JP2882638B2 - Molding material - Google Patents

Molding material

Info

Publication number
JP2882638B2
JP2882638B2 JP1097595A JP9759589A JP2882638B2 JP 2882638 B2 JP2882638 B2 JP 2882638B2 JP 1097595 A JP1097595 A JP 1097595A JP 9759589 A JP9759589 A JP 9759589A JP 2882638 B2 JP2882638 B2 JP 2882638B2
Authority
JP
Japan
Prior art keywords
fiber
film
thermosetting resin
strength
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1097595A
Other languages
Japanese (ja)
Other versions
JPH02276832A (en
Inventor
五郎 古本
恒夫 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP1097595A priority Critical patent/JP2882638B2/en
Application filed by Asahi Kasei Kogyo KK filed Critical Asahi Kasei Kogyo KK
Priority to CA 2026113 priority patent/CA2026113C/en
Priority to KR1019900702133A priority patent/KR930003894B1/en
Priority to EP90902370A priority patent/EP0541795B1/en
Priority to DE69032210T priority patent/DE69032210D1/en
Priority to PCT/JP1990/000085 priority patent/WO1990008802A1/en
Priority to TW079100742A priority patent/TW205053B/zh
Publication of JPH02276832A publication Critical patent/JPH02276832A/en
Priority to US08/034,171 priority patent/US5597631A/en
Priority to US08/709,188 priority patent/US5770313A/en
Application granted granted Critical
Publication of JP2882638B2 publication Critical patent/JP2882638B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高強度、高弾性率のフィルム層と繊維強化
熱硬化性樹脂層とを積層一体化したプリプレグ材料に関
し、更には、曲げ、引張、圧縮等の機械的強度に優れ、
且つ、耐衝撃性が大きく改良された成形体を製造するた
めの成形用の熱硬化性樹脂材料に関する。
The present invention relates to a prepreg material obtained by laminating and integrating a high-strength, high-modulus film layer and a fiber-reinforced thermosetting resin layer. Excellent mechanical strength such as tension and compression,
The present invention also relates to a thermosetting resin material for molding for producing a molded article having greatly improved impact resistance.

(従来技術及びその問題点) 従来、繊維強化熱硬化性樹脂層は、優れた比強度、比
弾性率を有することから高強度、軽量、耐蝕性等が要求
される分野、例えば、航空機構造部材あるいはラケット
フレームやゴルフシャフト等のスポーツ用品などに広く
使用されている。しかしながら、該材料は、一般に靱性
に乏しく、耐衝撃性に問題があり、又さらには、一旦衝
撃的破壊を起こすと、強化繊維がささくれた鋭利な破壊
面を露出するという欠点を有する。そこで、マトリック
ス樹脂である熱硬化性樹脂をゴム状重合体で変性する、
あるいは熱可塑性樹脂を配合する等により改質すること
で靱性の改良が図られているが未だ、満足するものは得
られていない。また、米国特許第3472730号あるいは、
特開昭60−63229号公報等において、インターリーフ層
を有するプリプレグの概念が提案され、耐衝撃性を改善
する手法として注目に値するものの、繊維強化層に比べ
てインターリーフ層の強度・弾性率が低い為に生ずる、
成形体の引張強度、曲げ強度等の機械的強度の低下が新
たな問題点として生じ、破壊状態の改善には目も向けら
れていない。また、繊維強化熱硬化性樹脂材料の別の問
題点は、物性の大きな異方性であり、一般には強化繊維
の配向方向を変化させて積層することによって擬似等方
化を行っているものの、プリプレグの切り出しから正確
な積ね合せまで多大の手間と労力を必要とする。
(Prior art and its problems) Conventionally, fiber-reinforced thermosetting resin layers have excellent specific strength and specific elastic modulus, and therefore are required to have high strength, light weight, corrosion resistance, etc., for example, aircraft structural members Alternatively, it is widely used for sports equipment such as racket frames and golf shafts. However, these materials generally have poor toughness, have problems with impact resistance, and furthermore have the drawback that once they undergo an impact fracture, the sharpened fracture surface exposed by the reinforcing fibers is exposed. Therefore, a thermosetting resin that is a matrix resin is modified with a rubber-like polymer,
Alternatively, improvement in toughness has been achieved by modifying the composition by adding a thermoplastic resin or the like, but a satisfactory product has not yet been obtained. Also, U.S. Pat.No. 3,472,730 or
Japanese Patent Application Laid-Open No. 60-63229 and the like have proposed a concept of a prepreg having an interleaf layer. Although it is worthy of attention as a technique for improving impact resistance, the strength and elastic modulus of the interleaf layer are higher than that of the fiber reinforced layer. Is caused by low
Reduction of the mechanical strength such as the tensile strength and bending strength of the molded article is a new problem, and no attention has been paid to the improvement of the broken state. Another problem of the fiber-reinforced thermosetting resin material is a large anisotropy of physical properties. Generally, although the pseudo-isotropy is performed by laminating by changing the orientation direction of the reinforcing fibers, A great deal of labor and effort is required from cutting out prepregs to accurate stacking.

(発明が解決しようとする課題) 本発明は、引張強度、曲げ強度等の機械的強度が大き
く、しかも繊維配向方向以外にも優れた物性を有し、さ
らには高い耐衝撃性を併せ持った成形体を製造すること
ができる成形用の熱硬化性樹脂材料を提供することを目
的とする。
(Problems to be Solved by the Invention) The present invention is a molding which has high mechanical strength such as tensile strength and bending strength, has excellent physical properties other than the fiber orientation direction, and further has high impact resistance. It is an object of the present invention to provide a thermosetting resin material for molding capable of producing a body.

(課題を解決するための手段) 即ち、本発明は、融点又は分解点が300℃以上である
アラミドから実質的になり、長さ方向と幅方向ともに35
kg/mm2以上の引張強度および700kg/mm2以上の引張弾性
率を有するフィルム層と未硬化の繊維強化熱硬化性樹脂
層とを積層してなる成形用の熱硬化性樹脂材料、であ
る。
(Means for Solving the Problems) That is, the present invention substantially consists of aramid having a melting point or a decomposition point of 300 ° C. or more, and has a length and width of 35%.
kg / mm 2 or more tensile strength and 700 kg / mm 2 or more tensile film layer having an elastic modulus and a thermosetting resin material for molding formed by laminating a fiber-reinforced thermosetting resin layer in an uncured, a .

本発明において用いるフィルムは、下記の要件が必要
である。
The film used in the present invention needs the following requirements.

まず、第1に、フィルムは、300℃未満には融点をも
たないアラミドから実質的に構成されている必要があ
る。融点が300℃未満であると、樹脂の硬化等のコンポ
ジットの製造工程で、融解したり、熱変形したりするの
で好ましくなく、また製品化されたあとも、使用環境が
少し厳しくなると性能が著しく低下することがあるので
好ましくない。樹脂との接着の良さや以下に述べる高強
度、高弾性率の発現のし易さから、アラミドを用いる必
要がある。アラミドには下記の一般式(I)、(II)で
表わされる構造のもの、またはこれらの共重合体があ
る。
First, the film must be substantially composed of aramid, which has no melting point below 300 ° C. If the melting point is less than 300 ° C, it is not preferable because it melts or undergoes thermal deformation during the production process of the composite, such as curing of the resin. It is not preferable because it may decrease. It is necessary to use aramid from the viewpoint of good adhesion to a resin and easy development of high strength and high elastic modulus described below. Aramid includes those having structures represented by the following general formulas (I) and (II), and copolymers thereof.

又は (式中において、R1、R2およびR3は、 から選ばれ、これらの水素原子がハロゲン、メチル、エ
チル、メトキシ、ニトロ、ヌルホンなどの官能基で置換
されていてもよい。m、nは平均重合度であり約50〜10
00である。) 本発明に用いられるフィルムがアラミドから実質的に
なるという意味は、アラミド以外の成分が、本発明の効
果を損なわない範囲で少量含まれていてもよいというこ
とであり、例えばアラミド以外の有機系重合体、有機系
低分子化合物、無機化合物などを少量含有していてもよ
いということである。
Or (Wherein R 1 , R 2 and R 3 are And these hydrogen atoms may be substituted with a functional group such as halogen, methyl, ethyl, methoxy, nitro, and nullphone. m and n are average degrees of polymerization and are about 50 to 10
00. The meaning that the film used in the present invention is substantially made of aramid means that components other than aramid may be contained in a small amount as long as the effects of the present invention are not impaired. This means that a small amount of a polymer, an organic low-molecular compound, an inorganic compound, or the like may be contained.

次に本発明に用いられるフィルムは35kg/mm2以上の引
張強度および700kg/mm2以上の引張弾性率を有している
必要がある。
Next, the film used in the present invention needs to have a tensile strength of 35 kg / mm 2 or more and a tensile modulus of 700 kg / mm 2 or more.

