and molded article
JP2744637B2 (en) Composite material
JPS6125740B2 (en)
JP2005126557A (en) Molding material for and manufacturing method of fiber-reinforced resin composite material
JP3137670B2 (en) Composite material
JP3065687B2 (en) Manufacturing method of prepreg
TW202337982A (en) Prepreg, preform, and fiber-reinforced resin molded article
JPH02276634A (en) Laminate
WO2023053834A1 (en) Epoxy resin composition, prepreg, fiber-reinforced composite material, composite structure, impact-resistant member, and damping member