JPH03161321A - Manufacture of laminated pipe - Google Patents

Manufacture of laminated pipe

Info

Publication number
JPH03161321A
JPH03161321A JP1300803A JP30080389A JPH03161321A JP H03161321 A JPH03161321 A JP H03161321A JP 1300803 A JP1300803 A JP 1300803A JP 30080389 A JP30080389 A JP 30080389A JP H03161321 A JPH03161321 A JP H03161321A
Authority
JP
Japan
Prior art keywords
film
laminated
fiber
thermosetting resin
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1300803A
Other languages
Japanese (ja)
Inventor
Tsuneo Igarashi
恒夫 五十嵐
Goro Furumoto
五郎 古本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP1300803A priority Critical patent/JPH03161321A/en
Priority to KR1019900702133A priority patent/KR930003894B1/en
Priority to EP90902370A priority patent/EP0541795B1/en
Priority to DE69032210T priority patent/DE69032210D1/en
Priority to CA 2026113 priority patent/CA2026113C/en
Priority to PCT/JP1990/000085 priority patent/WO1990008802A1/en
Priority to TW079100742A priority patent/TW205053B/zh
Publication of JPH03161321A publication Critical patent/JPH03161321A/en
Priority to US08/034,171 priority patent/US5597631A/en
Priority to US08/709,188 priority patent/US5770313A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To obtain a laminated pipe whose tenacity and shock absorbing properties are high, by a method wherein a film layer which is comprised of an organic polymer whose melting point is at least 300 deg.C and possess specific tensile strength and the tensile modulus of elasticity and a fiber-reinforced thermosetting resin layer are wound round with specific tension. CONSTITUTION:A film layer is constituted substantially of an organic polymer whose melting point or decomposition point is at least 300 deg.C and possesses tensile strength of at least 35kg/mm<2> and the tensile modulus of elasticity of at least 700kg/mm<2> and a fiber-reinforced thermosetting resin layer are wound round while giving tension of at least 8kg/mm<2>, laminated, unified and a laminated pipe is formed. Aramid, polyimide and whole aromatic polyester are available as an exemplification of the organic polymer whose melting point or decomposition point is at least 300 deg.C. The fiber-reinforced thermosetting resin layer is of a prepreg material obtained by infiltrating the thermosetting resin into a reinforcement fiber. In addition, it is preferable that the foregoing film thickness is in the extent of 10-50 mum.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高強度高弾性率のフィルム層と繊維強化熱硬
化性樹脂層とを積層し硬化一体化した積層管の製造方法
に関し、更に詳しくは、改良された極めて高い衝撃吸収
性と優れた機械的物性とを併せもった管状成形物の製造
方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a laminated tube in which a high-strength, high-modulus film layer and a fiber-reinforced thermosetting resin layer are laminated and cured together, and further relates to More specifically, the present invention relates to a method for manufacturing a tubular molded product that has both improved and extremely high impact absorption properties and excellent mechanical properties.

〔従来の技術及びその課題〕[Conventional technology and its problems]

カーボン繊維やガラス繊維で補強された熱硬化性樹脂か
ら或る管状成形体は軽量、高強度、高耐蝕性等の利点を
生かし、紡績用ボビン等にはじまり、各種産業用配管類
及び近年は釣竿、ゴルフクラブシャフト等のスポーツ用
具並びにロケットケース等など幅広い分野で利用されて
いる。
A tubular molded product made from a thermosetting resin reinforced with carbon fiber or glass fiber takes advantage of its advantages such as light weight, high strength, and high corrosion resistance, and has been used in applications such as spinning bobbins, various industrial piping, and, in recent years, fishing rods. It is used in a wide range of fields, including sports equipment such as golf club shafts and rocket cases.

このように汎用性の高い複合材料からなる管状成形体に
ついて、近年は至るところで研究開発がなされており、
また数多くの新しい技術が開示されている。
In recent years, research and development on tubular molded bodies made of highly versatile composite materials has been carried out everywhere.
Also, many new technologies have been disclosed.

しかしながら、新しい技術の多くは一般に、種々の機械
的物性の向上及びバランス化を、あるいはメッキ、ライ
ニング加工、金属との接合等の応用加工を指向したもの
であり、繊維強化熱硬化性樹脂管,の欠点とされている
耐衝撃性の悪さを改良しようとしたものは少ない。わず
かに強化材に炭素繊維とアラミド繊維とを併用すること
による衝撃吸収性の改良が試みられ効果を得た例を挙げ
ることができるがアラミド繊維を使用した場合その切断
しにくさのため、加工面がももける、ケバ立つ等機械加
工性が極めて悪く、実用上大きな問題となっている。
However, most of the new technologies are generally aimed at improving and balancing various mechanical properties, or applied processing such as plating, lining processing, and joining with metal, and are aimed at improving and balancing various mechanical properties, or applying processing such as plating, lining processing, and joining with metal. There are few attempts to improve the poor impact resistance, which is considered to be a drawback. There is an example of an attempt to improve shock absorption by using a combination of carbon fiber and aramid fiber as reinforcing materials, and it was effective, but when aramid fiber was used, it was difficult to cut, so it was difficult to process. The machinability is extremely poor, such as the surface becoming loose and fluffy, which is a big problem in practice.

一方、靭性あるいは衝撃吸収性の改良のみを考慮すれば
、ゴム、エラストマー又は熱可塑性樹脂等を戊形体中に
導入する方法が考えられるが、繊維強化材料の本来の特
徴である優れた機械的物性を犠牲にすることになるのは
明らかである。
On the other hand, if only improving toughness or shock absorption is considered, it is possible to introduce rubber, elastomer, or thermoplastic resin into the rod; It is clear that this will involve sacrificing the

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、かかる点に鑑みてなされたもので、繊維強化
樹脂積層管が本来もっている優れた機械的物性を損うこ
となく、靭性、衝撃吸収性が極めて高くなお且つ機械加
工が容易な繊維強化樹脂積層管の製造方法を提供するこ
とにある。
The present invention has been made in view of the above points, and is a fiber reinforced resin laminated pipe that has extremely high toughness and shock absorption properties and is easy to machine, without impairing the excellent mechanical properties inherent in the fiber reinforced resin laminated pipe. An object of the present invention is to provide a method for manufacturing a reinforced resin laminated tube.

〔・課題を解決するための手段〕[・Means to solve the problem]

上記課題を解決するため研究を重ねた結果、最近開発さ
れた引張強度、引張弾性率の非常に大きいフィルムを繊
維強化熱硬化性樹脂層に積層したのち硬化一体化させて
積層管を製造すると、機械的物性を損うことなく靭性、
衝撃吸収性が向上するという知見を得た。この知見を基
に更に検討を加えた結果、繊維強化熱硬化性樹脂層にフ
ィルムを積層するに際して8 kg / mm ”以上
の張力下でフィルムを積層し硬化一体化させて積層管を
製造することにより、フィルム層の把持効果により靭性
、衝撃吸収性が著しく向上するのみならず機械的物性も
向上するというという新事実を把み本発明を完成するに
至った。
As a result of repeated research to solve the above problems, we found that a recently developed film with extremely high tensile strength and tensile modulus is laminated onto a fiber-reinforced thermosetting resin layer and then cured and integrated to produce a laminated tube. toughness without compromising mechanical properties,
It was found that the shock absorption properties were improved. As a result of further investigation based on this knowledge, it was found that when laminating a film on a fiber-reinforced thermosetting resin layer, the film was laminated under a tension of 8 kg/mm or more and then cured and integrated to produce a laminated tube. The present invention was completed based on the new fact that the gripping effect of the film layer not only significantly improves toughness and shock absorption, but also improves mechanical properties.

即ち本発明は、融点又は分解点が300℃以上である有
機系重合体から実質的になり、35kg/11m”以上
の引張強度及び700kg/mm2以上に引張弾性率を
有するフィルム層と繊維強化熱硬化性樹脂層とを捲回し
積層し一体化する積層管の製造方法において、該フィル
ムを捲回するに際して、8kg / mm ’以上の張
力を付与しつつ捲回せしめることを特徴とする積層管の
製造方法、である。
That is, the present invention provides a film layer consisting essentially of an organic polymer having a melting point or decomposition point of 300° C. or higher and having a tensile strength of 35 kg/11 m or higher and a tensile modulus of 700 kg/mm or higher, and a fiber-reinforced thermal film layer. A method for producing a laminated tube in which a curable resin layer is wound, laminated, and integrated, the laminated tube being wound while applying a tension of 8 kg/mm' or more when winding the film. This is the manufacturing method.

本発明に用いるフィルムは以下に述べる要件を備えてい
る必要がある。
The film used in the present invention must meet the requirements described below.

まず、第1に、フィルム及びテープは、300℃未満に
は融点をもたない有機系重合体から実質的に構成されて
いる必要がある。融点が、300℃未満であると、樹脂
の硬化等のコンポジットの製造工程で、融解したり、熱
変形したりするので好ましくなく、また製品化されたあ
とも、使用環境が少し厳しくなると性能が著しく低下す
ることがあるので好ましくない。このような高融点の有
機系重合体としては、アラミド、ポリイミド、ポリエー
テルエーテルケトン、全芳香族ポリエステル、ポリベン
ツイミダゾール、ポリベンツビスチアゾール等が挙げら
れるが、樹脂との接着の良さ及び以下に述べる高強度、
高弾性率の発現のし易さ等からアラミドとポリイミド、
なかでもアラミドが好ましい。
First, films and tapes must be substantially composed of organic polymers that do not have a melting point below 300°C. If the melting point is less than 300°C, it is undesirable because it will melt or be thermally deformed during the composite manufacturing process such as curing the resin, and even after it is commercialized, the performance may deteriorate if the usage environment is a little harsh. This is not preferable as it may cause a significant decrease. Examples of such high melting point organic polymers include aramid, polyimide, polyetheretherketone, wholly aromatic polyester, polybenzimidazole, polybenzbisthiazole, etc. high strength,
Aramid and polyimide because of their ease of developing high elastic modulus, etc.
Among them, aramid is preferred.

好ましく用いられるアラミドには下記の一般式(1)、
(II)またはこれらの共重合体等がある。
Preferably used aramids have the following general formula (1),
(II) or copolymers thereof.

(式中において、 Rl+ R,およびR,は から選ばれ、これらの水素原子がハロゲン,メチル,エ
チル,メトキシ,ニトロ,スルホン等の官能基で置換さ
れていてもよい。m,nは平均重合度であり約50〜l
000である。) 本発明で用いられるフィルムが特定の有機系重合体から
実質的になるという意味は、上記した特定の有機系重合
体以外の成分が、本発明の効果を損わない範囲で少量含
まれていてもよいことであり、例えば上記した以外の有
機系重合体、有機系低分子化合物、無機化合物などを少
量含有してもよい。
(In the formula, Rl+ R, and R are selected from, and these hydrogen atoms may be substituted with functional groups such as halogen, methyl, ethyl, methoxy, nitro, and sulfone. m and n are average polymerization degree and about 50~l
It is 000. ) The film used in the present invention essentially consists of a specific organic polymer, which means that components other than the above-mentioned specific organic polymer may be contained in small amounts within the range that does not impair the effects of the present invention. For example, a small amount of an organic polymer, an organic low molecular compound, an inorganic compound, etc. other than those mentioned above may be contained.

次に本発明に用いるフィルムは35kg/mm”以上の
引張強度および700kg/mm2以上の引張弾性率を
有している必要がある。このフィルムは、従来汎用のも
のと比べればこれらの物性が抜きん出ていることは明ら
かであるか、繊維強化樹脂層の機械的物性に対しては低
いものであり最終成形品の機械的物性を極力低下させな
いためには、これらの要件が満足されねばらなず、好ま
しくは45kg/mm’以上の引張強度を有しているこ
とであり、又はIOOOkg / mm 2以上の引張
弾性率を有していることである。フィルムは、コンポジ
ット製品としての抗張力の必要な方向に引張強度や引張
弾性率を増強したいわゆるテンシライズドタイプが用い
られてもよいがもちろん、フィルムとして、等方的な性
能を有するものを用いた方が、得られる成形体の機械的
物性及び寸lb安定性に方向性か少ないという点でよい
。本発明において、引張強度と引張弾性率は少くとも1
つの方向か前記した値を満たしていればよいが、好まし
くは、任會に選んだ互いに直交する2つの方向の特性の
平均値が前記した値を満たしていることである。
Next, the film used in the present invention must have a tensile strength of 35 kg/mm2 or more and a tensile modulus of 700 kg/mm2 or more.This film has outstanding physical properties compared to conventional general-purpose films. It is clear that the mechanical properties of the fiber-reinforced resin layer are low, and these requirements must be met in order to prevent the mechanical properties of the final molded product from deteriorating as much as possible. , preferably has a tensile strength of 45 kg/mm' or more, or has a tensile modulus of IOOO kg/mm2 or more.The film has the necessary tensile strength as a composite product. Although a so-called tensilized type film with enhanced tensile strength and tensile modulus in the direction may be used, it is of course better to use a film with isotropic performance because the mechanical properties of the resulting molded product are improved. In the present invention, the tensile strength and tensile modulus are at least 1.
It is sufficient that one direction satisfies the above-mentioned value, but preferably, the average value of the characteristics in two arbitrarily selected directions orthogonal to each other satisfies the above-mentioned value.

本発明において、補強効果を十分に発現させるためには
、フィルムと熱硬化性樹脂とが十分な接着力をもっこと
が好ましい。大きな接着力は、製膜上の工夫、製膜後の
物理的又は化学的なエッチングによりフィルム及びテー
プの表面を粗にする方t去、コロナ放電処理、プラズマ
処理、化学分解により表面に化学活性種を導入する方法
、並びにエポキシ化合物、イソシアネート化合物、レゾ
ルシン・ホルマリン・ラテックス混合物等により接着用
の含浸前処理をする方法、又はこれらを組み合わせる等
の方法が好ましく用いられ、これらにより達成される。
In the present invention, in order to sufficiently exhibit the reinforcing effect, it is preferable that the film and the thermosetting resin have sufficient adhesive strength. Great adhesion can be achieved by making the surface of the film or tape rougher through film formation, physical or chemical etching after film formation, and chemical activation of the surface through corona discharge treatment, plasma treatment, or chemical decomposition. Methods such as introducing a seed, pre-impregnation treatment for adhesion with an epoxy compound, isocyanate compound, resorcinol/formalin/latex mixture, etc., or a combination of these methods are preferably used and achieved by these methods.

本発明に用いるフィルムの厚みは成形品におけるフィル
ム層と繊維強化性樹脂層との積層構成を考慮し.て適宜
決定されるが通常5〜I O O llmであり、好ま
しくはlO〜50μmである。
The thickness of the film used in the present invention is determined by considering the laminated structure of the film layer and fiber-reinforced resin layer in the molded product. Although it is determined appropriately, it is usually 5 to IO llm, preferably 10 to 50 μm.

本発明でいう繊維強化熱硬化性樹脂層とは、補強繊維に
熱硬化性樹脂を含浸して得られたプリプレグ材をいう。
The fiber-reinforced thermosetting resin layer in the present invention refers to a prepreg material obtained by impregnating reinforcing fibers with a thermosetting resin.

本発明に用いる補強繊維としては、ガラス繊維、カーボ
ン繊維、アラミド繊維、ポリベンズイミダゾール繊維、
ポリベンゾチアゾール繊維、並びにこれらを例えばニッ
ケルメッキを施したカーボン繊維等のごとき金属被覆し
たもの、またアルミナ繊維、シリコンカーバイド繊維等
の無機繊維も含み、これらの繊維の2種以上を併用する
こともできる。
Examples of reinforcing fibers used in the present invention include glass fibers, carbon fibers, aramid fibers, polybenzimidazole fibers,
It also includes polybenzothiazole fibers, metal-coated fibers such as nickel-plated carbon fibers, and inorganic fibers such as alumina fibers and silicon carbide fibers, and two or more of these fibers may be used in combination. can.

また繊維は一方向に引き揃えたシート状の形態で、ある
いは織物の形態で用いられ、なお特に等方的な機械的物
性が要求される用途においては適当な長さにカットされ
た繊維あるいは連続した繊維がランダムに配向したマッ
ト状の形態でも使用される。
In addition, fibers are used in the form of sheets aligned in one direction or in the form of woven fabrics, and in applications where isotropic mechanical properties are particularly required, fibers cut into appropriate lengths or continuous fibers are used. It is also used in the form of a mat with randomly oriented fibers.

本発明に用いる熱硬化性樹脂は特に限定されるものでは
なく、例えば、エポキシ樹脂、フェノール樹脂、ポリイ
ミド樹脂、ポリエステル樹脂等から選ばれる。また、こ
れらの樹脂に、紫外線吸収剤、難燃剤、酸化防止剤、滑
剤、着色剤、熱安定剤、老化防止剤、補強用短繊維、補
強用粉粒体、戒形用薬剤、熱可塑性樹脂、エラストマー
、ゴム状物及びその他通常の樹脂添加剤が添加されてい
てもよい。
The thermosetting resin used in the present invention is not particularly limited, and is selected from, for example, epoxy resins, phenol resins, polyimide resins, polyester resins, and the like. In addition, these resins include ultraviolet absorbers, flame retardants, antioxidants, lubricants, colorants, heat stabilizers, anti-aging agents, reinforcing short fibers, reinforcing powders, disciplinary agents, and thermoplastic resins. , elastomers, rubbery materials and other conventional resin additives may be added.

フィルム層と繊維強化熱硬化性樹脂層との積層構造は繊
維強化熱硬化性樹脂層とフィルム層とが交互に積層され
たもの、繊維強化熱硬化性樹脂層の外側にフィルム層が
積層されたもの、繊維強化熱硬化性樹脂層の内側にフィ
ルム層が積層されたもの、繊維強化熱硬化性樹脂層の両
側にフィルム層が積層されたいわゆるサンドイッチ構或
のもの及びその逆の構造のもの等が挙げられるが特に衝
撃吸収性と破壊防護との観点からは、繊維強化熱硬化性
樹脂層とフィルム層との交互積層の構造のものよりも最
外層にフィルム層が配置されたものが好ましく、さらに
好ましくは最外層と最内層とにフィ!レムが配置された
ものが良い。積層割合は、或形体に望まれる機械的物性
に応じて適宜選択出来るが一般に、フィルムの積層管全
体に対する分率が5〜50%の範囲が好ましく、更に好
ましくは10〜20%である。
The laminated structure of the film layer and the fiber-reinforced thermosetting resin layer is such that the fiber-reinforced thermosetting resin layer and the film layer are alternately laminated, or the film layer is laminated on the outside of the fiber-reinforced thermosetting resin layer. Those with a film layer laminated on the inside of a fiber-reinforced thermosetting resin layer, those with a so-called sandwich structure in which film layers are laminated on both sides of a fiber-reinforced thermosetting resin layer, and those with the opposite structure. However, from the viewpoint of shock absorption and destruction protection, a structure in which a film layer is arranged as the outermost layer is preferable to a structure in which fiber-reinforced thermosetting resin layers and film layers are alternately laminated. More preferably, the outermost layer and the innermost layer are filled! The one with Rem placed is good. The lamination ratio can be appropriately selected depending on the mechanical properties desired for a certain shape, but in general, the ratio of the film to the entire laminated tube is preferably in the range of 5 to 50%, more preferably 10 to 20%.

積層に供せられるフィルムは、フィルムの両面が繊維強
化熱硬化性樹脂層に接する場合はフィルムをそのまま積
層すればよいし、フィルムが複数層連続して、積層され
る場合は、あらかじめ少なくともフィルムの片面に、熱
−硬化性樹脂をコーター等を用いて塗工し、必要に応し
て加熱し、いわゆるBステージ化させたものを使用する
If both sides of the film are in contact with the fiber-reinforced thermosetting resin layer, the films to be laminated may be laminated as is, or if multiple layers of film are to be laminated in succession, at least one layer of the film may be laminated in advance. A thermosetting resin is coated on one side using a coater or the like, and heated if necessary to form a so-called B stage.

また用いるフィルムの形態も一般の広幅のものでもよい
が、比較的細幅のテープ状のものでもフィラメントワイ
ンディング法と同様の方l去で使用することができる。
Further, the form of the film used may be a general wide film, but a relatively narrow tape-like film can also be used in the same manner as the filament winding method.

更に、一枚の連続したフイルムを用いることもできれば
、あらかじめ複数枚積層したものを使用することもでき
る。
Furthermore, it is possible to use one continuous film, or to use a plurality of films laminated in advance.

本発明は上記フィルムを捲回し積層するに際して、該フ
ィルムに8 kg / mm 2以上の張力を付与しつ
つ捲回しすることが必要である。8 kg / +nm
 2以下の張力下で捲回し成形した場合は積目した各層
間の密着性が悪いので層間剥離が起こり易く不充分な物
性の成形体しか得られない。また、フイルム層にシワが
生じ易く、このシワが物性低下の原因となり、外観上も
好ましくない。好ましくは10kg/mm2以上、さら
に好ましくは12kg/mm”以上である。上限はフィ
ルムの強度によって考慮されればよい。
In the present invention, when winding and laminating the above film, it is necessary to wind the film while applying a tension of 8 kg/mm 2 or more to the film. 8 kg/+nm
When winding is carried out under a tension of 2 or less, the adhesion between the laminated layers is poor and delamination is likely to occur, resulting in a molded article with insufficient physical properties. Further, the film layer tends to wrinkle, and these wrinkles cause deterioration of physical properties, which is also unfavorable in terms of appearance. It is preferably 10 kg/mm2 or more, more preferably 12 kg/mm'' or more.The upper limit may be taken into consideration depending on the strength of the film.

あらかじめ複数枚を積層しておく場合でも、積層した各
層間の密着性を良くするために、積層は8 kg / 
mm ”以上の張力下で為されるべきである。
Even if multiple sheets are laminated in advance, in order to improve the adhesion between each laminated layer, the lamination weight is 8 kg /
This should be done under a tension of at least 2 mm.

またこの複数枚積層したフィルム層を、繊維強化熱硬化
性樹脂層と積層する際にも、8 kg / mm 2以
上の張力で行なう必要があるのは言うまでもない。
Furthermore, it goes without saying that when laminating a plurality of film layers laminated together with a fiber-reinforced thermosetting resin layer, it is necessary to do so with a tension of 8 kg/mm 2 or more.

繊維強化熱硬化性樹脂管が本来もっている高い機械的物
性を損なわず靭性、衝撃吸収性が著しく向上する積層管
の製造は、例えば以下の方法で実施できる。金型に繊維
強化熱硬化性樹脂層捲回し後あらかじめ熱硬化性樹脂を
塗工し加熱しBステージ化,されたフィルムをクリール
機などから供給し、フィルムの張力が8 kg / I
nm 2以上になるようクリール機でブレーキをかけな
がら捲回された繊維強化熱硬化性樹脂層の上に捲回した
後、金型ごと加熱炉に入れて硬化一体化させれば改良さ
れた積層管が製造できる。
A laminated pipe with significantly improved toughness and shock absorption properties without impairing the high mechanical properties originally possessed by fiber-reinforced thermosetting resin pipes can be produced, for example, by the following method. After winding the fiber-reinforced thermosetting resin layer around the mold, the thermosetting resin is coated in advance and heated to form the B stage, and the film is supplied from a creel machine, etc., and the tension of the film is 8 kg/I.
After winding the fiber-reinforced thermosetting resin layer with a creel machine while applying the brakes so that the thickness is at least 2 nm, the entire mold is placed in a heating oven and cured to form an improved laminated layer. Pipes can be manufactured.

またBステージ化されたフィルム層を細幅のテープ状で
供給し、例えば汎用のテーピングマシン等を用いて8 
kg / mm 2以上の張力ですでに捲回された繊維
強化熱硬化性樹脂層の上に捲回して製造することができ
る。
In addition, the B-staged film layer is supplied in the form of a narrow tape, and for example, a general-purpose taping machine or the like is used to
It can be manufactured by winding it onto a fiber-reinforced thermosetting resin layer that has already been wound with a tension of kg/mm2 or more.

一般に繊維強化熱硬化性樹脂プリプレグを捲回し積層し
て積層管を製造する場合、戊形体の圧密化と、樹脂の流
出防止の為、外型の代用として離型テープをテーピング
して硬化が実施されるが、本発明において、最外層にフ
イルム層を積層する場合、この操作を省略し、成形工程
を簡略化することも可能である。
Generally, when manufacturing a laminated tube by winding and laminating fiber-reinforced thermosetting resin prepreg, curing is performed by taping release tape as a substitute for the outer mold in order to consolidate the rod-shaped body and prevent resin from flowing out. However, in the present invention, when a film layer is laminated as the outermost layer, this operation can be omitted and the molding process can be simplified.

〔実施例〕〔Example〕

以下、実施例により本製造法をさらに詳しく説明する。 Hereinafter, this manufacturing method will be explained in more detail with reference to Examples.

なお、積層管の物性測定条件は下記の条件で行なった。The physical properties of the laminated tube were measured under the following conditions.

四点曲げ破壊強度;圧子間距離150mm、支点間距離
500mm(圧子、支点共にR=501Im)、曲げ速
さ30+nm/分、試料長650n+m0軸圧縮;圧縮
速さl+nm/分、試料長13mm・面圧縮;圧縮速さ
1+nm/分、試料長17mm。
Four-point bending fracture strength: distance between indenters 150 mm, distance between fulcrums 500 mm (both indenter and fulcrum R = 501 Im), bending speed 30 + nm/min, sample length 650 n + m0-axis compression: compression speed l + nm/min, sample length 13 mm / surface Compression: compression speed 1+nm/min, sample length 17 mm.

アイゾット衝撃;秤量150kg−Cm(ハンマー重量
874kg)、振上げ角135度、試料長64mm0 外観の評価方法;断面の状態はマルトー(掬製丸刃式の
ダイヤモンドカッターで切断しその断面のCFプリプレ
グの内層とフイルムBの外層との接着状態を観察し空隙
の有無で評価した。また表面外観はシワの状態を肉眼で
評価した。
Izod impact: Weighing 150 kg-Cm (hammer weight 874 kg), swinging angle 135 degrees, sample length 64 mm The state of adhesion between the inner layer and the outer layer of Film B was observed and evaluated based on the presence or absence of voids.The surface appearance was evaluated visually for wrinkles.

先ずフィルムの製造については、98%濃硫酸中に溶解
して、C=0.5g/100−にて、30℃で測定した
対数粘度が5.5のポリーpフエニレンテレフタルアミ
ド(PPTAと略す)を99.5%の硫酸にポリマー濃
度12%で溶解し、光学異方性のあ,るドープを得た。
First, for film production, polyp-phenylene terephthalamide (abbreviated as PPTA) was dissolved in 98% concentrated sulfuric acid and had a logarithmic viscosity of 5.5 measured at 30°C at C=0.5g/100-. ) was dissolved in 99.5% sulfuric acid at a polymer concentration of 12% to obtain a dope with optical anisotropy.

このドープを真空下に脱気し、濾過したのち、ギアポン
プを通じて、スリットダイから押出し、鏡面に磨いたタ
ンタル製のベルトにキャストし、相対湿度約40%の約
90℃の空気の雰囲気のゾーンを通して、流延ドープを
光学等方化し、ベルトとともに、20℃の30%硫酸水
溶液中に導いて凝固させた。次いで、凝固フィルムをベ
ルトからひきはがし、カセイソーダ水溶液で中和し、水
洗した。洗浄の終了したフィルムを乾燥させずに、ロー
ラで長さ方向に約115倍延伸し、次いてテンターで幅
方向に1.3倍延伸したのち、定長に保持しつつ、20
0℃で屹燥し更に300℃で定長塾処理し、20μmの
P P ’FAフ ィルムを製造した。
This dope is degassed under vacuum and filtered, then extruded through a slit die through a gear pump, cast onto a mirror-polished tantalum belt, and passed through a zone of air atmosphere at approximately 90°C with a relative humidity of approximately 40%. The cast dope was made optically isotropic and introduced together with the belt into a 30% aqueous sulfuric acid solution at 20° C. to solidify. The coagulated film was then peeled off from the belt, neutralized with an aqueous solution of caustic soda, and washed with water. Without drying the washed film, it was stretched approximately 115 times in the length direction with a roller, then 1.3 times in the width direction with a tenter, and then stretched for 20 minutes while keeping the film at a constant length.
It was dried at 0°C and further subjected to fixed length treatment at 300°C to produce a 20 μm PP'FA film.

得られたフィルムは淡黄色透明で、熱分析において50
0℃以下には転移温度は見られなかった。
The resulting film was pale yellow and transparent, with a thermal analysis of 50
No transition temperature was observed below 0°C.

また引張強度及ひ弾性率は、長さ方向でそれぞれ48k
g/mm2、1490kg / mm ”、幅方向でそ
れぞれ4 7 kg / mm 2、1420kg /
 mm ’であった(フィルムAとする)。
In addition, the tensile strength and elastic modulus are 48k each in the length direction.
g/mm2, 1490kg/mm'', widthwise 47 kg/mm2, 1420kg/mm, respectively
mm' (referred to as film A).

ついて熱硬化性樹脂塗エフィルムは上記P P TAフ
ィルムの片面に、化或ファイバーライト((1)社製エ
ポキシ樹脂(商品名# 77. 14メチルエチルケト
ン混合液、固形分70重量%)を用利ロール機械(巾社
製塗工機を用いコンマダイレクト方式で塗工し、100
℃で15分加熱し熱硬化性樹脂塗工フィルム(フィルム
Bとする)を製造した。このフィルムBの厚さは約30
μmであった。
The thermosetting resin-coated film is made by using an epoxy resin (trade name #77.14 methyl ethyl ketone mixture, solid content 70% by weight) manufactured by Chemical Fiberlite ((1)) on one side of the above P P TA film. Coated using a comma direct method using a roll machine (Kawasha Coating Machine, 100%
A thermosetting resin coated film (referred to as film B) was produced by heating at ℃ for 15 minutes. The thickness of this film B is approximately 30
It was μm.

また、繊維強化熱硬化性樹脂は前記、化或ファイバーラ
イト(掬社製のエポキシ樹脂を旭日本カーボンファイバ
ー(掬社製の一方向に引きそろえた繊維径12μmのア
クリロニトリル系炭素繊維12000本に含浸しつつ、
これをシリコン離型紙を巻き付けた5 0 0 mmφ
のドラム上に巻き取った。これを繊維方向と直角な方向
に切り開き、100℃で30分加熱して一方向繊維強化
熱硬化性樹脂(CFプリプレグとする)を製造した。こ
のCFプリプレグの厚さは約0. 2 Illmであっ
た。
In addition, the fiber-reinforced thermosetting resin was prepared by impregnating 12,000 acrylonitrile carbon fibers with a fiber diameter of 12 μm aligned in one direction with Asahi Nippon Carbon Fiber (manufactured by Kikusha Co., Ltd.) with epoxy resin manufactured by Kaoru Fiberlite (Kikusha Co., Ltd.). While doing so,
This was wrapped with silicone release paper to a diameter of 500 mm.
wound onto a drum. This was cut in a direction perpendicular to the fiber direction and heated at 100° C. for 30 minutes to produce a unidirectional fiber-reinforced thermosetting resin (referred to as CF prepreg). The thickness of this CF prepreg is approximately 0. 2 Illm.

実施例1 信濃工業(掬製のローラーローリング機を使用して直径
lowφ、長さ5 0 0 mmのステンレス製の丸棒
金型に繊維方向の長さが400fflrTlのCFプリ
プレグを繊維方向と丸棒金型の長さ方向が一致するよう
に5層捲回し積層した。
Example 1 A CF prepreg with a length in the fiber direction of 400fflrTl was placed in a stainless steel round bar mold with a diameter lowφ and a length of 500 mm using a roller rolling machine manufactured by Shinano Kogyo (Kiki). Five layers were wound and laminated so that the length directions of the molds matched.

このCFプリプレグが捲回しされた丸棒金型をシマノ工
業(即製テーピングマシンに装着した。次に,巾15m
mにスリットし、紙管に巻き取ったテープ状のフィルム
Bをテーピングマシンの紙管装着部にセットした。この
フィルムBを所定のガイドロールを通した後、捲回しさ
れたCFプリプレグの左側端部に樹脂塗膜面をCFブリ
プレグ側に合わせて貼りつけた。その後、テーピングマ
シンを駆動し、丸棒金型を20回転/分で回転させピッ
チ2. 5 mm、張力8 kg / +n+n 2で
捲回し積層を行なった。得られた積層体に更に離型処理
を施した厚さ25μmのポリエチレンテレフタレートテ
ープ(以後PETテープという)でラッピングした。
The round bar mold wound with this CF prepreg was attached to a Shimano Kogyo (immediately made taping machine).
The tape-shaped film B, which was slit into a length of m and wound around a paper tube, was set in the paper tube mounting section of a taping machine. After passing this film B through a predetermined guide roll, it was attached to the left end of the wound CF prepreg with the resin coating surface facing the CF prepreg side. After that, the taping machine is driven and the round bar mold is rotated at 20 revolutions/minute to pitch 2. 5 mm and a tension of 8 kg/+n+n2. The obtained laminate was further wrapped with a 25 μm thick polyethylene terephthalate tape (hereinafter referred to as PET tape) that had been subjected to a release treatment.

この時のラッピング条件はフィルムBテープ捲回し条件
と同じとした。
The wrapping conditions at this time were the same as those for film B tape winding.

この積層体が巻かれた丸棒金型をテーピングマシンから
取り外し140℃の熱風循環式加熱装置中で2時間硬化
させた。硬化した成型体からPETテープを除去し、丸
棒金型を脱芯機にて抜き取り内径10mmφ、肉厚1 
mm長さ400mmの内層がCF層、外層がPPTAフ
ィルム層からなる積層管を得た。
The round bar mold around which this laminate was wound was removed from the taping machine and cured for 2 hours in a hot air circulation type heating device at 140°C. The PET tape was removed from the cured molded body, and the round bar mold was extracted using a de-coring machine and had an inner diameter of 10 mmφ and a wall thickness of 1.
A laminated tube having a length of 400 mm and consisting of a CF layer as an inner layer and a PPTA film layer as an outer layer was obtained.

実施例2 実施1に使用したのと同じ丸棒金型を、テーピングマシ
ンに装着した後該丸棒金型に幅15mmのテープ状フィ
ルムBを実施例lと同じ方法、条件で積層した。この時
フィルム層の全体の長さは400wunとした。
Example 2 The same round bar mold as used in Example 1 was mounted on a taping machine, and then tape-shaped film B having a width of 15 mm was laminated on the round bar mold in the same manner and under the same conditions as in Example 1. At this time, the total length of the film layer was 400 wun.

このフィルム層が捲回しされた金型を、テーピングマシ
ンより取り外した後実施例1と同じローラーローリング
機にて同じ方法、条件でCFプリプレグを捲回し積層し
た。この丸棒金型を再度テーピングマシンに装着し、幅
15mmのテープ状のフィルムBを最内層に捲回したと
同じ方注、条件でCFプリブレグの上に捲回した。つい
で実施例lと同じ方法、条件でPETテープをラッピン
グ、加熱硬、化或形、脱芯を行ない最内層と最外層とが
フィルム層、中間層がCF層のいわゆるサンドイッチ構
成の積層管を得た。
The mold with this film layer wound thereon was removed from the taping machine, and then CF prepreg was wound and laminated using the same roller rolling machine as in Example 1 under the same method and conditions. This round bar mold was mounted on the taping machine again, and tape-shaped film B having a width of 15 mm was wound on the CF pre-reg under the same conditions as those used for winding the innermost layer. Then, the PET tape was wrapped, heated, hardened, shaped, and decoreated in the same manner and under the same conditions as in Example 1 to obtain a laminated tube with a so-called sandwich structure in which the innermost and outermost layers were film layers and the middle layer was a CF layer. Ta.

実施例3 実施例1に使用したのと同じ丸棒金型をテーピングマシ
ンに装着した。次に幅10mmにスリットし紙管に巻き
取ったテープ状のフィルムBを、テーピングマシンの紙
管装着部にセットした。このフィルムBを所定のがイド
ロールを通した後、丸棒金型の左側端部に貼りつけた。
Example 3 The same round bar mold used in Example 1 was installed in a taping machine. Next, tape-shaped film B, which had been slit to a width of 10 mm and wound around a paper tube, was set in the paper tube mounting section of the taping machine. This film B was passed through a predetermined roller and then attached to the left end of a round bar mold.

この時フィルムBの樹脂塗工面を金型側になるようにし
て貼りつけた。テーピングマシンを駆動し丸棒金型を2
0回転/分で回転させピッチ10mm、張力10kg/
mm2で捲回しを行なった。捲回しの幅は400mmと
した。この丸棒金型をテーピングマシンから取り外し繊
維方向の長さが400mmのCFプリプレグを繊維方向
と丸棒金型の長さ方向が一致するようにして捲回しされ
ているフィルム層の上に1層捲回し積層した。
At this time, the resin-coated side of Film B was attached to the mold side. Drive the taping machine and make two round bar molds.
Rotate at 0 rotations/min, pitch 10mm, tension 10kg/
Winding was performed in mm2. The width of the winding was 400 mm. This round bar mold was removed from the taping machine and one layer of CF prepreg with a length of 400 mm in the fiber direction was wound on top of the film layer, which was wound so that the fiber direction and the length direction of the round bar mold matched. It was rolled and laminated.

再度、丸棒金型をテーピングマシンに装着しテープ状の
フィルムBをピッチ10mm,張力10kg/ mm 
’でCFプリプレグの上に捲回した。次に長さ400+
nmのCFプリプレグをフィルム層の上に1層捲回した
Again, attach the round bar mold to the taping machine and tape-shaped film B with a pitch of 10 mm and a tension of 10 kg/mm.
' was wound on top of CF prepreg. Next, the length is 400+
One layer of nanometer CF prepreg was wound on the film layer.

この方法を繰り返して、フィルムBとCFプリプレグが
交互に重なり合った積層体を得た。この積層体のフィル
ムBの枚数は6枚、CFプリプレグは5枚とした。この
積層体が巻かれた丸棒金型をテーピングマシンにセット
し実施例lと同じ方法、条件でPETテープラッピング
、加熱硬化或形、脱芯を行ないCFとフィルムが交互に
積層された積層管を得た。
This method was repeated to obtain a laminate in which film B and CF prepreg were alternately overlapped. The number of films B in this laminate was six, and the number of CF prepregs was five. The round bar mold in which this laminate was wound was set in a taping machine, and PET tape wrapping, heat curing or shaping, and decore were performed in the same manner and under the same conditions as in Example 1 to produce a laminate tube in which CF and film were alternately laminated. I got it.

実施例4 直径10IIIITlφ、長さ2 0 0 mのステン
レス製の丸棒金型に、繊維方向の長さが1 0 0 m
mのCFプリプレグをローラーローリング機を使用して
、繊維方向と丸棒金型の長さ方向が一致するようにして
5層捲回し積層した。このCFプリプレグが捲回し積層
された丸棒金型をシマノ工業(株製テーピングマシンに
装着した。幅100mmにスリットし紙管に巻き取った
フィルムBをブレーキ機構付きの紙管装着部にセットし
た。このフィルムBを、所定のがイドロールを通した後
、捲回しされたCFプリプレグに貼り合わせた。この時
フィルムBの樹脂塗膜面はCFプリプレグ側になるよう
に貼り合わせた。また捲回しされたCFプリプレグ層の
側端部とフィルムBの側端が合うように貼り合わせた。
Example 4 A stainless steel round bar mold with a diameter of 10IIITlφ and a length of 200 m was used, and the length in the fiber direction was 100 m.
Using a roller rolling machine, 5 layers of CF prepreg were wound and laminated so that the fiber direction and the length direction of the round bar mold matched. The round bar mold in which this CF prepreg was wound and laminated was installed in a taping machine manufactured by Shimano Industries. Film B, which had been slit to a width of 100 mm and wound around a paper tube, was set in a paper tube mounting section with a brake mechanism. After passing this film B through a predetermined roll, it was bonded to the wound CF prepreg.At this time, the resin coated side of film B was bonded to the CF prepreg side. The side edges of the prepared CF prepreg layer and the side edges of Film B were bonded together so that they matched.

その後テーピングマシンを駆動させ丸棒金型を20回転
/分で回転させ、フィルムBを張力8 kg/ mm 
2で6回捲回し積層を行なった。その後は実施例lに記
述したと同じ方法、条件で硬化戊形、脱芯を行ない積層
管を得た。
After that, the taping machine was driven to rotate the round bar mold at 20 revolutions/minute, and the film B was stretched at a tension of 8 kg/mm.
2, it was wound six times and laminated. Thereafter, hardening, shaping, and core removal were performed in the same manner and under the same conditions as described in Example 1 to obtain a laminated tube.

比較例l 実施例lに使用したのと同じ金型、装置を用いて長さ4
00mmのCFプリプレグを繊維方向と丸棒金型の長さ
方向が一致するように6層捲回し積層した。このCFプ
リプレグが捲回し積層された丸棒金型をシマノ工業■製
テーピングマシンに装着した。
Comparative Example 1 Using the same mold and equipment as used in Example 1,
Six layers of 00 mm CF prepreg were wound and laminated so that the fiber direction and the length direction of the round bar mold matched. The round bar mold in which this CF prepreg was wound and laminated was mounted on a taping machine manufactured by Shimano Industries ■.

次に実施例1と同じ方法、条件でPETテープをラッピ
ング、硬化威形、脱芯を行ないCF層だけから成る内径
10+nm、肉厚IIIIm、長さ400mmの積層管
を得た。
Next, the PET tape was wrapped, cured, and decoreated in the same manner and under the same conditions as in Example 1 to obtain a laminated tube with an inner diameter of 10+ nm, a wall thickness of III m, and a length of 400 mm, consisting only of a CF layer.

比較例2 テープ状のフィルムBを捲回しする時の張力を5 kg
 / mm ”で実施した以外は実施例lと同じ方法、
条件で内径10mm、肉厚lfflm、長さ400mm
の積層管を得た。
Comparative Example 2 The tension when winding tape-shaped film B was 5 kg.
/ mm'', but the same method as in Example 1,
Inner diameter 10mm, wall thickness ffflm, length 400mm
A laminated tube was obtained.

比較例3 シート状のフィルムBを捲回しする時の張力を5 kg
 / Inm ”で実施した以外は実施例2と同じ方法
、条件で内径10mm、肉厚lIIIm、長さ100+
nmの積層管を得た。
Comparative Example 3 The tension when winding sheet-like film B was 5 kg.
/ Inm'', the same method and conditions as in Example 2 were used, with an inner diameter of 10 mm, a wall thickness of lIIIm, and a length of 100+.
A laminated tube of nm size was obtained.

実施例1〜4及び比較例1〜3の各積層管について機械
的物性を第l表に示した。
Table 1 shows the mechanical properties of the laminated tubes of Examples 1 to 4 and Comparative Examples 1 to 3.

尚、本実施例で得た積層管は、いずれも、丸刃式のカッ
ターで切断でき、旋盤による加工、サンドペーパーによ
る研磨加工、ドリリング及びネジ切り加工のいずれも容
易に行えた。またそれぞれの加工面にけば立ち、その他
の異常な欠陥等は全く認められなかった。
The laminated tubes obtained in this example could all be cut with a round-blade cutter, and could be easily processed using a lathe, polished with sandpaper, drilled, and threaded. Further, no fuzzing or other abnormal defects were observed on each processed surface.

以下 余白 〔発明の効果〕 本発明の製造法を用いることによって、高性能の有機系
フィルムと繊維強化熱硬化性樹脂とは高度に一体化され
、これまでの繊維強化樹脂威形体では得ることの出来な
かった高度な耐衝撃性を併せ持った高強度高弾性率の積
層管が製造出来る。
Margin [Effects of the Invention] By using the production method of the present invention, a high-performance organic film and a fiber-reinforced thermosetting resin are integrated to a high degree, which is impossible to obtain with conventional fiber-reinforced resin bodies. It is now possible to manufacture laminated pipes with high strength and high modulus of elasticity that also have a high degree of impact resistance, which was previously not possible.

また本発明の製造法で得られる積層管は、アラミド繊維
を併用して得られた積層管の最大の欠点とされている、
機械加工時の加工面のももげ、ケバ立ちが起こらない為
、丸刃式カッターでの切断、ボール盤での穴あけ、旋盤
での研削、ネジ切りといった機械加工が非常に容易に行
える様になった。
In addition, the laminated tube obtained by the manufacturing method of the present invention has the biggest drawback of the laminated tube obtained by using aramid fiber in combination.
Since there is no peeling or lint on the machined surface during machining, machining such as cutting with a round blade cutter, drilling with a drill press, grinding with a lathe, and thread cutting can now be performed very easily. .

本発明の製造方法で得られる積層管は、この様な優れた
特性を生かして、例えばゴルフクラブのシャフト、釣ざ
お、スキー用ストック、自転車用フレーム、スキューバ
ーボンベ等種々の管状製品に使うことが出来る。
The laminated tube obtained by the manufacturing method of the present invention can be used for various tubular products such as golf club shafts, fishing rods, ski poles, bicycle frames, and scuba cylinders by taking advantage of these excellent properties. I can do it.

Claims (1)

【特許請求の範囲】[Claims] 1、融点又は分解点が300℃以上である有機系重合体
から実質的になり、35kg/mm^2以上の引張強度
及び700kg/mm^2以上の引張弾性率を有するフ
ィルム層と繊維強化熱硬化性樹脂層とを捲回し積層し一
体化する積層管の製造方法において、該フィルムを捲回
するに際して、8kg/mm^2以上の張力を付与しつ
つ捲回しせしめることを特徴とする積層管の製造方法。
1. A film layer consisting essentially of an organic polymer with a melting point or decomposition point of 300° C. or higher and having a tensile strength of 35 kg/mm^2 or higher and a tensile modulus of 700 kg/mm^2 or higher, and a fiber-reinforced thermal film layer. A method for manufacturing a laminated tube in which a curable resin layer is wound, laminated, and integrated, characterized in that the film is wound while applying a tension of 8 kg/mm^2 or more. manufacturing method.
JP1300803A 1989-01-25 1989-11-21 Manufacture of laminated pipe Pending JPH03161321A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP1300803A JPH03161321A (en) 1989-11-21 1989-11-21 Manufacture of laminated pipe
KR1019900702133A KR930003894B1 (en) 1989-01-25 1990-01-25 New prepreg and composite molding and production of composite molding
EP90902370A EP0541795B1 (en) 1989-01-25 1990-01-25 New prepreg and composite molding, and production of composite molding
DE69032210T DE69032210D1 (en) 1989-01-25 1990-01-25 PRE-IMPREGNATED COMPOSITE MOLDS AND PRODUCTION OF A COMPOSITE MOLD
CA 2026113 CA2026113C (en) 1989-01-25 1990-01-25 Prepreg, composite molded body, and method of manufacture of the composite molded body
PCT/JP1990/000085 WO1990008802A1 (en) 1989-01-25 1990-01-25 New prepreg and composite molding, and production of composite molding
TW079100742A TW205053B (en) 1989-01-25 1990-02-02
US08/034,171 US5597631A (en) 1989-01-25 1993-02-12 Prepreg, composite molding body, and method of manufacture of the composite molded body
US08/709,188 US5770313A (en) 1989-01-25 1996-09-06 Prepreg, composite molded body and method of manufacture of the composite molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1300803A JPH03161321A (en) 1989-11-21 1989-11-21 Manufacture of laminated pipe

Publications (1)

Publication Number Publication Date
JPH03161321A true JPH03161321A (en) 1991-07-11

Family

ID=17889289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1300803A Pending JPH03161321A (en) 1989-01-25 1989-11-21 Manufacture of laminated pipe

Country Status (1)

Country Link
JP (1) JPH03161321A (en)

Similar Documents

Publication Publication Date Title
US5597631A (en) Prepreg, composite molding body, and method of manufacture of the composite molded body
US3691000A (en) Glass fiber reinforced composite article exhibiting enhanced longitudinal tensile and compressive moduli
JPH10329247A (en) Composite material tubular member
JP2002069754A (en) Carbon fiber having high strength and high elongation, and forming material of the same
JPH03161321A (en) Manufacture of laminated pipe
JP2892061B2 (en) Laminate
JPH10272699A (en) Manufacture of fiber reinforced resin tubular body
JP3375375B2 (en) Method for producing fiber-reinforced resin tubular body
JP2805633B2 (en) Laminated molding
JP2744637B2 (en) Composite material
EP0276055B1 (en) Method of producing thin reinforced resin sheet
JP2882638B2 (en) Molding material
JP2003277532A (en) Prepreg and tubular product made of fiber reinforced composite material
JPH03186278A (en) Pole for pole jump
JP3504131B2 (en) Biaxially oriented polypropylene film and method for producing the same
JP2710383B2 (en) Thermosetting resin composition
JP4608175B2 (en) Method for producing prepreg reinforcing sheet, method for producing prepreg
JP7218517B2 (en) Fiber-reinforced plastic molding and method for producing the same
JPH09255801A (en) Prepreg and fiber-reinforced resin molding and production of the same
JP3561282B2 (en) Manufacturing method of composite material
JPH0820651A (en) Fiber-reinforced composite material
JP3805391B2 (en) Polypropylene film for processing fiber-reinforced plastic and method for producing the same
TW205053B (en)
JP3937569B2 (en) Prepreg
JPH09262832A (en) Prepreg