本発明で用いるフィルムは、従来汎用のものと比べれ
ば、これらの物性が抜きん出ていることは明らかである
が、繊維強化熱硬化性樹脂層に対しては低いものであり
最終成形体の物性を極力低下させない為には、これらの
要件が満足されねばならず、好ましくは45kg/mm2以上の
引張強度を有していることであり、又は100kg/mm2以上
の引張弾性率を有していることである。フィルムは、コ
ンポジット製品としての抗張力の必要な方向に引張強度
や引張弾性率を増強した、謂ゆるテンシライズドタイプ
が用いられてもよいが、もちろん、フィルムとして、等
方的な性能を有するものを用いた方が、得られる成形体
の機械的強度や寸法安定性に方向性が少ないという点で
よい。本発明において、引張強度と引張弾性率は、任意
に選んだ互いに直交する2つの方向、例えば長さ方向、
幅方向の平均値が前記した値を満していることである。
It is clear that the properties of the film used in the present invention are outstanding in comparison with conventional general-purpose films, but the properties of the final molded article are lower than those of the fiber-reinforced thermosetting resin layer. to do as much as possible reduce, these requirements are not must be satisfied, preferably not to have a 45 kg / mm 2 or more in tensile strength, or a 100 kg / mm 2 or more tensile modulus It is that you are. The film may be a so-called tensilized type in which the tensile strength or tensile modulus is increased in the direction in which tensile strength is required as a composite product, but of course, the film has isotropic performance. The use of is preferred in that the resulting molded article has less directivity in mechanical strength and dimensional stability. In the present invention, the tensile strength and the tensile elastic modulus are arbitrarily selected in two directions orthogonal to each other, for example, the length direction,
That is, the average value in the width direction satisfies the above value.

本発明において、補強効果を十分に発現させるため
に、フィルムと熱硬化性樹脂とが十分な接着力をもつこ
とが好ましい。大きな接着力は、フィルム又はテープの
表面を粗にする(製膜上の工夫、製膜後の物理的又は化
学的なエッチング等)、表面に化学活性種を導入する
(コロナ放電処理)、プラズマ処理、化学分解等)、接
着用の含浸前処理をする(エポキシ化合物、イソシアネ
ート化合物、レゾルシン・ホルマリン・ラテックス混合
物等)、又はこれらを組み合わせる等の方法が好ましく
用いられ、それにより達成される。
In the present invention, it is preferable that the film and the thermosetting resin have a sufficient adhesive strength in order to sufficiently exhibit the reinforcing effect. A large adhesive strength is to roughen the surface of the film or tape (invention on film formation, physical or chemical etching after film formation, etc.), to introduce chemically active species to the surface (corona discharge treatment), plasma Treatment, chemical decomposition, etc.), pre-impregnation treatment for adhesion (epoxy compound, isocyanate compound, resorcinol / formalin / latex mixture, etc.), or a combination thereof are preferably used and achieved.

本発明に用いられるフィルムの厚みは成形体における
繊維強化熱硬化性樹脂層との積層構成を考慮して適宜決
定されるが通常5〜100μmであり、好ましくは10〜50
μmである。また、望まれる成形体の特性によって、フ
ィルム層を複数積層したものと一層以上の繊維強化熱硬
化性樹脂層を積層一体化して用いることも行なわれてよ
い。
The thickness of the film used in the present invention is appropriately determined in consideration of the lamination structure with the fiber-reinforced thermosetting resin layer in the molded product, but is usually 5 to 100 μm, and preferably 10 to 50 μm.
μm. Depending on the desired properties of the molded article, a laminate of a plurality of film layers and one or more fiber-reinforced thermosetting resin layers may be laminated and used.

本発明で言う繊維強化熱硬化性樹脂層は、補強繊維に
熱硬化性樹脂を含浸して得られたプリプレグ材である。
The fiber-reinforced thermosetting resin layer referred to in the present invention is a prepreg material obtained by impregnating a reinforcing fiber with a thermosetting resin.

本発明に用いられる補強繊維としては、ガラス繊維、
カーボン繊維、アラミド繊維、ポリベンズイミダゾール
繊維、ポリベンゾチアゾール繊維、あるいはこれらを金
属被覆(例えばニッケルメッキを施したカーボン繊維
等)したものや、また、アルミナ繊維、シリコンカーバ
イド繊維等の無機繊維も含まれ、これらの繊維の2種以
上を併用することもできる。
As the reinforcing fibers used in the present invention, glass fibers,
Includes carbon fibers, aramid fibers, polybenzimidazole fibers, polybenzothiazole fibers, or those coated with metal (for example, nickel-plated carbon fibers), and inorganic fibers such as alumina fibers and silicon carbide fibers. In addition, two or more of these fibers can be used in combination.

また繊維は一方向に引き揃えたシート状の形で、ある
いは織物の形で用いられ、特に等方的な機械物性が要求
される用途においては適当な長さにカットされた繊維が
ランダムに配向したマット状でも使用される。
In addition, the fibers are used in the form of a sheet aligned in one direction or in the form of a woven fabric, and in applications where isotropic mechanical properties are required, the fibers cut to an appropriate length are randomly oriented. It is also used in the form of a mat.

本発明に用いられる熱硬化性樹脂は特に限定されるも
のではなく、例えば、エポキシ樹脂、フェノール樹脂、
ポリイミド樹脂、ポリエステル樹脂などから選ばれる。
また、これらの樹脂に、紫外線吸収剤、難燃剤、酸化防
止剤、滑剤、着色剤、熱安定剤、老化防止剤、補強用短
繊維、補強用粉粒体、成形用薬剤、熱可塑性樹脂、エラ
ストマー、ゴム状物、その他通常の樹脂添加剤が添加さ
れていてもよい。
Thermosetting resin used in the present invention is not particularly limited, for example, epoxy resin, phenolic resin,
It is selected from polyimide resin, polyester resin and the like.
In addition, these resins include ultraviolet absorbers, flame retardants, antioxidants, lubricants, colorants, heat stabilizers, antioxidants, reinforcing short fibers, reinforcing powders, molding agents, thermoplastic resins, Elastomers, rubbery substances, and other ordinary resin additives may be added.

本発明の成形用材料は種々の方法で調製することがで
きる。
The molding material of the present invention can be prepared by various methods.

例えば、B−ステージの繊維強化熱硬化性樹脂、すな
わちプリプレグとフィルムを圧着して製造する方法があ
る。あるいは、熱硬化性樹脂を含浸した強化繊維シート
とフィルムを圧着後、加熱してB−ステージ化する方法
がある。また、フィルムにあらかじめ熱硬化性樹脂を溶
融した状態で塗布するか、または、適当な溶媒を用いた
溶液あるいは混合液の形で塗布した後、加熱脱溶媒して
おき、これと強化繊維を圧着後、加熱する方法も使用可
能である。
For example, there is a method in which a B-stage fiber reinforced thermosetting resin, that is, a prepreg and a film are pressed and manufactured. Alternatively, there is a method in which a reinforcing fiber sheet impregnated with a thermosetting resin and a film are press-bonded and then heated to form a B-stage. Alternatively, apply the thermosetting resin in a molten state to the film in advance, or apply it in the form of a solution or mixed solution using an appropriate solvent, and then remove the solvent by heating and press the reinforcing fiber against this. Thereafter, a method of heating can also be used.

一方積層構成に関しては、上記の如きフィルム層と繊
維強化熱硬化性樹脂層とを各一層ずつ積層するか、また
はこれを更に複数層積層したものの他にあらかじめ熱硬
化性樹脂を塗布後、Bステージ化したフィルムを2層以
上積層したフィルム層と繊維強化熱硬化性樹脂層とをサ
イドバイサイドで圧着積層したり、あるいは前者で後者
をサンドイッチ状にはさむ形で積層して用いることもで
きる。また、円柱状の金型に繊維強化熱硬化性樹脂層を
捲回積層したものに、片面に熱硬化性樹脂を塗布したフ
ィルム層を捲回し金型を除去することで円筒状の材料を
製造することも可能である。
On the other hand, with respect to the lamination structure, the film layer and the fiber-reinforced thermosetting resin layer as described above are laminated one by one, or a plurality of layers are further laminated, and a thermosetting resin is applied in advance, and then the B-stage A film layer obtained by laminating two or more formed films and a fiber-reinforced thermosetting resin layer may be pressure-bonded and laminated side-by-side, or the former may be laminated by sandwiching the latter in a sandwich form. In addition, a cylindrical material is manufactured by winding and laminating a fiber-reinforced thermosetting resin layer on a cylindrical mold, and then removing the mold by winding a film layer coated with a thermosetting resin on one surface. It is also possible.

本発明の成形用材料から成形体を成形する方法は、何
ら制限されず、種々の方法で、いろいろな形状の成形体
に加工することができる。
The method of molding a molded article from the molding material of the present invention is not limited at all, and it can be processed into molded articles of various shapes by various methods.

(実施例) 次に、本発明を実施例を用いて詳細に説明する。(Example) Next, the present invention will be described in detail using examples.

参考例1 アラミドフィルムの製造 対数粘度(98%濃硫酸中に溶解して、C−0.5g/100ml
にて、30℃で測定)が5.5のポリ−p フェニレンテレ
フタルアミド(PPTAと略す)を99.5%の硫酸にポリマー
濃度12%で溶解し、光学異方性のあるドープを得た。こ
のドープを真空下に脱気し、濾過したのち、ギアポンプ
を通じて、スリットダイから押出し、鏡面に磨いたタン
タル製のベルトにキャストし、相対湿度約40%の約90℃
の空気の雰囲気のゾーンを通して、流延ドープを光学等
方化し、ベルトとともに20℃の30%硫酸水溶液中に導い
て凝固させた。次いで、凝固フィルムをベルトからひき
はがし、カセイソーダ水溶液で中和し、水洗した。洗浄
の終了したフィルムを乾燥させずに、ローラで長さ方向
に約1.15倍延伸し、次いでテンターで幅方向に1.3倍延
伸したのち、定長に保持しつつ、200℃で乾燥し更に300
℃で定長熱処理した。
Reference Example 1 Production of aramid film Logarithmic viscosity (dissolved in 98% concentrated sulfuric acid, C-0.5g / 100ml
(Measured at 30 ° C.), was dissolved 5.5% of poly-p-phenyleneterephthalamide (abbreviated as PPTA) in 99.5% sulfuric acid at a polymer concentration of 12% to obtain a dope having optical anisotropy. The dope is degassed under vacuum, filtered, extruded through a slit die through a gear pump, cast on a tantalum belt polished to a mirror surface, and heated to about 90 ° C. at a relative humidity of about 40%.
The casting dope was optically isotropic through a zone of an air atmosphere, and was introduced together with a belt into a 30% aqueous sulfuric acid solution at 20 ° C. to coagulate. Next, the coagulated film was peeled off from the belt, neutralized with an aqueous solution of sodium hydroxide, and washed with water. Without drying the washed film, stretch it about 1.15 times in the length direction with a roller, then stretch it 1.3 times in the width direction with a tenter, and while maintaining the fixed length, dry at 200 ° C. and further 300 times.
The sample was heat-treated at a constant temperature at ℃.

上記、条件下で10μm及び25μmのPPTAフィルムを製
造した。
Under the above conditions, PPTA films of 10 μm and 25 μm were produced.

得られたフィルムは淡黄色透明で、熱分析において50
0℃以下には転移温度は見られなかった。これらのフィ
ルムの機械物性を第1表に示す。
The resulting film is pale yellow and transparent and has a thermal analysis of 50
No transition temperature was observed below 0 ° C. Table 1 shows the mechanical properties of these films.

参考例2 繊維強化熱硬化性樹脂の製造 エポキシ樹脂(化成ファイバーライト社製、7714
(メチルエチルケトン混合液、固形分50重量%)を一方
向に引きそろえたPAN系炭素繊維(旭日本カーボンファ
イバー社製ハイカーボロン 12k)に含浸しつつ、これ
をシリコン離型紙を巻き付けた500mmφのドラム上に巻
き取った。これを繊維方向と直角な方向に切り開き、10
0℃で30分加熱して一方向プリプレグを調製した。繊維
の体積含有率が63%、厚さは約0.2mmであった。
Reference Example 2 Production of fiber-reinforced thermosetting resin Epoxy resin (manufactured by Kasei Fiberlight Co., Ltd.#7714
(Methyl ethyl ketone mixture, solid content 50% by weight)
PAN-based carbon fiber (Asahi Nippon Carbon
High carbon boron made by Ibar 12k) while impregnating this
On a 500mmφ drum around which silicone release paper is wound
I wiped it. Cut this in a direction perpendicular to the fiber direction,
The unidirectional prepreg was prepared by heating at 0 ° C. for 30 minutes. fiber
Had a volume content of 63% and a thickness of about 0.2 mm.

実施例1 厚さ10μmのPPTAフィルムを炭素繊維一方向プリプレ
グと各一層ずつホットラミネータロールで圧着して成形
用材料とした。
Example 1 A 10 μm-thick PPTA film was pressure-bonded with a carbon fiber unidirectional prepreg and each layer by a hot laminator roll to obtain a molding material.

これを150mm×150mmの大きさに切り出し、炭素繊維の
繊維方向が一方向になるように18層積層し、オートクレ
ーブ中で、140℃で3時間、4kg/cm2の窒素圧下におき硬
化成形し、厚さ約3mmの平板を得た。
This is cut out to a size of 150 mm x 150 mm, and 18 layers are laminated so that the fiber direction of the carbon fiber becomes one direction. In an autoclave, it is cured at 140 ° C for 3 hours under a nitrogen pressure of 4 kg / cm 2 for 3 hours. A flat plate having a thickness of about 3 mm was obtained.

この平板から幅12.7mm、長さ150mmの0°曲げ試験片
を切り出し、島津製作所製万能試験機AG−10TAで曲げ破
壊強度を測定した。
A 12.7 mm wide and 150 mm long 0 ° bending test piece was cut out from the flat plate, and the bending fracture strength was measured with a universal testing machine AG-10TA manufactured by Shimadzu Corporation.

破壊した試験片は2つに折れたが飛散はしなかった。
曲げ破壊強度を第2表に示す。
The broken test piece broke into two pieces, but did not scatter.
Table 2 shows the flexural fracture strength.

実施例2 実施例1で用いた炭素繊維プリプレグを150mm×150mm
の大きさに切り出し、炭素繊維の繊維方向が一方向にな
るように10層積層し、その両側に予め、7714エポキシ
を10μmの厚さで塗布しBステージ化した25μmのPPTA
フィルムを各4層ずつ、ラミネータロールで圧着し、サ
ンドイッチ型の成形用材料とした。
Example 2 The carbon fiber prepreg used in Example 1 was 150 mm × 150 mm
25μm PPTA with 10μm thickness coated in advance with # 7714 epoxy on both sides, 10 layers laminated so that the fiber direction of carbon fiber is one direction
The film was pressed with a laminator roll for each of the four layers to obtain a sandwich-type molding material.

これを実施例1と同じ条件下に硬化成形し、約2mm厚
の平板を得、幅12.7mm、長さ100mmの0°曲げ試験片を
切り出した。
This was cured and molded under the same conditions as in Example 1 to obtain a flat plate having a thickness of about 2 mm, and a 0 ° bending test piece having a width of 12.7 mm and a length of 100 mm was cut out.

曲げ破壊後の試験片は、くの字に曲がったものの破断
しなかった。曲げ破壊強度を第2表に示す。
The test piece after bending fracture was bent in a square shape, but did not break. Table 2 shows the flexural fracture strength.

比較例1 炭素繊維プリプレグを150mm×150mmにカットし19層積
層し、実施例1と同じ条件下にオートクレーブ成形し、
平板を得、0°曲げ試験に供した。
Comparative Example 1 A carbon fiber prepreg was cut into 150 mm × 150 mm, laminated in 19 layers, and autoclaved under the same conditions as in Example 1.
A flat plate was obtained and subjected to a 0 ° bending test.

曲げ破壊した試験は完全に破断し周囲に飛散した。曲
げ破壊強度を第2表に示す。
The test with bending failure completely broke and scattered around. Table 2 shows the flexural fracture strength.

実施例3 テフロンフィルムを巻いて径9mmとしたステンレスの
円柱状金型に、炭素繊維プリプレグを繊維軸が長さ方向
と一致する様に4層捲回した後、更に実施例2と同様の
エポキシ塗工PPTAフィルムを4層または10層捲回し、金
型を除去して円筒状の成形用材料2種を得た。
Example 3 A carbon fiber prepreg was wound around a stainless steel cylindrical mold having a diameter of 9 mm by winding a Teflon film so that the fiber axis coincided with the length direction, and then the same epoxy as in Example 2 was used. Four or ten layers of the coated PPTA film were wound, and the mold was removed to obtain two types of cylindrical molding materials.

これにテフロンフィルムを巻き付け内径12mmのステン
レス管に押し込み、エアバッグで内側から加圧(4kg/cm
2)しつつ140℃×2時間加熱硬化して、内径約10mm、肉
厚約1mmの管を得た。
Wrap a Teflon film around this, push it into a stainless steel tube with an inner diameter of 12 mm, and pressurize it from inside with an airbag (4 kg / cm
2 ) While being heated and cured at 140 ° C. for 2 hours, a tube having an inner diameter of about 10 mm and a wall thickness of about 1 mm was obtained.

これを長さ65mmに切り出し、秤量150kg・cm(ハンマ
ー重量3.874kg、振上げ角135度)でアイゾット衝撃試験
を行った結果、消費エネルギーは、第3表に示す通りと
なった。
This was cut out to a length of 65 mm and subjected to an Izod impact test with a weighing weight of 150 kg · cm (hammer weight 3.874 kg, swing angle 135 °). As a result, the energy consumption was as shown in Table 3.

アイゾット衝撃試験後の試験片は、くの字に座屈し内
部の炭素繊維強化層は繊維軸に沿って破壊するものの、
外層は破壊することなく、従って鋭利な破壊面が露出す
ることはなかった。
Although the test specimen after the Izod impact test buckles in a square shape and the internal carbon fiber reinforced layer breaks along the fiber axis,
The outer layer did not break, and thus no sharp fracture surface was exposed.

また、成形体の一部を長さ15mmに切り出し、管の長さ
方向と、径方向の圧縮試験を1mm/分の圧縮速さで実施し
圧縮破壊強度(軸圧縮強度及び面圧縮強度)を測定し
た。
In addition, a part of the molded body was cut out to a length of 15 mm, and compression tests in the longitudinal direction and the radial direction of the tube were performed at a compression speed of 1 mm / min to determine the compressive breaking strength (axial compression strength and surface compression strength). It was measured.

その結果を第3表に示す。 Table 3 shows the results.

比較例2 炭素繊維プリプレグのみを実施例3と同様の金型に6
層、繊維軸が長さ方向と一致する様に捲回して、成形用
材料とし実施例3と同様の条件で成形し2種の管を得
た。アイゾット衝撃及び圧縮試験の結果を第3表に示
す。
Comparative Example 2 Only the carbon fiber prepreg was placed in the same mold as
The layer and the fiber axis were wound so that they coincided with the length direction, and formed into a molding material under the same conditions as in Example 3 to obtain two types of tubes. Table 3 shows the results of the Izod impact and compression tests.

試験の際、これらの管は繊維配向方向に沿ってバラバ
ラに破壊し飛散した。
During the test, these tubes broke apart and scattered along the fiber orientation direction.

比較例3 炭素繊維プリプレグのみを6層、長さ方向に対して45
度の積層角で積層して円筒状の材料を得、実施例3と同
様の条件下に成形して管を調製した。アイゾット衝撃及
び圧縮試験の結果を第3表に示す。
Comparative Example 3 Six layers of carbon fiber prepreg only, 45 in the length direction
A cylindrical material was obtained by laminating at a lamination angle of, and molded under the same conditions as in Example 3 to prepare a tube. Table 3 shows the results of the Izod impact and compression tests.

試験により管は2つに破壊し、炭素繊維の鋭利な破壊
面が露出した。
The test broke the tube in two, exposing the sharp fracture surface of the carbon fiber.

(発明の効果) 本発明の成形用材料は、強化用繊維と引張強化・弾性
率が極めて大きく、耐熱性の優れたフィルム層とを一体
化させたものであるので、これによって成形した成形体
は、優秀な機械的強度を有し、且つこれまでにない高い
耐衝撃性を有するという極めて優れた効果を示すもので
ある。また、極めて手間と技術を要するアングルプライ
積層による機械物性の等方化効果も容易に達成され、工
業的製造において大きな意義を有するものである。
(Effect of the Invention) Since the molding material of the present invention is obtained by integrating a reinforcing fiber with a film layer having an extremely large tensile strength and elastic modulus and excellent heat resistance, a molded article molded by this is used. Shows an extremely excellent effect of having excellent mechanical strength and having an unprecedentedly high impact resistance. Further, an isotropic effect of mechanical properties by the angle ply lamination, which requires extremely labor and technology, can be easily achieved, and has great significance in industrial production.

従って本発明の成形用材料は、これらの特徴を活かし
て様々の形状に賦形することにより、例えばゴルフクラ
ブシャフトやテニスラケットフレーム等スポーツやレジ
ャーの分野から航空機の構造部材等航空宇宙分野におい
ても極めて好ましく利用される。
Therefore, the molding material of the present invention can be formed into various shapes by utilizing these characteristics, for example, in the field of sports and leisure such as a golf club shaft and a tennis racket frame, and also in the aerospace field such as a structural member of an aircraft. It is very preferably used.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C08J 5/24 B32B 27/00 - 27/34 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) C08J 5/24 B32B 27/00-27/34

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】融点又は分解点が300℃以上であるアラミ
ドから実質的になり、長さ方向と幅方向ともに35kg/mm2
以上の引張強度および700kg/mm2以上の引張弾性率を有
するフィルム層と未硬化の繊維強化熱硬化性樹脂層とを
積層してなる成形用の熱硬化性樹脂材料。
1. An aramid having a melting point or decomposition point of 300 ° C. or more, which is substantially 35 kg / mm 2 in both length and width directions.
A thermosetting resin material for molding formed by laminating a film layer having the above tensile strength and a tensile modulus of 700 kg / mm 2 or more and an uncured fiber-reinforced thermosetting resin layer.
JP1097595A 1989-01-25 1989-04-19 Molding material Expired - Fee Related JP2882638B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP1097595A JP2882638B2 (en) 1989-04-19 1989-04-19 Molding material
KR1019900702133A KR930003894B1 (en) 1989-01-25 1990-01-25 New prepreg and composite molding and production of composite molding
EP90902370A EP0541795B1 (en) 1989-01-25 1990-01-25 New prepreg and composite molding, and production of composite molding
DE69032210T DE69032210D1 (en) 1989-01-25 1990-01-25 PRE-IMPREGNATED COMPOSITE MOLDS AND PRODUCTION OF A COMPOSITE MOLD
CA 2026113 CA2026113C (en) 1989-01-25 1990-01-25 Prepreg, composite molded body, and method of manufacture of the composite molded body
PCT/JP1990/000085 WO1990008802A1 (en) 1989-01-25 1990-01-25 New prepreg and composite molding, and production of composite molding
TW079100742A TW205053B (en) 1989-01-25 1990-02-02
US08/034,171 US5597631A (en) 1989-01-25 1993-02-12 Prepreg, composite molding body, and method of manufacture of the composite molded body
US08/709,188 US5770313A (en) 1989-01-25 1996-09-06 Prepreg, composite molded body and method of manufacture of the composite molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1097595A JP2882638B2 (en) 1989-04-19 1989-04-19 Molding material

Publications (2)

Publication Number Publication Date
JPH02276832A JPH02276832A (en) 1990-11-13
JP2882638B2 true JP2882638B2 (en) 1999-04-12

Family

ID=14196590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1097595A Expired - Fee Related JP2882638B2 (en) 1989-01-25 1989-04-19 Molding material

Country Status (1)

Country Link
JP (1) JP2882638B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5688703A (en) * 1995-09-05 1997-11-18 Motorola, Inc. Method of manufacturing a gate structure for a metal semiconductor field effect transistor
US9308692B2 (en) 2011-09-28 2016-04-12 The Boeing Company Material placement system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717886A (en) * 1980-07-07 1982-01-29 Hitachi Ltd Electronic timer
JP2724581B2 (en) * 1986-04-04 1998-03-09 コニカ株式会社 Magnetic recording medium having aramid resin support
JPS6397635A (en) * 1986-10-14 1988-04-28 Ube Ind Ltd Fiber-reinforced epoxy resin prepreg having interleaf
JPH0627208B2 (en) * 1987-02-27 1994-04-13 宇部興産株式会社 Fiber-reinforced epoxy resin prepreg material containing interleaf

Also Published As

Publication number Publication date
JPH02276832A (en) 1990-11-13

Similar Documents

Publication Publication Date Title
KR930003894B1 (en) New prepreg and composite molding and production of composite molding
US3691000A (en) Glass fiber reinforced composite article exhibiting enhanced longitudinal tensile and compressive moduli
TWI447028B (en) Prepreg,fiber-reinforced composite material and method for manufacturing prepreg
US3556922A (en) Fiber-resin composite of polyamide and inorganic fibers
CA2566447A1 (en) Self-adhesive prepreg
KR101155765B1 (en) Composite of aramid and Method for manufacturing tComposite of aramid and Method for manufacturing the same he same
JP2016520446A (en) High-strength fiber composite material, method for producing the same, and helmet using the same
KR100189169B1 (en) Carbon fiber reinforced composite material having a morphology gradient
JP4716550B2 (en) Paper-free prepreg and method for producing the same
JP2882638B2 (en) Molding material
US4777084A (en) Phenolic-modified epoxy adhesive including the reaction product of bisphenol A and the monoglycidyl ether of bisphenol A
EP0326409A1 (en) Hybrid yarn, unidirectional hybrid prepreg and laminated material thereof
JP3036232B2 (en) Carbon fiber bundle
CN111989359B (en) Prepreg, laminate, fiber-reinforced composite material, and method for producing fiber-reinforced composite material
JP2892061B2 (en) Laminate
WO1992010364A1 (en) Matrix composites in which the matrix contains polybenzoxazole or polybenzothiazole
JP2710383B2 (en) Thermosetting resin composition
JP2744637B2 (en) Composite material
JP2805633B2 (en) Laminated molding
JP2004346190A (en) Prepreg and fiber reinforced resin composite
JPH03186278A (en) Pole for pole jump
JPH03161321A (en) Manufacture of laminated pipe
RU2740286C1 (en) Solution-free method of producing phthalonitrile prepreg and polymer composite material based thereon
JP3137670B2 (en) Composite material
JP3065687B2 (en) Manufacturing method of prepreg

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080205

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090205

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees