JP2892061B2 - Laminate - Google Patents

Laminate

Info

Publication number
JP2892061B2
JP2892061B2 JP1303250A JP30325089A JP2892061B2 JP 2892061 B2 JP2892061 B2 JP 2892061B2 JP 1303250 A JP1303250 A JP 1303250A JP 30325089 A JP30325089 A JP 30325089A JP 2892061 B2 JP2892061 B2 JP 2892061B2
Authority
JP
Japan
Prior art keywords
film
fiber
laminate
strength
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1303250A
Other languages
Japanese (ja)
Other versions
JPH03164244A (en
Inventor
五郎 古本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17918689&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2892061(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Kasei Kogyo KK filed Critical Asahi Kasei Kogyo KK
Priority to JP1303250A priority Critical patent/JP2892061B2/en
Priority to PCT/JP1990/000085 priority patent/WO1990008802A1/en
Priority to DE69032210T priority patent/DE69032210D1/en
Priority to KR1019900702133A priority patent/KR930003894B1/en
Priority to CA 2026113 priority patent/CA2026113C/en
Priority to EP90902370A priority patent/EP0541795B1/en
Publication of JPH03164244A publication Critical patent/JPH03164244A/en
Priority to US08/034,171 priority patent/US5597631A/en
Priority to US08/709,188 priority patent/US5770313A/en
Publication of JP2892061B2 publication Critical patent/JP2892061B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高強度高開弾性率のフィルム層と、熱可塑
性樹脂層または繊維強化熱可塑性樹脂層とを積層一体化
した材料に関し、さらに詳しくは、曲げ、引っ張り、圧
縮等の優れた機械的強度及び極めて優秀な耐衝撃性をも
ち、熱プレス等の簡便な方法で容易に成形できる新規な
複合材料に関する。
The present invention relates to a material obtained by laminating and integrating a film layer having a high strength and a high open modulus and a thermoplastic resin layer or a fiber-reinforced thermoplastic resin layer. More specifically, the present invention relates to a novel composite material having excellent mechanical strength such as bending, tension and compression, and extremely excellent impact resistance, and which can be easily formed by a simple method such as hot pressing.

〔従来の技術〕[Conventional technology]

エポキシ樹脂、フェノール樹脂等の熱硬化性樹脂を、
カーボン繊維、ガラス繊維、アラミド繊維等で補強して
使用するいわゆる繊維強化プラスチックは従来より知ら
れている。補強用繊維は、フイラメントヤーン、織布、
短繊維マット等の形で用いられるが、その機能を十分に
果たすために、高強度、高弾性率等の物性が要求され
る。
Thermosetting resin such as epoxy resin and phenol resin,
So-called fiber-reinforced plastics reinforced with carbon fibers, glass fibers, aramid fibers and the like have been conventionally known. The reinforcing fibers are filament yarn, woven fabric,
It is used in the form of a short fiber mat or the like, but in order to fulfill its function sufficiently, physical properties such as high strength and high elastic modulus are required.

繊維強化熱硬化性樹脂は機械的強度あるいは弾性率に
優れるものの、一般に靭性に乏しく、耐衝撃性に問題が
あり、一旦破壊すると、強化繊維がささくれた鋭利な破
壊面を露出するという欠点がある。耐衝撃性に優れた補
強用繊維として注目されるアラミド繊維は、そのコンポ
ジットを機械加工する際に繊維がももけ、毛羽だち、加
工面がきれいに仕上がらないという実用上大きな欠点を
有している。また長繊維強化プラスチックには共通して
機械的性能及び寸法安定性の異方性という欠点が存在す
る。
Although fiber-reinforced thermosetting resin is excellent in mechanical strength or elastic modulus, it generally has poor toughness and has a problem in impact resistance, and once broken, there is a drawback that the reinforcing fiber exposes the sharply broken fractured surface. . Aramid fiber, which has attracted attention as a reinforcing fiber with excellent impact resistance, has a major practical drawback in that when the composite is machined, the fiber sprinkles, fluff, and the finished surface does not finish cleanly. I have. In addition, long-fiber reinforced plastics commonly have the disadvantage of anisotropy in mechanical performance and dimensional stability.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

かかる点に鑑み、本発明者らは、さきにまだ公知でな
いが最近開発された高強度高弾性率のフィルムを用い、
物性に異方性が少なく、耐衝撃性にすぐれた熱硬化性樹
脂複合材料を提案した。本発明者らは、更に鋭意研究を
続け、熱可塑性樹脂との複合化を検討した結果、靭性及
び耐衝撃性が更に改良されるだけでなく、成形性に優れ
た材料が得られることを見いだし、本発明に至った。
In view of this point, the present inventors have used a recently developed high-strength high-modulus film that is not yet known,
We have proposed a thermosetting resin composite material with low anisotropy in physical properties and excellent impact resistance. The present inventors have further studied diligently and studied the formation of a composite with a thermoplastic resin.As a result, they found that not only the toughness and impact resistance were further improved, but also a material having excellent moldability was obtained. This has led to the present invention.

本発明の一つの目的は、いわゆる繊維強化プラスチッ
クに匹敵する機械強度をフィルムと樹脂の組合せによっ
て達成することにある。一方、本発明のもう一つの目的
は、繊維強化樹脂と、フィルムを組み合わせることによ
って、繊維強化樹脂が本来有する剛性を損なうことな
く、むしろ更に優れた機械的物性と耐衝撃性とを付与す
ることにある。
An object of the present invention is to achieve a mechanical strength comparable to that of a so-called fiber-reinforced plastic by a combination of a film and a resin. On the other hand, another object of the present invention is to provide a fiber reinforced resin and a film, by combining the film, without impairing the rigidity inherent in the fiber reinforced resin, but rather to impart more excellent mechanical properties and impact resistance. It is in.

〔課題を解決するための手段〕[Means for solving the problem]

即ち、本発明は、400℃未満に融点および分解点をも
たないアラミドからなり、35kg/mm2以上の引張強度及び
700kg/mm2以上の引張弾性率を有するフィルム層と熱可
塑性樹脂層とを積層一体化してなる積層体であり、もう
一つの発明は、400℃未満に融点および分解点をもたな
いアラミドからなり、35kg/mm2以上の引張強度及び700k
g/mm2以上の引張弾性率を有するフィルム層と繊維で補
強された熱可塑性樹脂層とを積層一体化してなる積層体
である。
That is, the present invention comprises an aramid having no melting point and decomposition point below 400 ° C., and has a tensile strength of 35 kg / mm 2 or more and
700 kg / mm 2 is a laminate obtained by laminating a film layer having a modulus of elasticity of 2 or more and a thermoplastic resin layer, another invention is from aramid having no melting point and decomposition point below 400 ° C ... now, 35kg / mm 2 or more of tensile strength and 700k
This is a laminate obtained by laminating and integrating a film layer having a tensile modulus of at least g / mm 2 and a thermoplastic resin layer reinforced with fibers.

本発明において用いられる熱可塑性樹脂は、例えば、
ポリオレフィン、ポリエステル、ポリアミド、ポリアク
リレート、ポリカーボネート等がある。また特に限定さ
れないが、得られた成形体の耐熱性あるいは使用可能温
度域等の観点から、いわゆるスーパーエンプラの類が好
ましく用いられる。それらの例としては、ポリスルフォ
ン、ポリアミドイミド、ポリエーテルイミド、ポリエー
テルケトン、ポリエーテルエーテルケトン、ポリエーテ
ルサルフォン、ポリフェニレンサルファイド等がある。
The thermoplastic resin used in the present invention, for example,
Examples include polyolefin, polyester, polyamide, polyacrylate, and polycarbonate. Although not particularly limited, so-called super engineering plastics are preferably used from the viewpoint of the heat resistance or usable temperature range of the obtained molded article. Examples thereof include polysulfone, polyamideimide, polyetherimide, polyetherketone, polyetheretherketone, polyethersulfone, polyphenylenesulfide, and the like.

従って、本発明において、補強体として用いるフィル
ムは、それら高融点の熱可塑性樹脂の成形温度において
も変形、溶融、分解等を起こさないものであることが必
須であり、すなわち、400℃以上に融点及び分解点をも
つ有機系重合体からなっている必要がある。
Therefore, in the present invention, it is essential that the film used as the reinforcing member does not deform, melt, or decompose even at the molding temperature of the high melting point thermoplastic resin. And an organic polymer having a decomposition point.

本発明の目的に従って、本発明に用いるフィルムは、
それ自体が高強度、高弾性率であることが必要であり、
すなわち、35kg/mm2以上の引っ張り強度及び700kg/mm2
以上の引っ張り弾性率をもつものでなくてはならない。
好ましくは、45kg/mm2以上の強度と1000kg/mm2以上の弾
性率を、更に好ましくは、50kg/mm2以上の強度と1200kg
/mm2以上の弾性率を有することである。
According to the purpose of the present invention, the film used in the present invention is:
It is necessary to have high strength and high elasticity in itself,
That is, a tensile strength of 35 kg / mm 2 or more and 700 kg / mm 2
It must have the above tensile modulus.
Preferably, a strength of 45 kg / mm 2 or more and a modulus of elasticity of 1000 kg / mm 2 or more, more preferably a strength of 50 kg / mm 2 or more and 1200 kg
/ mm 2 or more.

このような有機系重合体としては、例えば、、アラミ
ド、ポリイミド、ポリベンツイミダゾール、ポリベンツ
ビスチアゾール等が挙げられるが、本発明では、樹脂と
の接着の良さや高強度、高弾性率を満足させるためにア
ラミドが用いられる。
Examples of such an organic polymer include, for example, aramid, polyimide, polybenzimidazole, polybenzbisthiazole, and the like, but in the present invention, satisfactory adhesiveness with a resin, high strength, and high elastic modulus are satisfied. Aramid is used to achieve this.

好ましく用いられるアラミドには下記の一般式
(I),(II)で表わされる構造のもの、またはこれら
の共重合体がある。
Aramids preferably used include those having structures represented by the following general formulas (I) and (II) and copolymers thereof.

から選ばれ、これらの水素原子がハロゲン、メチル、エ
チル、メトキシ、ニトロ、スルホン等の官能基で置換さ
れていてもよい。m,nは平均重合度であり約50〜1000で
ある。) 本発明に用いるフィルムには、上記、アラミド以外の
成分が、本発明の効果を損わない範囲で少量含まれてい
てもよく、例えば上記以外の有機系重合体、有機系低分
子化合物、無機化合物等を少量含有してもよい。
And these hydrogen atoms may be substituted with a functional group such as halogen, methyl, ethyl, methoxy, nitro, and sulfone. m and n are average degrees of polymerization and are about 50-1000. The film used in the present invention may contain a small amount of the above-mentioned components other than aramid as long as the effects of the present invention are not impaired. For example, organic polymers other than the above, organic low-molecular compounds, A small amount of an inorganic compound or the like may be contained.

フィルムは、コンポジット製品としての抗張力の必要
な方向に引張強度及び引張弾性率を増強した所謂テンシ
ライズドタイプが用いられてもよいがもちろん、フィル
ムとして、等方的な性能を有するものを用いた方が、得
られる成形体の機械的強度及び寸法安定性に方向性が少
ないという点でよい。本発明において、引張強度と引張
弾性率とは少くとも1つの方向が前記の値を満たしてい
ればよいが、好ましくは、任意に選んだ互いに直交する
2つの方向の特性の平均値が前記した値を満しているこ
とである。
The film may be a so-called tensilized type in which the tensile strength and the tensile modulus are increased in the direction in which the tensile strength is required as a composite product, but of course, a film having isotropic performance was used. The better is that the obtained molded article has less directivity in mechanical strength and dimensional stability. In the present invention, the tensile strength and the tensile elastic modulus may be such that at least one direction satisfies the above-mentioned value, but preferably, the average value of the characteristics in two directions orthogonal to each other arbitrarily selected is as described above. Value.

本発明において、補強効果を十分に発現させるため
に、フィルムと熱可塑性樹脂とが十分な接着力をもつこ
とが好ましい。大きな接着力は下記の方法により達成さ
れる。その方法は、例えば製膜上の工夫、製膜後の物理
的又は化学的なエッチング等によりフィルム又はテープ
の表面を粗にする、コロナ放電処理、プラズマ処理、化
学分解等により表面に化学活性種を導入する、エポキシ
化合物、イソシアネート化合物、レゾルシン・ホルマリ
ン・ラテックス混合物等により接着用の含浸前処理をす
る、又はこれらを組み合わせる等の方法が好ましく用い
られる。
In the present invention, it is preferable that the film and the thermoplastic resin have a sufficient adhesive force in order to sufficiently exhibit the reinforcing effect. High adhesion is achieved by the following method. The method includes, for example, devising the film formation, roughening the surface of the film or tape by physical or chemical etching after the film formation, corona discharge treatment, plasma treatment, chemical decomposition, etc. , An impregnation pretreatment for bonding with an epoxy compound, an isocyanate compound, a resorcinol-formalin-latex mixture, or the like, or a combination thereof is preferably used.

本発明に用いるフィルムの厚みは成形品における樹脂
層、あるいは繊維強化樹脂層との積層構成を考慮して適
宜決定されるが通常2〜100μmであり、好ましくは5
〜50μmである。
The thickness of the film used in the present invention is appropriately determined in consideration of the resin layer in the molded article or the lamination structure with the fiber-reinforced resin layer, and is usually 2 to 100 μm, preferably 5 to 100 μm.
5050 μm.

本発明でいう繊維強化熱可塑性樹脂層は、補強繊維に
熱可塑性樹脂を浸漬して得られ、強化繊維と樹脂との比
率に関しては、強化繊維の体積分率が40〜70%のものが
好ましい。
The fiber-reinforced thermoplastic resin layer referred to in the present invention is obtained by immersing a thermoplastic resin in a reinforcing fiber, and the ratio between the reinforcing fiber and the resin is preferably such that the volume fraction of the reinforcing fiber is 40 to 70%. .

本発明に用いる補強繊維としては、ガラス繊維、カー
ボン繊維、アラミド樹脂、ポリベンズイミダゾール繊
維、ポリベンゾチアゾール繊維、あるいは例えばニッケ
ルメッキを施したカーボン繊維等これらを金属被覆した
ものや、また、アルミナ繊維、シリコンカーバイド繊維
等の無機繊維も含まれ、これらの繊維の2種以上を併用
することもできる。
As the reinforcing fiber used in the present invention, glass fiber, carbon fiber, aramid resin, polybenzimidazole fiber, polybenzothiazole fiber, or a metal-coated carbon fiber such as nickel-plated carbon fiber, or alumina fiber And inorganic fibers such as silicon carbide fibers, and two or more of these fibers can be used in combination.

また、繊維は一方向に引き揃えたシート上の形で、あ
るいは織物の形で用いられ、特に等方的な機械物性が要
求される用途においては適当な長さにカットされた繊維
がランダムに配向したマット上でも使用される。
In addition, the fibers are used in the form of a sheet aligned in one direction or in the form of a woven fabric, and particularly in applications where isotropic mechanical properties are required, fibers cut to an appropriate length are randomly selected. Also used on oriented mats.

本発明の一つの目的であるフィルムと熱可塑性樹脂と
の積層体においては、フィルム自体には熱融着性、圧着
性等の一体化能は殆んどなく、熱可塑性樹脂が、バイン
ダーとしての役割を担う。従って、それらは必ず交互に
積層されねばならない。また、成形体中におけるフィル
ムと熱可塑性樹脂との比率は、フィルムの割合が40〜95
%の間にとられればよい。40%未満では満足な物性が得
られず、95%を越えると一体化が困難となる。好ましく
は60〜90%、更に好ましくは70〜85%の範囲である。
In a laminate of a film and a thermoplastic resin, which is one object of the present invention, the film itself has almost no integration capability such as heat sealability, pressure bonding property, and the thermoplastic resin serves as a binder. Take a role. Therefore, they must always be stacked alternately. Further, the ratio of the film and the thermoplastic resin in the molded body, the ratio of the film is 40 to 95
It should just be taken between%. If it is less than 40%, satisfactory physical properties cannot be obtained, and if it exceeds 95%, integration becomes difficult. Preferably it is in the range of 60-90%, more preferably 70-85%.

本発明の他の1つの目的であるフィルムと繊維強化熱
可塑性樹脂との積層体における積層構成及び積層比率に
関して特に制限はないが、例えば、繊維強化樹脂の剛性
を損うことなく耐衝撃性を飛躍的に増大させ得る好適な
構成は、繊維強化樹脂層をフィルム層ではさみ込むもの
であり、特に成形体の形状が中空のパイプの場合に極め
て有効である。これはフィルム層が繊維強化樹脂層の変
形を抑え込み、クラックの発生を起り難くすることによ
る効果と考えられる。積層割合はフィルムの成形体全体
に対する体積分率が5〜50%の間であり、好ましくは5
〜30%である。
There is no particular limitation on the lamination structure and the lamination ratio in the laminate of the film and the fiber-reinforced thermoplastic resin, which is another object of the present invention. For example, the impact resistance can be improved without impairing the rigidity of the fiber-reinforced resin. A preferred configuration that can be dramatically increased is one in which the fiber reinforced resin layer is interposed between the film layers, and is particularly effective when the shape of the molded body is a hollow pipe. This is considered to be due to the effect that the film layer suppresses the deformation of the fiber reinforced resin layer and makes it difficult for cracks to occur. The lamination ratio is such that the volume fraction of the film to the whole molded body is between 5 and 50%, preferably 5 to 50%.
~ 30%.

別の構成の例としては、先述のフィルムと熱可塑性樹
脂の場合の如く、フィルムと繊維強化熱可塑性樹脂を一
層ずつ交互に積層する方法がある。あるいはこれらを組
み合わせる方法も適宜用いられてよい。また、フィルム
層は必ずしも一層ずつ積層する必要はなく、複数層重ね
たものを配することもなされてよい。その際、フィルム
とフィルムとの間はバインダーとして樹脂を積層する必
要がある。
As another example of the configuration, there is a method of alternately laminating the film and the fiber-reinforced thermoplastic resin one by one as in the case of the above-described film and thermoplastic resin. Alternatively, a method of combining these may be used as appropriate. Further, the film layers do not necessarily have to be laminated one by one, and a plurality of film layers may be arranged. At that time, it is necessary to laminate a resin as a binder between the films.

本発明の積層体は種々の方法で製造することができ
る。
The laminate of the present invention can be manufactured by various methods.

高強度・高弾性率のフィルムと熱可塑性樹脂とからな
る積層体は、例えば、熱可塑性樹脂を融液あるいは溶液
の状態からフィルム状に成形し、あらかじめこれと不融
の高強度、高弾性率のフィルムとをラミネートしてラミ
ネートフィルムとしてから、更にこれらを複数枚積層し
熱プレス等を用いて一体化することができる。また、該
ラミネートフィルムを棒状の金型に密着、捲回し、外側
から熱収縮テープ等を捲き重ね、熱可塑性樹脂の融点以
上に一旦加熱し冷却固化させた後、金型から抜き取れ
ば、種々断面のパルプを得ることができる。また、ラミ
ネートフィルムを経由することなく、熱可塑性樹脂フィ
ルムと不融の高強度・高弾性率フィルムを積層し、金型
を用いて熱プレスすることもなされてよい。その際、金
型に所望の形状を付与することで、様々な形状の積層体
を容易に得ることができる。
A laminate composed of a high-strength, high-elastic modulus film and a thermoplastic resin is formed, for example, by molding the thermoplastic resin into a film from a melt or solution state, and then forming an infusible high-strength, high-elastic modulus After laminating the above film to form a laminate film, a plurality of these films can be further laminated and integrated using a hot press or the like. In addition, the laminated film is closely adhered to a rod-shaped mold, wound up, a heat-shrinkable tape or the like is wound up from the outside, once heated to a melting point of the thermoplastic resin or more to be cooled and solidified, and then taken out from the mold. Pulp with a cross section can be obtained. Alternatively, a thermoplastic resin film and an infusible high-strength and high-modulus film may be laminated without using a laminate film, and hot-pressed using a mold. At that time, by giving a desired shape to the mold, laminated bodies having various shapes can be easily obtained.

高強度、高弾性率で不融のフィルムと繊維強化熱可塑
性樹脂との積層体は、以下の方法で製造出来る。まず繊
維強化熱可塑性樹脂は、熱可塑性樹脂を融液あるいは溶
液の状態で例えば、一方向に引き揃えたもの(以下UDシ
ートという)、織編物、あるいはマット状物等の強化繊
維シートに含浸し、必要に応じて加熱、脱溶媒等を行っ
て製造される。また、強化繊維と熱可塑性樹脂の繊維と
を織編物としたもの、あるいは、それらの交絡したヤー
ン及び混紡したヤーンを引き揃え、織編等でシート化し
たものを用いることも出来る。こうして得られた繊維強
化熱可塑性樹脂シートと高強度、高弾性率で不融のフィ
ルムとを一層ずつ交互にラミネートあるいは積層し熱プ
レスすれば、交互積層の成形体となる。また一層ずつラ
ミネートしたものを金型に捲回成形すればパイプ状の交
互積層体なる。また、先に述べた、高強度、高弾性率、
不融のフィルムと熱可塑性樹脂とのラミネートを用いれ
ば、繊維強化熱可塑性樹脂シートと適宜積層することに
より、所望の様々な積層構成の積層体を製造することが
可能である。
A laminate of a high-strength, high-modulus, infusible film and a fiber-reinforced thermoplastic resin can be produced by the following method. First, the fiber-reinforced thermoplastic resin is impregnated into a reinforcing fiber sheet such as a unidirectionally aligned thermoplastic resin (hereinafter referred to as a UD sheet), a woven or knitted material, or a mat-like material in a molten or solution state. It is manufactured by performing heating, desolvation and the like as required. A woven or knitted reinforcing fiber and a thermoplastic resin fiber or a woven or knitted yarn obtained by entanglement of the entangled yarn and blended yarn can also be used. If the fiber-reinforced thermoplastic resin sheet thus obtained and the high-strength, high-elasticity, infusible film are alternately laminated or laminated one by one and hot-pressed, a molded article of alternate lamination is obtained. Further, if a laminate obtained by laminating each layer is wound and formed into a mold, a pipe-shaped alternate laminate is obtained. In addition, high strength, high elastic modulus,
If a laminate of an infusible film and a thermoplastic resin is used, it is possible to produce a laminate having various desired laminated configurations by appropriately laminating the laminate with a fiber-reinforced thermoplastic resin sheet.

〔実施例〕〔Example〕

次に本発明を実施例を用いて詳細に説明する。 Next, the present invention will be described in detail with reference to examples.

実施例1,3,5,6及び比較例1,3,6,7で得た積層板の物性
を第1表に、また実施例2,4及び比較例2,4,5で得た積層
体の物性を第2表に示した。
Table 1 shows the physical properties of the laminates obtained in Examples 1, 3, 5, 6 and Comparative Examples 1, 3, 6, and 7, and the laminates obtained in Examples 2, 4, and Comparative Examples 2, 4, and 5. The physical properties of the body are shown in Table 2.

なお、実施例における積層体の物性の測定方法は以下
の通りである。
In addition, the measuring method of the physical property of the laminated body in an Example is as follows.

軸圧縮強度;管状成形体から長さ13mmの試験片を切り出
し、島津製作所製万能試験機(商品名オートグラフAG−
10型)を用い、圧縮速さ1mm/分で管の長さ方向に圧縮
し、最大破壊強さを求めた。軸圧縮強度は以下の式によ
り算出した。
Axial compressive strength: A test piece of 13 mm length was cut out from a tubular molded product, and was used as a universal tester manufactured by Shimadzu (trade name: Autograph AG-
10), and the tube was compressed in the longitudinal direction at a compression speed of 1 mm / min to determine the maximum breaking strength. The axial compression strength was calculated by the following equation.

但し、σ1;軸圧縮強度(kg/mm2) d1 ;試験片の内径(mm) d2 ;試験片の外径(mm) p ;最大破壊強さ(kg) 面圧縮強度;管状成形体から長さ17mmの試験片を切り出
し、圧縮速さ1mm/分で管の径方向に圧縮し最大破壊強さ
を求めた。面圧縮強度は次式によって算出した。
Where σ 1 : axial compressive strength (kg / mm 2 ) d 1 ; inner diameter of test piece (mm) d 2 ; outer diameter of test piece (mm) p; maximum breaking strength (kg) surface compressive strength; A test piece having a length of 17 mm was cut out from the body and compressed in the radial direction of the tube at a compression speed of 1 mm / min to determine the maximum breaking strength. The surface compressive strength was calculated by the following equation.

但し、σ2;面圧縮強度(kg/mm2) L ;試験片の長さ(mm) 他の記号は軸圧縮強度の測定方法に同じ。 However, σ 2 : plane compressive strength (kg / mm 2 ) L; length of test piece (mm) Other symbols are the same as those for measuring axial compressive strength.

アイゾット衝撃吸収エネルギー;管状成形体より長さ64
mmの試験片を切り出してそのまま用いた。東洋精製製作
所(株)製アイゾット衝撃試験機で、ハンマ重量3.874k
g、持ち上げ角135度で試験した。衝撃吸収エネルギーは
次式により求めた。
Izod impact absorption energy; 64 longer than tubular molded body
A test piece of mm was cut out and used as it was. Izod impact tester manufactured by Toyo Seisakusho Co., Ltd., hammer weight 3.874k
g, tested at 135 ° lift angle. The impact absorption energy was determined by the following equation.

但し、E ;アイゾット衝撃吸収エネルギー(kg・cm/c
m2) W ;ハンマ重量(3.874kg) R ;ハンマの軸心と重心間の距離(22.41cm) β;ハンマが試料を破断し反対側に張り上がっ
た角度(度) 曲げ強度及び曲げ弾性率;積層板から幅25mm、長さ50mm
の試験片を切り出し、島津製作所(株)製万能試験機
(商品名オートグラフAG−10型)を用い、支点間距離35
mm、曲げ速度2mm/分で試験した。加圧くさびの先端はR
5、支点先端はR2のものを使用した。得られた荷重−た
わみ曲線より、曲げ強度(σf)及び曲げ弾性率(Ef)
を以下の式によって算出した。
However, E; Izod impact absorption energy (kgcm / c
m 2 ) W; hammer weight (3.874 kg) R; distance between the axis and the center of gravity of the hammer (22.41 cm) β: angle at which the hammer breaks the sample and rises to the opposite side (degrees) Flexural strength and flexural modulus ; 25mm wide and 50mm long from laminate
The test piece was cut out, and the fulcrum distance was 35 using a universal tester (trade name: Autograph AG-10, manufactured by Shimadzu Corporation).
mm and a bending speed of 2 mm / min. The tip of the pressure wedge is R
5. The fulcrum tip used was R2. From the obtained load-deflection curve, flexural strength (σf) and flexural modulus (Ef)
Was calculated by the following equation.

但し、σf;曲げ強度(kg/mm2) W ;試験片の幅(mm) h ;試験片の厚さ(mm) L ;支点間距離(mm) P ;最大破壊荷重(kg) 但し、Ef;曲げ弾性率(kg/mm2) F/Y;荷重−たわみ曲線の直線部分の勾配(kg/m
m) 落錘衝撃試験;積層板から100mm×100mmの試験片を切り
出し、レオメトリックス社製落錘衝撃試験機を用いて、
荷重30kg、高さ20cm、試験速度2m/秒の条件で試験を行
った。得られた吸収エネルギー曲線から、全吸収エネル
ギーを求めた。
Where σf; bending strength (kg / mm 2 ) W; width of test piece (mm) h; thickness of test piece (mm) L; distance between fulcrums (mm) P; maximum breaking load (kg) Where, Ef; flexural modulus (kg / mm 2 ) F / Y; gradient of the linear part of load-deflection curve (kg / m
m) Drop weight impact test: A test piece of 100 mm x 100 mm was cut out from the laminated plate, and a drop weight impact tester manufactured by Rheometrics was used.
The test was performed under the conditions of a load of 30 kg, a height of 20 cm, and a test speed of 2 m / sec. From the obtained absorbed energy curve, the total absorbed energy was determined.

アラミドフィルムの製造は下記の方法で行なった。 The aramid film was manufactured by the following method.

まず98%濃硫酸中に溶解して、Cが0.5g/100mlにて、
30℃で測定した対数粘度が5.5のポリ−pフェニレンテ
レフタルアミド(以下PPTAと略す)を99.5%の硫酸にポ
リマー濃度12%で溶解し、光学異方性のあるドープを得
た。このドープを真空下に脱気し、濾過したのち、ギア
ポンプを通じて、スリットダイから押出し、鏡面に磨い
たタンタル製のベルトにキャストし、相対湿度40%の約
90℃の空気の雰囲気のゾーンを通しし、流延ドープを光
学等方化し、ベルトとともに、20℃の30%硫酸水溶液中
に導いて凝固させた。
First, dissolve in 98% concentrated sulfuric acid, C is 0.5g / 100ml,
Poly-p-phenylene terephthalamide (hereinafter abbreviated as PPTA) having a logarithmic viscosity of 5.5 measured at 30 ° C. was dissolved in 99.5% sulfuric acid at a polymer concentration of 12% to obtain a dope having optical anisotropy. The dope was degassed under vacuum, filtered, extruded through a slit die through a gear pump and cast on a tantalum belt polished to a mirror surface.
The casting dope was passed through a zone having an air atmosphere of 90 ° C., was optically isotropic, and was introduced together with a belt into a 30% aqueous sulfuric acid solution at 20 ° C. for coagulation.

次いで、凝固フィルムをベルトからひきはがし、カセ
イソーダ水溶液で中和し、水洗した。洗浄の終了したフ
ィルムを乾燥させず、ローラで長さ方向(MD方向)に延
伸し、次いでテンターで幅方向(TD方向)に延伸したの
ち、定長に保持しつつ、200℃で乾燥し更に300℃で定長
熱処理し、30μmのPPTAフィルムを製造した。
Next, the coagulated film was peeled off from the belt, neutralized with an aqueous solution of sodium hydroxide, and washed with water. Without drying the washed film, stretch it in the length direction (MD direction) with a roller, then stretch it in the width direction (TD direction) with a tenter, and dry it at 200 ° C while maintaining it at a constant length. A constant-length heat treatment was performed at 300 ° C. to produce a 30 μm PPTA film.

得られたフィルムは淡黄色透明で、熱分析において40
0℃以下になる溶融、分解は見られなかった。種々延伸
倍率を変えて製造を行ない得られたPPTAフィルムの中か
ら、引張強度及び弾性率が、長さ方向で、それぞれ45kg
/mm2、1390kg/mm2、幅方向で、それぞれ44kg/mm2、1350
kg/mm2のフィルム(フィルムAとする)を後述の実施例
において使用した。
The resulting film is pale yellow and transparent and has a thermal analysis of 40
No melting or decomposition at 0 ° C or less was observed. Tensile strength and elastic modulus were 45 kg each in the length direction from the obtained PPTA film produced by changing the stretching ratio.
/ mm 2 , 1390kg / mm 2 , 44kg / mm 2 , 1350 in width direction
A kg / mm 2 film (referred to as film A) was used in the examples described below.

まず、本発明の一つの発明である高強度、高弾性率の
フィルム層と熱可塑性フィルム層との交互積層について
実施例1,2で説明する。
First, alternate lamination of a high-strength, high-modulus film layer and a thermoplastic film layer, which is one aspect of the present invention, will be described in Examples 1 and 2.

実施例1 東レ・フィリップス社製ポリフェニレンサルファイド
(以下PPSと略する)を340℃で加熱溶融してスリットダ
イより押し出し、ダイ直下のロール上を走行するフィル
ムAの上に製膜し、直後の一対のニップロール間で圧着
して全厚み40μmのラミネートフィルムを得た。
Example 1 Polyphenylene sulfide (hereinafter abbreviated as PPS) manufactured by Toray Phillips Co., Ltd. was heated and melted at 340 ° C., extruded from a slit die, formed on a film A running on a roll immediately below the die, and a pair immediately afterwards. To obtain a laminated film having a total thickness of 40 μm.

該フィルムを短冊状に切り出し、矩形の平金型中に、
25枚重ねてセットした。これを熱プレス装置を用いて35
0℃、20kg/cm2の条件下10分加熱加圧し、50℃まで冷却
して、1mm厚さの積層板を得た。
Cut out the film into strips and place it in a rectangular flat mold,
25 sheets were stacked and set. This is done using a heat press
It was heated and pressed under the conditions of 0 ° C. and 20 kg / cm 2 for 10 minutes and cooled to 50 ° C. to obtain a 1 mm-thick laminate.

実施例2 実施例1で得られたラミネートフィルムを幅10mmのテ
ープ状にスリットし、テーピングマシンを用い、直径10
mmのステンレス製丸棒の金型にピッチ2.5mmで捲回し
た。この操作を6回繰り返しフィルムAの重なりが24層
に相当する積層を行ない、巻始めと巻終りの端部をステ
ンレス製のカラーで固定した後、350℃のオーブン中で
5分間加熱した。室温まで冷却した後、金型を抜き取っ
て内径10mm、外径12mmの積層管を得た。
Example 2 The laminated film obtained in Example 1 was slit into a tape having a width of 10 mm, and a tape having a diameter of 10 mm was formed using a taping machine.
It was wound around a 2.5 mm pitch stainless steel round bar mold. This operation was repeated six times to form a laminate in which the film A overlapped with 24 layers. The start and end of the winding were fixed with stainless steel collars, and then heated in a 350 ° C. oven for 5 minutes. After cooling to room temperature, the mold was extracted to obtain a laminated tube having an inner diameter of 10 mm and an outer diameter of 12 mm.

つぎに本発明のもう一つの発明である高強度、高弾性
率のフィルム層と繊維で補強された熱可塑性樹脂量との
積層について実施例3〜6及び比較例1〜7で説明す
る。
Next, the lamination of a high-strength, high-modulus film layer and the amount of a thermoplastic resin reinforced with fibers, which is another invention of the present invention, will be described in Examples 3 to 6 and Comparative Examples 1 to 7.

実施例3 実施例1で得られたラミネートフィルムと、フィリッ
プスペトローリアム社製炭素繊維のUDシート/PPS(商品
名ライトンACM)とを以下の如く積層した。まずラミネ
ートフィルムを3枚積層し、その上からライトンACM
(商品名)を9枚繊維軸をそろえて重ね、更にラミネー
トフィルム3枚を積層して、矩形の平金型に装てんし、
温度350℃、圧力20kg/cm2の条件下20分間加熱加圧し
た。50℃まで冷却した後取り出して、厚さ2mmの積層板
を得た。
Example 3 The laminate film obtained in Example 1 was laminated with a carbon fiber UD sheet / PPS (trade name: Ryton ACM) manufactured by Philippe Sporomium as follows. First, three laminated films are laminated, and Ryton ACM is placed on top of it.
Nine (trade name) are stacked with the fiber axis aligned, and three more laminated films are laminated, and mounted on a rectangular flat mold,
Heating and pressurization were performed at a temperature of 350 ° C. and a pressure of 20 kg / cm 2 for 20 minutes. After cooling to 50 ° C., it was taken out to obtain a laminate having a thickness of 2 mm.

実施例4 直径10mmのステンレス丸棒の金型に、あらかじめ150
℃に加熱した炭素繊維のUDシート/PPS(商品名ライトン
ACM)をシートローリング装置を用い、炭素繊維の配向
方向が金型の長さ方向に一致するように4層捲回した。
その上から実施例1で得られたラミネートフィルムの10
mm幅テープを、テーピング機を使用してピッチ2mmで捲
き付けた。その積層物の両端部をステンレス製のカラー
でしっかりと固定した後、350℃のオーブン中で10分間
加熱した。室温まで冷却した後、金型を引き抜いて、内
径10mm、外径12mmの積層管を得た。
Example 4 A 150 mm diameter stainless steel round bar
UD sheet / PPS (trade name Ryton
ACM) was wound using a sheet rolling device so that four layers of carbon fiber were aligned with the length direction of the mold.
From there, 10 of the laminated film obtained in Example 1
A tape having a width of 2 mm was wound at a pitch of 2 mm using a taping machine. After firmly fixing both ends of the laminate with a stainless steel collar, the laminate was heated in an oven at 350 ° C. for 10 minutes. After cooling to room temperature, the mold was pulled out to obtain a laminated tube having an inner diameter of 10 mm and an outer diameter of 12 mm.

実施例5 デュポン社製アラミド繊維、(商品名ケブラー49)の
1420dのヤーンをクリルにセットし、ICI社製ポリエーテ
ルサルフォン(以下PESと略する)の25%ジメチルアセ
トアミド(以下DMAcと略する)溶液中に該繊維を導いて
溶液を含浸しつつ、次いで、シリコン離型紙をあらかじ
めセットしたステンレス製のドラム上に、糸条と糸条と
の間にすき間が出ないようにピッチ1mmで慎重に巻き付
けた。100℃で3時間、ドラムを回転させつつ、加熱し
て、脱溶媒し、一ケ所を離型紙ごと切り開いて、厚さ0.
2mmのアラミド繊維強化PESを得た。
Example 5 Aramid fiber manufactured by DuPont (Kevlar 49)
The yarn of 1420d was set in krill, and the fiber was introduced into a 25% dimethylacetamide (hereinafter abbreviated as DMAc) solution of polyethersulfone (hereinafter abbreviated as PES) manufactured by ICI, and the solution was impregnated with the solution. Then, it was carefully wound at a pitch of 1 mm on a stainless steel drum on which silicon release paper had been set in advance so that no gap was formed between the yarns. While rotating the drum at 100 ° C. for 3 hours, the heating was performed to remove the solvent.
2 mm aramid fiber reinforced PES was obtained.

一方PES25%のDMAc溶液をグラビアコーターを用いて
フィルムAに塗布し、加熱脱溶媒してPESを片面にコー
トした40μm厚のラミネートフィルムを得た。このラミ
ネートフィルムを3層重ねた上にアラミド繊維強化PES
を繊維軸の方向をそろえて9層重ね、更にラミネートフ
ィルム3層を重ねたものを矩形の平金型に装てんし、32
0℃、100kg/mm2の条件下に20分間加熱加圧した。60℃ま
で冷却した後、金型より積層板を取りだした。厚さは2m
mであった。
On the other hand, a 25% PES DMAc solution was applied to the film A using a gravure coater, and the solvent was removed by heating to obtain a 40 μm-thick laminated film coated with PES on one side. Aramid fiber reinforced PES on three layers of this laminated film
Nine layers were aligned in the direction of the fiber axis, and three layers of the laminated film were further stacked in a rectangular flat mold.
Heating and pressurization were performed at 0 ° C. and 100 kg / mm 2 for 20 minutes. After cooling to 60 ° C., the laminate was removed from the mold. 2m thick
m.

実施例6 フィルムAの表面に、180メッシュの川砂の粒子を用
いてプラスト加工を施した。該フィルムと、ポリエーテ
ルエーテルケトン(以下PEEKと略す)を含浸したICI社
製炭素繊維UDシート、(商品名APC−2)を繊維の方向
をそろえて各10層交互に重ね、これを金型に装てんし、
360℃、450kg/cm2の条件下に20分間加熱加圧し、60℃ま
で冷却した後、2.2mm厚さの積層板を取り出した。
Example 6 The surface of the film A was subjected to plast processing using 180-mesh river sand particles. The film and a carbon fiber UD sheet (trade name: APC-2) manufactured by ICI and impregnated with polyetheretherketone (hereinafter abbreviated as PEEK) are alternately layered in ten layers each in the same fiber direction, and this is molded into a mold. And load it on
After heating and pressing at 360 ° C. and 450 kg / cm 2 for 20 minutes and cooling to 60 ° C., a 2.2 mm-thick laminate was taken out.

比較例1 旭コンポジット(株)製炭素繊維/エポキシUDプリプ
レグ(商品名ファイバーダックス)を10層積層し、エア
バッグ/オートクレーブ法により、150℃で2時間加熱
して、炭素繊維/エポキシ積層板(2mm厚)を得た。
Comparative Example 1 Ten layers of carbon fiber / epoxy UD prepreg (trade name: Fiber Dux) manufactured by Asahi Composite Co., Ltd. were laminated and heated at 150 ° C. for 2 hours by an airbag / autoclave method to obtain a carbon fiber / epoxy laminate ( 2 mm thick).

比較例2 比較例1で用いたものと同じプリプレグを10mm径のス
テンレス丸棒の金型に繊維軸が金型の長さ方向と成す角
が0゜,25゜となるように5層捲回し、その上を離型処
理を施したPETテープでラッピングした後、150℃のオー
ブン中で加熱硬化させた。室温まで冷却した後金型を抜
き取って内径10mm、外径12mmのラミネートパイプ2種を
得た。
Comparative Example 2 The same prepreg as that used in Comparative Example 1 was wound around a stainless steel round bar having a diameter of 10 mm in five layers such that the angle between the fiber axis and the length direction of the die was 0 °, 25 °. After wrapping it on a PET tape subjected to a release treatment, it was cured by heating in an oven at 150 ° C. After cooling to room temperature, the mold was extracted to obtain two types of laminated pipes having an inner diameter of 10 mm and an outer diameter of 12 mm.

比較例3 炭素繊維のUDシート/PPS(商品名ライトンACM)を10
枚重ね、実施例3と同じ成形条件下に厚さ2mmのUD積層
板を得た。
Comparative Example 3 10 carbon fiber UD sheets / PPS (trade name Ryton ACM)
A UD laminate having a thickness of 2 mm was obtained under the same molding conditions as in Example 3.

比較例4 フィルムAのかわりに、宇部興産(株)社製引張り強
度23.5kg/cm2、引張弾性率360kg/cm2のポリイミドフィ
ルム(商品名コーピレックス−R)の25μm規格品を用
いた以外は実施例4と同様の方法で内径10mm、外径12mm
の積層管を成形した。
Comparative Example 4 A polyimide film (trade name: Corpirex-R) having a tensile strength of 23.5 kg / cm 2 and a tensile modulus of elasticity of 360 kg / cm 2 (trade name: 25 μm) was used instead of Film A. Is 10 mm in inner diameter and 12 mm in outer diameter in the same manner as in Example 4.
Was formed.

比較例5 実施例4を同様に、直径10mmのステンレス丸棒を金型
として炭素繊維UDシート/PPS(商品名ライトンACM)を
5層捲回し、その外側をフィルムAでラッピングして実
施例4と同じ条件下に一体化せしめた後、得られた積層
管の最外層のフィルムAを剥がして試料とした。
Comparative Example 5 In the same manner as in Example 4, a stainless steel round bar having a diameter of 10 mm was used as a mold, and five layers of carbon fiber UD sheet / PPS (trade name: Ryton ACM) were wound. After being integrated under the same conditions as described above, the outermost film A of the obtained laminated tube was peeled off to obtain a sample.

比較例6 フィルムAを積層せず、アラミド繊維強化PESを10層
重ねた以下は実施例5と同じ条件下に成形して積層板を
得た。
Comparative Example 6 A laminated board was obtained by molding under the same conditions as in Example 5 except that film A was not laminated and 10 layers of aramid fiber reinforced PES were laminated.

比較例7 ブラスト加工したフィルムAを用いなかった以外は実
施例6と同様にして積層板を成形した。
Comparative Example 7 A laminate was formed in the same manner as in Example 6, except that the blasted film A was not used.

(発明の効果) 本発明の積層体は優れた機械的物性を有し、更には、
これまでの材料では得られなかった極めて高い衝撃吸収
性を有している。加えて、切断加工性、穴あけ加工性等
の機械加工性にも優れ、むしろ繊維強化の場合より加工
時の工程が簡略化されるという利点すらある。
(Effect of the Invention) The laminate of the present invention has excellent mechanical properties.
It has extremely high shock absorption, which cannot be obtained with conventional materials. In addition, it has excellent machinability such as cutting workability and drilling workability, and has the advantage that the process at the time of working is even more simplified than in the case of fiber reinforcement.

本発明の一つである高性能のフィルムと熱可塑性樹脂
からなる積層体は、その優れた機械的強度及び極めて高
度な耐衝撃性を生かし、例えば、自動車ボディーまわり
の部材、産業用ロボットのパーツ、ケーシング、各種機
械等の配管類、あるいは配線基板等に用いることができ
る。
A laminate comprising a high-performance film and a thermoplastic resin, which is one of the present invention, makes use of its excellent mechanical strength and extremely high impact resistance, for example, members around an automobile body, parts of an industrial robot. , Casing, piping of various machines, etc., or a wiring board.

また強化繊維と組み合わせた本発明のもう一つの積層
体は、高度な剛性が得られることにより、ゴルフクラ
ブ、釣竿、ラケットフレーム、スキーストック等のスポ
ーツ・レジャー用から、宇宙・航空分野における構造材
に至るまで、巾広く用いることができる。
Further, another laminate of the present invention in combination with a reinforcing fiber is a structural material in the space and aviation field from sports and leisure such as golf clubs, fishing rods, racket frames, and ski poles by obtaining high rigidity. Can be widely used.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】400℃未満に融点および分解点をもたない
アラミドからなり、35kg/mm2以上の引張強度及び700kg/
mm2以上の引張弾性率を有するフィルム層と熱可塑性樹
脂層とを積層一体化してなる積層体。
1. An aramid having no melting point or decomposition point below 400 ° C., having a tensile strength of 35 kg / mm 2 or more and 700 kg / mm 2
A laminate formed by laminating and integrating a film layer having a tensile modulus of at least 2 mm and a thermoplastic resin layer.
【請求項2】400℃未満に融点および分解点をもたない
アラミドからなり、35kg/mm2以上の引張強度及び700kg/
mm2以上の引張弾性率を有するフィルム層と繊維で補強
された熱可塑性樹脂層とを積層一体化してなる積層体。
2. An aramid having no melting point and decomposition point below 400 ° C., having a tensile strength of 35 kg / mm 2 or more and 700 kg / mm 2 or more.
A laminate formed by laminating and integrating a film layer having a tensile modulus of not less than mm 2 and a thermoplastic resin layer reinforced with fibers.
JP1303250A 1989-01-25 1989-11-24 Laminate Expired - Fee Related JP2892061B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP1303250A JP2892061B2 (en) 1989-11-24 1989-11-24 Laminate
CA 2026113 CA2026113C (en) 1989-01-25 1990-01-25 Prepreg, composite molded body, and method of manufacture of the composite molded body
DE69032210T DE69032210D1 (en) 1989-01-25 1990-01-25 PRE-IMPREGNATED COMPOSITE MOLDS AND PRODUCTION OF A COMPOSITE MOLD
KR1019900702133A KR930003894B1 (en) 1989-01-25 1990-01-25 New prepreg and composite molding and production of composite molding
PCT/JP1990/000085 WO1990008802A1 (en) 1989-01-25 1990-01-25 New prepreg and composite molding, and production of composite molding
EP90902370A EP0541795B1 (en) 1989-01-25 1990-01-25 New prepreg and composite molding, and production of composite molding
US08/034,171 US5597631A (en) 1989-01-25 1993-02-12 Prepreg, composite molding body, and method of manufacture of the composite molded body
US08/709,188 US5770313A (en) 1989-01-25 1996-09-06 Prepreg, composite molded body and method of manufacture of the composite molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1303250A JP2892061B2 (en) 1989-11-24 1989-11-24 Laminate

Publications (2)

Publication Number Publication Date
JPH03164244A JPH03164244A (en) 1991-07-16
JP2892061B2 true JP2892061B2 (en) 1999-05-17

Family

ID=17918689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1303250A Expired - Fee Related JP2892061B2 (en) 1989-01-25 1989-11-24 Laminate

Country Status (1)

Country Link
JP (1) JP2892061B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4224086B2 (en) * 2006-07-06 2009-02-12 三井金属鉱業株式会社 Wiring board and semiconductor device excellent in folding resistance
JP4583479B2 (en) * 2008-06-13 2010-11-17 三井金属鉱業株式会社 Wiring substrate and semiconductor device excellent in folding resistance
KR101221690B1 (en) * 2010-03-22 2013-01-11 한주엽 Protect panel and product mehod of the same
EP2750889B1 (en) * 2011-08-29 2019-01-02 Cytec Technology Corp. Interlaminar toughening of thermoplastics

Also Published As

Publication number Publication date
JPH03164244A (en) 1991-07-16

Similar Documents

Publication Publication Date Title
US5597631A (en) Prepreg, composite molding body, and method of manufacture of the composite molded body
KR102006511B1 (en) Composite laminate having improved impact strength and the use thereof
US3691000A (en) Glass fiber reinforced composite article exhibiting enhanced longitudinal tensile and compressive moduli
JP5158778B2 (en) Epoxy resin impregnated yarn and its use for producing preforms
KR101155765B1 (en) Composite of aramid and Method for manufacturing tComposite of aramid and Method for manufacturing the same he same
JP2016520446A (en) High-strength fiber composite material, method for producing the same, and helmet using the same
JP2892061B2 (en) Laminate
JP6956301B1 (en) Reinforced fiber stitch base material, preform material, and fiber reinforced composite material, and methods for manufacturing them.
JPH0575575B2 (en)
JP6629751B2 (en) Fiber-reinforced composite laminate and articles made therefrom
JPH08276525A (en) Laminated composite material and its manufacture
KR19990037286A (en) Tubular body made of fiber reinforced composite material
JP2882638B2 (en) Molding material
JP2805633B2 (en) Laminated molding
JP2004346190A (en) Prepreg and fiber reinforced resin composite
JP2744637B2 (en) Composite material
JP3561282B2 (en) Manufacturing method of composite material
JPH03186278A (en) Pole for pole jump
JP5280982B2 (en) Fiber reinforced composite material
JPH03161321A (en) Manufacture of laminated pipe
CN116288930A (en) Polyamide imide nanofiber membrane and preparation method and application thereof
JPH02194949A (en) Thermosetting resin composition
JP2004074471A (en) Frp molding intermediate material and its production method
Fangtao Improvement of compression performance of fiber reinforced polymer
JPH07227939A (en) Honeycomb cocuring molding method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080226

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090226

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees