JP2010229211A - Prepreg for fiber reinforced composite material and molded product thereof - Google Patents

Prepreg for fiber reinforced composite material and molded product thereof Download PDF

Info

Publication number
JP2010229211A
JP2010229211A JP2009075885A JP2009075885A JP2010229211A JP 2010229211 A JP2010229211 A JP 2010229211A JP 2009075885 A JP2009075885 A JP 2009075885A JP 2009075885 A JP2009075885 A JP 2009075885A JP 2010229211 A JP2010229211 A JP 2010229211A
Authority
JP
Japan
Prior art keywords
prepreg
epoxy resin
resin composition
viscosity
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009075885A
Other languages
Japanese (ja)
Inventor
Tomomasa Takabe
智正 高部
Akira Shimoyama
晃 下山
Takeshi Ito
壮史 伊藤
Hiroaki Fukui
裕明 福井
Masahiro Nishihara
正浩 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2009075885A priority Critical patent/JP2010229211A/en
Publication of JP2010229211A publication Critical patent/JP2010229211A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a prepreg which has good process passing properties and good moldability and a process for producing the same. <P>SOLUTION: The prepreg includes reinforced fibers and epoxy resin compositions, and an epoxy resin composition [A] having a viscosity at 25°C of 1.0×10<SP>5</SP>to 1.0×10<SP>9</SP>Pa s and a glass transition temperature of 7-15°C is present on both surfaces in the thickness direction of the prepreg, and an epoxy resin composition [B] having a viscosity at 25°C of 5.0×10<SP>2</SP>to 1.0×10<SP>5</SP>Pa s is present in the center in the thickness direction. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は優れたハンドリング性や工程通過性を備えつつ、コンポジットに積層したときに高強度、高弾性率かつ高靭性といった優れた力学特性を与えるプリプレグ、ならびにその製造方法に関するものである。   The present invention relates to a prepreg that provides excellent mechanical properties such as high strength, high elastic modulus and high toughness when laminated on a composite while having excellent handling properties and process passability, and a method for producing the same.

炭素繊維やアラミド繊維などを強化繊維として用いた繊維強化複合材料の製造には、強化繊維に未硬化の熱硬化性樹脂組成物が含浸されたシート状中間基材であるプリプレグを用いる方法が一般的である。かかる方法では、プリプレグを積層した後、加熱により硬化させることで、繊維強化複合材料の成形物が得られる。このようにして製造された繊維強化複合材料はテニスラケット、ゴルフシャフト、釣竿等、様々な一般産業用途に利用されているが、高い比強度・比剛性を有するため、特に軽量化を必要とする航空機の構造材料として注目されている。   For the production of fiber reinforced composite materials using carbon fibers or aramid fibers as reinforcing fibers, a method using a prepreg, which is a sheet-like intermediate base material in which reinforcing fibers are impregnated with an uncured thermosetting resin composition, is generally used. Is. In such a method, after a prepreg is laminated, a molded product of a fiber reinforced composite material is obtained by curing by heating. The fiber-reinforced composite material produced in this way is used for various general industrial applications such as tennis rackets, golf shafts, fishing rods, etc., but because it has high specific strength and specific rigidity, it requires particularly light weight. It is attracting attention as a structural material for aircraft.

プリプレグの積層法として、ハンドレイアップ法、ATL(Automated
Tape Laying)法、AFP(Automated Fiber
Placement)法などが挙げられるが、航空機のように大型複合材料を製造する場合、生産性の飛躍的な向上が可能となることから、ATL法やAFP法といった自動積層法が用いられる(例えば特許文献1参照)。中でもAFP法は、プリプレグを繊維方向にテープ状に切断したスリットテーププリプレグを積層する手法をとり、航空機胴体など比較的曲面の多い部品を製作することに適しており、プリプレグの欠損を最小限に抑えることが出来るため、近年多く用いられる方法となってきた。
As a prepreg lamination method, a hand lay-up method, ATL (Automated)
Tape Laying method, AFP (Automated Fiber)
However, when manufacturing large composite materials such as aircraft, it is possible to dramatically improve productivity, so automatic lamination methods such as the ATL method and the AFP method are used (for example, patents). Reference 1). Above all, the AFP method employs a method of laminating slit tape prepregs obtained by cutting the prepreg into a tape shape in the fiber direction, and is suitable for manufacturing parts with relatively curved surfaces such as aircraft fuselage, and minimizes prepreg defects. Since it can be suppressed, it has become a widely used method in recent years.

AFP法では、積層効率の向上が可能となることから、2〜13mm幅の細幅プリプレグを約十から数百本集束させるプロセスがあり、当該プリプレグをガイドに導きマシンヘッドに集結させてマンドレルに巻き付けるが、この際ガイドとテープが擦過することによって、樹脂などが脱落して、工程通過性が低下する問題があった。プリプレグに含浸させたエポキシ樹脂組成物のガイドへの脱落、付着を防ぐと同時に巻き付け時の接着性を確保するため、当該プロセスはプリプレグの解舒時にエポキシ樹脂組成物の粘度がより高くなる低温条件、例えば10℃以下において実施され、巻き付け時に温度を上昇させて貼り付けることが多い。   Since the AFP method can improve the lamination efficiency, there is a process of focusing about 10 to several hundred narrow prepregs with a width of 2 to 13 mm. The prepreg is guided to a guide and gathered on a machine head to form a mandrel. However, there is a problem in that the resin and the like fall off due to rubbing between the guide and the tape and the process passability is lowered. In order to prevent the epoxy resin composition impregnated in the prepreg from dropping out and adhering to the guide, and at the same time to ensure adhesion during winding, the process is performed under low temperature conditions where the viscosity of the epoxy resin composition is higher when the prepreg is unwound. For example, it is carried out at a temperature of 10 ° C. or lower, and the temperature is often increased at the time of winding.

AFPに使用されるプリプレグの製法には、基本的には炭素繊維を12000本や24000本などのいわゆるストランド単位で樹脂を含浸させ幅を一定に規定して巻き取るヤーンプリプレグ法と、一旦幅広のプリプレグを作成した後、所定の幅に幅方向にスリットして巻き取るスリットテープ法がある。前者の方法で細幅テーププリプレグを作成するときに、樹脂の軟化点を−5℃〜25℃であることを規定した特許が知られる。(特許文献2)ここでは、成形時のテープ幅を一定に保つことを目的として樹脂の軟化点を規定しており、ヤーンプリプレグを製造する含浸性に関して検討を行っているが、脱落物を防止するためには、軟化点の更なる検討や粘度調整が必要となる。   The prepreg used in the AFP basically includes a yarn prepreg method in which carbon fibers are impregnated with a resin in units of strands such as 12,000 or 24000, and the width is fixed and wound, and once a wide prepreg is used. There is a slit tape method in which the film is slit into a predetermined width in the width direction and wound up. Patents that specify that the softening point of the resin is −5 ° C. to 25 ° C. when a narrow tape prepreg is produced by the former method are known. (Patent Document 2) Here, the softening point of the resin is defined for the purpose of keeping the tape width at the time of molding constant, and the impregnation property for producing the yarn prepreg is examined, but the fallout is prevented. In order to do this, further examination of the softening point and viscosity adjustment are required.

また、特許文献3において、ヤーンプリプレグの巻取り性を改善し、ドレープ性を確保するため、使用する熱硬化性樹脂の粘度範囲を3000〜100000ポイズ、更に好ましくは、5000〜40000ポイズとすることが記載されている。特許文献4には熱硬化性樹脂の粘度については、含浸時における温度で流動性を有していることが必要であるとされ、流動性の尺度としての粘度の範囲としては、1〜100万センチポイズが好ましく、更に好ましくは、1〜1万センチポイズであるとされる。しかし、これらの発明では、脱落物を防止するために樹脂組成の調整をすると、ドレープ性や含浸性が悪化する問題がある。   Moreover, in patent document 3, in order to improve the winding property of a yarn prepreg and to ensure drape property, the viscosity range of the thermosetting resin to be used shall be 3000-100000 poise, More preferably, 5000-40000 poise. Is described. Patent Document 4 states that the viscosity of the thermosetting resin needs to have fluidity at the temperature at the time of impregnation, and the viscosity range as a measure of fluidity is 1 to 1,000,000. A centipoise is preferred, and more preferably 1 to 10,000 centipoise. However, in these inventions, there is a problem that drape and impregnation are deteriorated when the resin composition is adjusted in order to prevent falling off.

また、通常ヤーンプリプレグには常温での粘度が数Pa・sである樹脂が使用されるが、それらのプリプレグではプロセスでの樹脂脱落が多いため、カチオン重合性樹脂組成物を含むヤーンプリプレグにおいて、30℃における粘度が1×10〜1×10Pa・s、80℃における粘度が1〜300Pa・sであることを特徴とするヤーンプリプレグを用い、成形中あるいは成形後に樹脂を活性化する技術が開示されている(特許文献5)。この技術によれば、樹脂脱落に効果が認められるものの、樹脂を活性化するための特別な装置・条件が必要であった。 In addition, usually a resin having a viscosity at room temperature of several Pa.s is used for the yarn prepreg, but in those prepregs, there are many resin dropping off in the process, so in the yarn prepreg containing the cationic polymerizable resin composition, using a yarn prepreg viscosity at 30 ° C. is viscosity at 1 × 10 4 ~1 × 10 6 Pa · s, 80 ℃ characterized in that it is a 1~300Pa · s, activates the resin during or after molding or molding A technique is disclosed (Patent Document 5). According to this technique, although an effect is observed in dropping off the resin, special equipment and conditions for activating the resin are required.

さらにヤーンプリプレグにおいて、マトリックス樹脂のガラス転移点が−25℃〜20℃のエポキシ樹脂組成物を用い、エポキシ樹脂はテトラグリシジルジアミノジフェニルメタンタイプの樹脂を構成成分として含み、マトリックスに均一に含有される熱可塑樹脂およびマトリックスに溶解しない熱可塑樹脂粒子などを含むことが好ましく、衝撃後の圧縮強度は、130MPa以上あることが好ましいことが開示されている。(特許文献6)
しかしながら、このような設計では、コンポジット特性に関しては、良好なものが得られるものの、AFP成形時の脱落物を防ごうとして、樹脂組成を調整するか、プロセス温度を調整すると、ヤーンプリプレグが硬くなりすぎて、マンドレルへの貼り付け性、形状追随性が不足し、逆にこれらを改良しようとすると、脱落物が増加する問題があった。
AFP法におけるガイドへのエポキシ樹脂組成物の付着量を低減させるためには、AFP法での使用温度における当該樹脂組成物の粘度は、高粘度であることが好ましい。一方で、ハンドリング性の観点からは、航空機のような大型な積層体の製造には多くの時間を費やすため、プリプレグの積層に必要となる適度なタック・ドレープ性に加えて、積層されたプリプレグ同士の接着を維持するために、優れたタックライフを有することが好ましい。さらには、プリプレグ製造において、加熱・加圧工程中でエポキシ樹脂組成物を流動させ、未含浸の強化繊維に含浸させる比較的高い温度領域では、当該樹脂組成物の粘度は、低粘度であることが好ましい。このような観点から、通常AFPプロセスに供するヤーンプリプレグは予め冷却されたり、低温雰囲気においてガイドを通して解舒され、脱落物を防ぐ努力を行った後、好ましくはプリプレグやマンドレルへの巻き付け性を改善するため加熱された後積層される。この際の冷却の温度は常温以下であり、好ましくは15℃以下、より好ましくは5〜10℃の温度が適用される。しかしながら、このような条件を選定したとしても、上述の樹脂粘度要件を同時に満足させることは従来の樹脂では必ずしも容易ではなく、従来のプリプレグでは、プリプレグに含浸させたエポキシ樹脂組成物のガイドへの脱落、付着量が多く、頻繁な清掃が必要となり、生産性が低下する問題があった。
Furthermore, in the yarn prepreg, an epoxy resin composition having a glass transition point of −25 ° C. to 20 ° C. of the matrix resin is used, and the epoxy resin contains a resin of tetraglycidyldiaminodiphenylmethane type as a constituent component, and the heat contained uniformly in the matrix It is disclosed that it preferably contains a plastic resin and thermoplastic resin particles that do not dissolve in the matrix, and the compressive strength after impact is preferably 130 MPa or more. (Patent Document 6)
However, with such a design, a good composite property can be obtained, but the yarn prepreg becomes hard if the resin composition is adjusted or the process temperature is adjusted in order to prevent falling off during AFP molding. Thus, there is a problem that the sticking property to the mandrel and the shape following property are insufficient, and conversely, when trying to improve these, there is a problem that the fallen objects increase.
In order to reduce the adhesion amount of the epoxy resin composition to the guide in the AFP method, the viscosity of the resin composition at the use temperature in the AFP method is preferably high. On the other hand, from the viewpoint of handling properties, it takes a lot of time to manufacture large laminates such as aircraft, so in addition to the appropriate tack and drape properties required for prepreg lamination, laminated prepreg In order to maintain adhesion between each other, it is preferable to have an excellent tack life. Further, in the prepreg production, the viscosity of the resin composition is low in a relatively high temperature range in which the epoxy resin composition is flowed during the heating / pressurizing process and impregnated into the unimpregnated reinforcing fibers. Is preferred. From this point of view, the yarn prepreg usually subjected to the AFP process is cooled in advance or unwound through a guide in a low-temperature atmosphere, and after making an effort to prevent falling off, preferably improve the winding property around the prepreg or mandrel. Therefore, it is laminated after being heated. In this case, the cooling temperature is normal temperature or lower, preferably 15 ° C. or lower, more preferably 5 to 10 ° C. However, even if such conditions are selected, it is not always easy for conventional resins to satisfy the above-mentioned resin viscosity requirements at the same time. With conventional prepregs, the guide to the epoxy resin composition impregnated in the prepreg is not easy. There was a problem that productivity dropped due to a large amount of dropout and adhesion, requiring frequent cleaning.

プリプレグの樹脂について、その厚み方向に樹脂組成を変更させたプリプレグについて、従来いくつかの検討が行われている。特許文献7では、ハニカムコキュア成形での高品位を目的としてエポキシ樹脂と、芳香族アミン系硬化剤、酸無水物系硬化剤、ジシアンジアミド系硬化剤およびノボラック系硬化剤からなる群より選ばれた1種または2種以上の硬化剤と、固形ゴムとからなるエポキシ樹脂組成物であって、80℃において振動周波数0.02Hzで測定した複素粘性率η0.02が5000ポイズ以上であり、振動周波数2Hzで測定した複素粘性率η2 と上記振動周波数0.02Hzで測定した複素粘性率η0.02との関係がlog η0.02−log η2 ≧0.5を満足することを特徴とするエポキシ樹脂組成物であり、表層と内層とで粘度の異なるエポキシ樹脂組成物からなるプリプレグであって、表層のエポキシ樹脂組成物の80℃において振動周波数0.02Hzで測定した複素粘性率η0.02が40000〜400000ポイズであり、内層のエポキシ樹脂組成物の80℃において振動周波数0.02Hzで測定した複素粘性率η0.02が5000ポイズ以上40000ポイズ未満であることを特徴とするプリプレグが開示されているが、この構成では本特許の目的である樹脂の脱落防止には効果がなかった。 Regarding the prepreg resin, several studies have been conducted on prepregs in which the resin composition is changed in the thickness direction. Patent Document 7 is selected from the group consisting of an epoxy resin, an aromatic amine curing agent, an acid anhydride curing agent, a dicyandiamide curing agent, and a novolac curing agent for the purpose of high quality in honeycomb cocure molding. An epoxy resin composition comprising one or more curing agents and a solid rubber, wherein the complex viscosity η 0.02 measured at a vibration frequency of 0.02 Hz at 80 ° C. is 5000 poise or more, and the vibration frequency is 2 Hz. The epoxy resin composition characterized in that the relationship between the complex viscosity η 2 measured in step 1 and the complex viscosity η 0.02 measured at the vibration frequency of 0.02 Hz satisfies log η 0.02 −log η 2 ≧ 0.5 A prepreg composed of epoxy resin compositions having different viscosities between the surface layer and the inner layer, measured at a vibration frequency of 0.02 Hz at 80 ° C. of the epoxy resin composition of the surface layer And complex viscosity eta 0.02 is 40,000 to 400,000 poise, and wherein the complex viscosity eta 0.02 measured at a vibration frequency 0.02Hz at 80 ° C. of the inner layer of the epoxy resin composition is less than 5000 poise to 40,000 poise Although this prepreg is disclosed, this configuration has no effect in preventing the resin from falling off, which is the object of this patent.

また、ヤーンプリプレグにおいて、補強繊維束に、Bステージの、10℃よりも高いガラス転移点をもつ熱硬化性樹脂が含浸され、その熱硬化性樹脂含浸繊維束に、Bステージの、ガラス転移点が−10〜10℃である熱硬化性樹脂がさらに含浸されていることを特徴とするヤーンプリプレグが提供され、巻取り性と、解舒性を両立させた工夫が見られる(特許文献8)。しかしこの構成では本特許の目的である樹脂の脱落防止には効果がなかった。   In the yarn prepreg, the reinforcing fiber bundle is impregnated with a thermosetting resin having a glass transition point higher than 10 ° C. of the B stage, and the glass transition point of the B stage is impregnated with the thermosetting resin impregnated fiber bundle. A yarn prepreg characterized by being further impregnated with a thermosetting resin having a temperature of −10 to 10 ° C. is provided, and a device that achieves both windability and unwinding property is seen (Patent Document 8). . However, this configuration was not effective in preventing the resin from falling off, which is the object of this patent.

さらに、プリプレグの粘着性と柔軟性を確保しつつ強化繊維の方向以外の強度、すなわち非繊維軸引張強度や衝撃後圧縮強度に対して顕著に改良のなされた構造体を与えるため、プリプレグの外層に樹脂を素材とする球状の微粒子を局在化させることが開示されている(特許文献9)。しかしこの構成では本特許の目的である樹脂の脱落防止には効果がなかった。   Furthermore, the outer layer of the prepreg is provided in order to provide a structure that is significantly improved with respect to the strength other than the direction of the reinforcing fiber, that is, the non-fiber axis tensile strength and the compressive strength after impact, while ensuring the adhesiveness and flexibility of the prepreg. Discloses the localization of spherical fine particles made of resin (Patent Document 9). However, this configuration was not effective in preventing the resin from falling off, which is the object of this patent.

特表2008−517810号公報Special table 2008-517810 特開2000−191807号公報JP 2000-191807 A 特開平09−012220号公報JP 09-012220 A 特開平09−169861号公報Japanese Patent Application Laid-Open No. 09-169861 特開2007−297487号公報JP 2007-297487 A 特開平11−130882号公報JP-A-11-130882 特開平05−239317号公報JP 05-239317 A 特開昭62−116638号公報JP 62-116638 A 特開平01−110537号公報Japanese Patent Laid-Open No. 01-110537

本発明の解決しようとする課題は、優れたハンドリング性、工程通過性、積層性、コンポジット性能を維持したまま、AFP法におけるガイドへの樹脂の付着を低減した、プリプレグを提供することにある。   The problem to be solved by the present invention is to provide a prepreg in which adhesion of resin to a guide in the AFP method is reduced while maintaining excellent handling properties, process passability, lamination properties, and composite performance.

すなわち、本発明は、強化繊維とエポキシ樹脂組成物からなるプリプレグであって、プリプレグの厚み方向の両表面側に、25℃における粘度が1.0×10〜1.0×10Pa・sかつ、ガラス転移温度が7〜15℃であるエポキシ樹脂組成物[A]が存在し、厚み方向の中心部に、25℃における粘度が5.0×10〜1.0×10Pa・sであるエポキシ樹脂組成物[B]が存在していることを特徴とするプリプレグである。 That is, the present invention is a prepreg composed of reinforcing fibers and an epoxy resin composition, and has a viscosity at 25 ° C. of 1.0 × 10 5 to 1.0 × 10 9 Pa · on both surface sides in the thickness direction of the prepreg. s and present epoxy resin composition a glass transition temperature of 7 to 15 ° C. [a] is in the center of the thickness direction, × viscosity at 25 ° C. is 5.0 10 2 ~1.0 × 10 5 Pa A prepreg characterized by the presence of the epoxy resin composition [B] as s.

また、本発明のプリプレグに用いられるエポキシ樹脂組成物[A]の80℃における粘度は100〜1000Pa・sであることが好ましい。
さらに、本発明のプリプレグに用いられるエポキシ樹脂組成物[A]が、エポキシ当量が800〜3000g/eqである2官能エポキシ樹脂を、エポキシ樹脂組成物[A]に含まれる全てのエポキシ樹脂100重量部に対して5〜25重量部含むことが好ましい。
Moreover, it is preferable that the viscosity in 80 degreeC of the epoxy resin composition [A] used for the prepreg of this invention is 100-1000 Pa.s.
Furthermore, the epoxy resin composition [A] used for the prepreg of the present invention is a bifunctional epoxy resin having an epoxy equivalent of 800 to 3000 g / eq, and 100 weights of all epoxy resins contained in the epoxy resin composition [A]. It is preferable to contain 5-25 weight part with respect to a part.

また、本発明のプリプレグは、強化繊維が長手方向に一方向に配列したものであることが好ましい。   Moreover, it is preferable that the prepreg of this invention is what the reinforcing fiber arranged in one direction in the longitudinal direction.

また、上記のプリプレグを強化繊維の配列方向に平行に帯状に切断し、スリットテーププリプレグが提供される。   Moreover, the above-described prepreg is cut into a strip shape in parallel with the reinforcing fiber arrangement direction to provide a slit tape prepreg.

さらに、スリットテーププリプレグをマンドレル上に積層し、成形してなる複合材料が提供される。   Furthermore, a composite material obtained by laminating and molding a slit tape prepreg on a mandrel is provided.

さらに強化繊維に25℃における粘度が5.0×10〜1.0×10Pa・sであるエポキシ樹脂組成物[B]を含浸して1次プリプレグを作成し、その後連続して、または一旦巻き取った1次プリプレグを巻出して、25℃における粘度が1.0×10〜1.0×10Pa・sかつ、ガラス転移温度が7〜15℃であるエポキシ樹脂組成物[A]を両面から含浸させることを特徴とするプリプレグの製造方法が提供される。 Further, the reinforcing fiber was impregnated with an epoxy resin composition [B] having a viscosity at 25 ° C. of 5.0 × 10 2 to 1.0 × 10 5 Pa · s to prepare a primary prepreg, and then continuously, Alternatively, the primary prepreg that has been wound up is unwound and an epoxy resin composition having a viscosity at 25 ° C. of 1.0 × 10 5 to 1.0 × 10 9 Pa · s and a glass transition temperature of 7 to 15 ° C. A method for producing a prepreg characterized by impregnating [A] from both sides is provided.

本発明によれば、プリプレグ表面層のエポキシ樹脂組成物[A]の粘度が充分高いため、AFP法におけるガイドへの樹脂の付着を低減させ、ひいては繊維強化複合材料の生産性を向上させることが可能となる。また、プリプレグ内層側に存在するエポキシ樹脂組成物[B]の粘度が充分低いため、優れたドレープ性を有する。さらには、該樹脂[B]がプリプレグの厚み方向の中心部に充分存在し、かつプリプレグの厚み方向の表面側に存在するエポキシ樹脂組成物[A]の粘度が充分高いため、該樹脂[A]の強化繊維への沈み込みを抑制し、優れたタックライフを有するため、ハンドリング性の良いプリプレグを提供することが可能となる。   According to the present invention, since the viscosity of the epoxy resin composition [A] on the prepreg surface layer is sufficiently high, adhesion of the resin to the guide in the AFP method can be reduced, and consequently the productivity of the fiber-reinforced composite material can be improved. It becomes possible. Moreover, since the viscosity of the epoxy resin composition [B] present on the inner side of the prepreg is sufficiently low, it has excellent drape properties. Furthermore, since the resin [B] is sufficiently present at the center in the thickness direction of the prepreg and the viscosity of the epoxy resin composition [A] existing on the surface side in the thickness direction of the prepreg is sufficiently high, the resin [A ] To the reinforcing fiber and has an excellent tack life, it is possible to provide a prepreg with good handling properties.

本発明のプリプレグに用いるエポキシ樹脂組成物[A]は、25℃における粘度が、1.0×10〜1.0×10Pa・sであることを必須とする。より好ましくは、1.0×10〜1.0×10Pa・sである。1.0×10Pa・sより低いと、AFP法におけるガイドへの液状または半固形の樹脂の付着量が多くなり、清掃頻度が高く生産性が低下するのに加え、粘度が低いため、タック過剰による、貼りなおしの作業効率の悪化や、樹脂の沈み込みによるタックライフの悪化を招く。1.0×10Pa・sより高いと、ガイドへプリプレグを擦過させた際に、プリプレグ表面に樹脂粉が発生し、脱落した樹脂粉の清掃が必要となるため、生産性が低下するのに加え、粘度が高いため、タック・ドレープ性が低くハンドリング性も損なわれる。 Epoxy resin composition used in the prepreg of the present invention [A], the viscosity at 25 ° C., to essential and that it is 1.0 × 10 5 ~1.0 × 10 9 Pa · s. More preferably, it is 1.0 * 10 < 6 > -1.0 * 10 < 8 > Pa * s. If it is lower than 1.0 × 10 5 Pa · s, the amount of liquid or semi-solid resin adhering to the guide in the AFP method increases, the cleaning frequency is high and productivity decreases, and the viscosity is low, Deterioration of work efficiency due to excessive tack and deterioration of tack life due to sinking of resin are caused. When it is higher than 1.0 × 10 9 Pa · s, the resin powder is generated on the surface of the prepreg when the prepreg is scraped to the guide, and it is necessary to clean the resin powder that has fallen off. In addition, since the viscosity is high, the tack / draping property is low and the handling property is also impaired.

なお、ここでいう25℃における粘度は、動的粘弾性測定装置(例えば、レオメーターRDA2:レオメトリックス社製など)を用い、パラレルプレートを用い、20℃より昇温速度2℃/minで単純昇温し、歪み100%、周波数0.5Hz、プレート間隔 1mmで測定を行うことで得られる粘度曲線より、25℃での粘度を読みとったものをいう。   Here, the viscosity at 25 ° C. is simply determined by using a dynamic viscoelasticity measuring device (for example, rheometer RDA2: manufactured by Rheometrics Co., Ltd.) using a parallel plate at a rate of temperature increase of 2 ° C./min from 20 ° C. The viscosity at 25 ° C. is read from a viscosity curve obtained by measuring the temperature at a temperature of 100%, a frequency of 0.5 Hz, and a plate interval of 1 mm.

また、プリプレグに用いるエポキシ樹脂組成物[A]は、ガラス転移温度が7〜15℃であることを必須とする。前記と同様の理由で、7℃より低いと、AFP法において樹脂が軟らかいままプロセスされるので、金属製ガイドへの樹脂の付着量が多くなるのに加え、低粘度による、タック過剰やタックライフの悪化になる。15℃より高いと、金属製ガイドへプリプレグを擦過させた際に、ガラス状であるプリプレグ樹脂が樹脂粉を発生するようになり、さらに高粘度によるタック・ドレープ性の悪化になる。ここで、AFPは、プリプレグの樹脂脱落を防ぐため、好ましくは常温より温度が低い条件、例えば15℃以下、より好ましくは10℃以下0℃以上でプロセスされる。0℃以下でAFPを行うことも可能であるが、かえって樹脂が硬くなりすぎて、固体の脱落物が増加したり、結露を防ぐ工夫が必要となる。   Moreover, it is essential that the epoxy resin composition [A] used for the prepreg has a glass transition temperature of 7 to 15 ° C. For the same reason as described above, if the temperature is lower than 7 ° C., the resin is processed while being soft in the AFP method, so that the amount of the resin adhering to the metal guide is increased, and the tack is excessive and the tack life due to low viscosity. Become worse. When the temperature is higher than 15 ° C., when the prepreg is rubbed against a metal guide, the glass-like prepreg resin generates resin powder, and the tack / drape property is further deteriorated due to high viscosity. Here, AFP is preferably processed at a temperature lower than room temperature, for example, 15 ° C. or lower, more preferably 10 ° C. or lower and 0 ° C. or higher, in order to prevent the prepreg from falling off the resin. Although AFP can be performed at 0 ° C. or lower, the resin becomes too hard, so that solid falloff increases or a device for preventing condensation is required.

なお、ここで言うガラス転移温度は、示差熱量計(DSC)を用いて、JIS K7121(1987)に基づいてもとめた中間点温度である。   In addition, the glass transition temperature said here is the midpoint temperature obtained based on JISK7121 (1987) using the differential calorimeter (DSC).

ハンドリング性、工程通過性、積層性とコンポジット特性を両立するためには、エポキシ当量が800〜3000g/eqである2官能エポキシ樹脂を、エポキシ樹脂組成物[A]に含まれる全てのエポキシ樹脂100重量部に対して5〜25重量部配合することが好ましい。エポキシ等量が800g/eqより低いと、ガラス転移温度や粘度が低下し、3000g/eq以上だと成形体の耐熱性が低下するため好ましくない。
さらに、本発明のプリプレグに用いるエポキシ樹脂組成物[A]は、該樹脂を強化繊維に含浸してなるプリプレグにおいて、該樹脂がプリプレグの厚み方向の量表面側に局在化していることが必要である。
In order to achieve both handling properties, process passability, lamination properties and composite properties, all epoxy resins 100 contained in the epoxy resin composition [A] are prepared by using bifunctional epoxy resins having an epoxy equivalent of 800 to 3000 g / eq. It is preferable to mix 5 to 25 parts by weight with respect to parts by weight. When the epoxy equivalent is lower than 800 g / eq, the glass transition temperature and the viscosity are lowered, and when it is 3000 g / eq or more, the heat resistance of the molded product is lowered.
Furthermore, the epoxy resin composition [A] used in the prepreg of the present invention requires that the resin be localized on the surface side in the thickness direction of the prepreg in the prepreg formed by impregnating the resin with reinforcing fibers. It is.

また、本発明のプリプレグには、プリプレグに適度なドレープ性を与えるために、25℃におけるマトリックス樹脂の粘度が5.0×10〜1.0×10Pa・sであるエポキシ樹脂組成物[B]をプリプレグの厚み方向に中心部に存在せしめることが必要である。かかるエポキシ樹脂組成物[B]をプリプレグの厚み方向に中心部に存在せしめる手段としては、あらかじめエポキシ樹脂組成物[B]を離型紙などの上にコーティングした樹脂フィルム付きの離型紙シート(以降、単に「樹脂フィルム」と記すこともある)をまず作製し、次いで強化繊維の両側あるいは片側からその樹脂フィルム付きの離型紙シートの樹脂フィルム面を強化繊維側にして重ね、加熱加圧することにより強化繊維に樹脂組成物を含浸させた1次プリプレグを作成し、その後、1次プリプレグの両面からエポキシ樹脂組成物[A]を1次プリプレグを作成したときと同様にして含浸させてプリプレグを得る方法を好ましく用いることが出来る。なお、1次プリプレグは、一旦巻き取った後、巻出してエポキシ樹脂組成物[A]を含浸させても良いし、強化繊維にエポキシ樹脂組成物[B]を含浸させて1次プリプレグとした直後に引き続いてエポキシ樹脂組成物[A]を含浸させても良い。かかるプリプレグの形態とすることにより、プリプレグ厚み方向の中央部に存在するエポキシ樹脂組成物[B]の粘度が充分低いため、優れたドレープ性を得ることが出来る。粘度が5.0×10Pa・sより低いと、エポキシ樹脂組成物[A]がプリプレグの中心部に沈み込み易くなり、タックライフが損なわれ、粘度が1.0×10Pa・sを超えるとドレープ性が損なわれる。かかる観点から、樹脂組成物[B]の粘度は、5.0×10〜2.0×10Pa・sであると好ましい。また、ドレープ性とタックライフの観点から、プリプレグ厚み方向の中央部のエポキシ樹脂組成物[B]の存在範囲としてはプリプレグ厚みの30〜90%の範囲であることが好ましく、50〜70%の範囲であればより好ましい。 In addition, the prepreg of the present invention has an epoxy resin composition in which the viscosity of the matrix resin at 25 ° C. is 5.0 × 10 2 to 1.0 × 10 5 Pa · s in order to give the prepreg moderate drapeability. It is necessary to make [B] exist in the central part in the thickness direction of the prepreg. As a means for causing the epoxy resin composition [B] to be present in the central portion in the thickness direction of the prepreg, a release paper sheet with a resin film (hereinafter referred to as an epoxy resin composition [B]) coated on a release paper or the like in advance. It may be simply referred to as “resin film”), and then reinforced by heating and pressurizing the resin film surface of the release paper sheet with the resin film on both sides or one side of the reinforcing fiber with the resin fiber side facing up. A method of preparing a primary prepreg in which a fiber is impregnated with a resin composition, and then impregnating the epoxy resin composition [A] from both sides of the primary prepreg in the same manner as when the primary prepreg is prepared. Can be preferably used. The primary prepreg may be wound once and then unwound and impregnated with the epoxy resin composition [A], or the reinforcing fiber is impregnated with the epoxy resin composition [B] to obtain a primary prepreg. Immediately thereafter, the epoxy resin composition [A] may be impregnated. By setting it as the form of this prepreg, since the viscosity of the epoxy resin composition [B] which exists in the center part of a prepreg thickness direction is low enough, the outstanding drape property can be obtained. When the viscosity is lower than 5.0 × 10 2 Pa · s, the epoxy resin composition [A] tends to sink into the center of the prepreg, the tack life is impaired, and the viscosity is 1.0 × 10 5 Pa · s. If it exceeds, drapability is impaired. From this viewpoint, the viscosity of the resin composition [B] is preferably 5.0 × 10 2 to 2.0 × 10 4 Pa · s. Further, from the viewpoint of drape and tack life, the presence range of the epoxy resin composition [B] in the central part in the prepreg thickness direction is preferably in the range of 30 to 90% of the prepreg thickness, and 50 to 70%. If it is a range, it is more preferable.

さらに、成形性、特に1次プリプレグへの含浸性の観点から、エポキシ樹脂組成物[A]の80℃での粘度は100〜1000Pa・sであることが好ましい。より好ましくは300〜600Pa・sである。80℃での粘度が100Pa・sより低いと含浸性は良好であるが、樹脂が流動しやすく、樹脂フィルム付きの離型紙シートを重ねて加圧しプリプレグとするときに離型紙シートの端部から樹脂が流れでてプリプレグ化の加工性が悪化するため好ましくない。80℃での粘度が1000Pa・sより高いと、エポキシ樹脂組成物[A]を離型紙上に塗布した樹脂フィルムの間にプリプレグを挟み込み、プレスロールを用いて加熱、加圧して含浸した際に、樹脂フィルム上に樹脂が残る、いわゆる裏取られが発生し、プリプレグ化の加工性や品位が悪化するため好ましくない。   Furthermore, it is preferable that the viscosity at 80 ° C. of the epoxy resin composition [A] is 100 to 1000 Pa · s from the viewpoint of moldability, particularly impregnation into the primary prepreg. More preferably, it is 300-600 Pa.s. When the viscosity at 80 ° C. is lower than 100 Pa · s, the impregnation property is good, but the resin is easy to flow, and when the release paper sheet with the resin film is stacked and pressed to form a prepreg, from the end of the release paper sheet Since the resin flows and the prepreg processability deteriorates, it is not preferable. When the viscosity at 80 ° C. is higher than 1000 Pa · s, when the prepreg is sandwiched between the resin films coated with the epoxy resin composition [A] on the release paper and impregnated by heating and pressurizing using a press roll. This is not preferable because the resin remains on the resin film, so-called “backing” occurs, and the prepreg processability and quality deteriorate.

なお、ここでいう80℃における粘度は、動的粘弾性測定装置(例えば、レオメーターRDA2:レオメトリックス社製など)を用い、パラレルプレートを用い、20℃より昇温速度2℃/minで単純昇温し、歪み100%、周波数0.5Hz、プレート間隔 1mmで測定を行うことで得られる粘度曲線より、80℃での粘度を読みとったものをいう。   Here, the viscosity at 80 ° C. is simply determined by using a dynamic viscoelasticity measuring device (for example, rheometer RDA2: manufactured by Rheometrics), using a parallel plate and starting at 20 ° C. at a rate of temperature increase of 2 ° C./min. The viscosity at 80 ° C. is read from a viscosity curve obtained by measuring the temperature at a temperature of 100%, a frequency of 0.5 Hz, and a plate interval of 1 mm.

本発明のプリプレグに用いるエポキシ樹脂組成物[A]および[B]のエポキシ樹脂としては、特に、アミン類、フェノール類、炭素・炭素二重結合を有する化合物を前駆体とするエポキシ樹脂が好ましい。   As the epoxy resin of the epoxy resin compositions [A] and [B] used for the prepreg of the present invention, an epoxy resin having an amine, a phenol, or a compound having a carbon / carbon double bond as a precursor is particularly preferable.

具体的には、アミン類を前駆体とするエポキシ樹脂として、テトラグリシジルジアミノジフェニルメタン類、アミノフェノールのグリシジル化合物類、グリシジルアニリン類、キシレンジアミンのグリシジル化合物などが挙げられる。テトラグリシジルジアミノジフェニルメタン類は航空機構造材としての複合材料用樹脂として耐熱性に優れるため好ましい。   Specific examples of the epoxy resin having amines as a precursor include tetraglycidyldiaminodiphenylmethanes, glycidyl compounds of aminophenol, glycidylanilines, and glycidyl compounds of xylenediamine. Tetraglycidyldiaminodiphenylmethanes are preferable because they are excellent in heat resistance as a composite material resin for aircraft structural materials.

フェノール類を前駆体とするエポキシ樹脂として、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、レゾルシノール型エポキシ樹脂が挙げられる。特に、2官能ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂は、高温側の粘度の低下率が比較的高いため、本発明でより好ましく用いることが出来る。
炭素・炭素二重結合を有する化合物を前駆体とするエポキシ樹脂としては、多環式エポキシ樹脂等が挙げられる。
Examples of epoxy resins having phenols as precursors include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, phenol novolac type epoxy resins, and resorcinol type epoxy resins. In particular, bifunctional bisphenol A type epoxy resins and bisphenol F type epoxy resins can be more preferably used in the present invention because the rate of decrease in viscosity on the high temperature side is relatively high.
Examples of the epoxy resin using a compound having a carbon / carbon double bond as a precursor include polycyclic epoxy resins.

これらのエポキシ樹脂は、単独で用いても良いし、適宜配合して用いてもよい。グリシジルアミン型エポキシ樹脂と2官能グリシジルエーテル型エポキシ樹脂の組み合わせは、耐熱性、耐水性および作業性を併せ持つために特に好ましい。   These epoxy resins may be used singly or may be appropriately mixed and used. A combination of a glycidylamine type epoxy resin and a bifunctional glycidyl ether type epoxy resin is particularly preferable because it has both heat resistance, water resistance and workability.

本発明のプリプレグに用いるエポキシ樹脂組成物[A]および[B]の硬化剤としては、芳香族アミン類、ジシアンジアミド、二塩基酸ジヒドラジドの単体または、混合系を挙げることができる。芳香族アミン類としては、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、メタキシレンジアミンなどが挙げられる。   Examples of the curing agent for the epoxy resin compositions [A] and [B] used in the prepreg of the present invention include aromatic amines, dicyandiamide, and dibasic acid dihydrazide alone or in a mixed system. Examples of aromatic amines include metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, and metaxylenediamine.

これらの硬化剤は、単独で用いても良いし、適宜配合して用いてもよい。芳香族アミン類は、樹脂硬化物に耐熱性を付与することが出来るために特に好ましい。添加量は、エポキシ樹脂のエポキシ基と芳香族アミン類の活性水素の化学量論において対エポキシ0.7〜1.2等量となるように添加することが耐熱性付与の面から好ましい。   These curing agents may be used alone or may be appropriately blended and used. Aromatic amines are particularly preferred because they can impart heat resistance to the cured resin. The addition amount is preferably from the viewpoint of imparting heat resistance, so that the addition amount is 0.7 to 1.2 equivalent to the epoxy in the stoichiometry of the epoxy group of the epoxy resin and the active hydrogen of the aromatic amine.

本発明のプリプレグに用いるエポキシ樹脂組成物[A]および[B]には、ゴム粒子や熱可塑性樹脂粒子等の有機粒子や、エポキシ樹脂以外の液状熱硬化性樹脂、硬化促進剤、難燃剤、シランカップリング剤、可溶性熱可塑性樹脂を1種または2種以上含有させることが出来る。エポキシ樹脂組成物の粘度制御や、複合材料の耐衝撃性向上の面からも熱可塑性樹脂粒子等の有機粒子や可溶性熱可塑性樹脂をより好ましく用いることが出来る。   The epoxy resin compositions [A] and [B] used for the prepreg of the present invention include organic particles such as rubber particles and thermoplastic resin particles, liquid thermosetting resins other than epoxy resins, curing accelerators, flame retardants, One or more silane coupling agents and soluble thermoplastic resins can be contained. From the viewpoint of controlling the viscosity of the epoxy resin composition and improving the impact resistance of the composite material, organic particles such as thermoplastic resin particles and soluble thermoplastic resins can be more preferably used.

ゴム粒子としては、架橋ゴム粒子、及び架橋ゴム粒子の表面に異種ポリマーをグラフト重合したコアシェルゴム粒子が挙げられる。   Examples of the rubber particles include cross-linked rubber particles and core-shell rubber particles obtained by graft polymerization of a different polymer on the surface of the cross-linked rubber particles.

熱可塑性樹脂粒子としては、アクリル系粒子やポリアミド系粒子、ポリイミド系粒子、ポリエーテルイミド系粒子が好ましく用いられる。   As the thermoplastic resin particles, acrylic particles, polyamide particles, polyimide particles, and polyetherimide particles are preferably used.

エポキシ樹脂以外の液状熱硬化性樹脂としては、シアネートエステル樹脂、ビスマレイミド樹脂、ベンゾオキサジン樹脂などが使用できる。   Examples of liquid thermosetting resins other than epoxy resins include cyanate ester resins, bismaleimide resins, and benzoxazine resins.

可溶性熱可塑性樹脂とは、エポキシ樹脂を配合するときに、通常温度を常温より高く設定して混練処理した際に、エポキシ樹脂に対してマクロ的に均一に混合される熱可塑性樹脂を指し、常温に戻したときに微細な相に分離するもの、均一相を保つものを含み、具体的には、ポリエーテルスルホン、ポリスルホン、ポリイミド、ポリエーテルイミド、ポリカーボネート、ポリエーテルエーテルスルホン、ボリビニルホルマール、ポリメタクリル酸メチルなどが好ましく用いられる。   Soluble thermoplastic resin refers to a thermoplastic resin that is mixed macroscopically and uniformly with epoxy resin when kneading with normal temperature set higher than normal temperature when compounding epoxy resin. Including those that separate into fine phases when they are returned to, and those that maintain a uniform phase, specifically, polyethersulfone, polysulfone, polyimide, polyetherimide, polycarbonate, polyetherethersulfone, poly vinyl formal, poly Methyl methacrylate and the like are preferably used.

またエポキシ樹脂組成物[A]と[B]の比率は、1:9〜7:3の範囲が好ましく、特に3:7〜5:5の範囲が特に好ましい。1:9より[A]の比率が低いと、脱落防止効果が少なく、7:3より[A]の比率が多いと、プリプレグのドレープ性が損なわれる。   The ratio of the epoxy resin composition [A] and [B] is preferably in the range of 1: 9 to 7: 3, particularly preferably in the range of 3: 7 to 5: 5. When the ratio [A] is lower than 1: 9, the drop-off preventing effect is small, and when the ratio [A] is higher than 7: 3, the drape of the prepreg is impaired.

本発明のプリプレグは、上記したエポキシ樹脂組成物と強化繊維とからなるものである。強化繊維としては、ガラス繊維、ケブラー繊維、炭素繊維、黒鉛繊維、ホウ素繊維などが挙げられる。中でも比強度・比弾性率の点で炭素繊維や黒鉛繊維が好ましい。   The prepreg of the present invention comprises the above-described epoxy resin composition and reinforcing fibers. Examples of the reinforcing fiber include glass fiber, Kevlar fiber, carbon fiber, graphite fiber, and boron fiber. Of these, carbon fibers and graphite fibers are preferable in terms of specific strength and specific elastic modulus.

AFP法で用いられるプリプレグとしては、ヤーンプリプレグ法で製造されたものでも良いが、一方向に引き揃えた強化繊維束にエポキシ樹脂組成物を含浸させ、繊維方向に切断されたスリットテーププリプレグが幅精度に優れており好ましい。スリットテーププリプレグの幅は2〜150mmが好ましいが、複雑な形状の部材を製造するAFP法では、2〜15mmが好ましい。更には3〜7mmの細幅のスリットテーププリプレグがより好ましい。   The prepreg used in the AFP method may be one produced by the yarn prepreg method, but the slit tape prepreg cut in the fiber direction is impregnated with an epoxy resin composition impregnated in a reinforcing fiber bundle aligned in one direction. It is excellent in accuracy and preferable. The width of the slit tape prepreg is preferably 2 to 150 mm, but is preferably 2 to 15 mm in the AFP method for producing a member having a complicated shape. Further, a slit tape prepreg having a narrow width of 3 to 7 mm is more preferable.

これらの樹脂をプリプレグ厚み方向の中心部(プリプレグ内層と記すこともある)とプリプレグの厚み方向にの両表面(プリプレグ外層と記すこともある)に特定の配置(すなわち、外層に主としてエポキシ樹脂組成物[A]を配し、内層に主としてエポキシ樹脂組成物[B]を配する)とするには、まず強化繊維にエポキシ樹脂組成物[B]を含浸させ、1次プリプレグを得た後、エポキシ樹脂組成物[A]を含浸させることによって作成することが出来る。その際、エポキシ樹脂組成物[A]と[B]の過度の混合を防ぐため、[A]を含浸させる際にその温度、張力、あるいはプリプレグの含浸圧力等を調整することが好ましい。特に[B]を含浸させるときに比較して、[A]を含浸させるときの温度、圧力を低く設定して、両樹脂の混合を防止することが更に好ましい。   Specific arrangement of these resins on the center in the prepreg thickness direction (sometimes referred to as the prepreg inner layer) and both surfaces in the thickness direction of the prepreg (sometimes referred to as the prepreg outer layer) (ie, the epoxy resin composition mainly in the outer layer) In order to obtain a primary prepreg, the reinforcing fiber is first impregnated with the epoxy resin composition [B]. It can be prepared by impregnating the epoxy resin composition [A]. At that time, in order to prevent excessive mixing of the epoxy resin compositions [A] and [B], it is preferable to adjust the temperature, tension, impregnation pressure of the prepreg and the like when impregnating [A]. In particular, it is more preferable to set the temperature and pressure when impregnating [A] to be lower than when impregnating [B] to prevent mixing of both resins.

本発明の複合材料は、本発明のプリプレグを複数枚積層した積層体を、オーブン中で加熱成形して製造することが出来る。この際必要に応じて加圧しても良い。また、このプリプレグを強化繊維の配列方向に平行に帯状に切断したスリットテーププリプレグを複数本用意し、AFP法によってマンドレル上に積層し、周囲をバッグ材によってシールし、シールした積層体を真空脱気して外部から加熱加圧して成形して製造することが好ましい。   The composite material of the present invention can be produced by heat-molding a laminate in which a plurality of prepregs of the present invention are laminated in an oven. At this time, pressure may be applied as necessary. In addition, a plurality of slit tape prepregs obtained by cutting the prepreg into strips parallel to the arrangement direction of the reinforcing fibers are prepared, laminated on a mandrel by the AFP method, the periphery is sealed with a bag material, and the sealed laminate is vacuum-released. It is preferable to manufacture by heating and pressurizing from outside.

以下、実施例によって本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

なお、本実施例で、25℃、80℃での粘度は、動的粘弾性測定装置(レオメーターRDA2:レオメトリックス社製)を用い、パラレルプレートを用い、昇温速度2℃/minで20℃より単純昇温し、歪み100%、周波数0.5Hz、プレート間隔 1mmで測定を行い、得られた粘度曲線より、25℃、80℃での粘度を読みとった。
また、タックは、100mm幅、200mm長さにカットし、フラットなアルミ板に両面テープで貼り付けたプリプレグの表面に、18mm×18mmのガラスを0.1kgの荷重で3秒間押しつけた後、30mm/分の速度で引き上げるときの力を測定した。測定環境は24℃、50RH%である。タックが1.8〜2.4Nのとき、プリプレグ同士の張り付き性は好適であるが、2.4Nより高いと引き剥がしにくくなり、1.8Nより低いと張り付きにくくなり、共に作業性が悪化した。
In this example, the viscosity at 25 ° C. and 80 ° C. is 20 using a dynamic viscoelasticity measuring device (Rheometer RDA2: manufactured by Rheometrics), a parallel plate, and a heating rate of 2 ° C./min. The temperature was simply raised from 0 ° C., measured at a strain of 100%, a frequency of 0.5 Hz, and a plate interval of 1 mm, and the viscosity at 25 ° C. and 80 ° C. was read from the obtained viscosity curve.
The tack was cut to 100 mm width and 200 mm length, and 18 mm × 18 mm glass was pressed with a load of 0.1 kg for 3 seconds on the surface of the prepreg that was affixed to a flat aluminum plate with double-sided tape, then 30 mm The force when pulling up at a speed of 1 min was measured. The measurement environment is 24 ° C. and 50 RH%. When the tack is 1.8 to 2.4N, the prepregs are suitable for sticking. However, when the tack is higher than 2.4N, it is difficult to peel off. .

また、タックライフは、測定初期のタックから、1.0N以上低下した日数とした。   The tack life was defined as the number of days that decreased by 1.0 N or more from the initial tack of the measurement.

また、本実施例で、ガラス転移温度は、示差熱量計(DSC)を用いて、JIS K7121(1987)に基づいてもとめた中間点温度を用いた。   Further, in this example, the glass transition temperature was an intermediate temperature determined based on JIS K7121 (1987) using a differential calorimeter (DSC).

また、AFP法で1/4インチ幅にスリットしたスリットテーププリプレグを使用した際、プリプレグに含浸させたエポキシ樹脂組成物がガイドへ脱落するが、連続使用を続けると、樹脂の脱落物がガイド上に堆積し、スリットテーププリプレグに掛かる張力が大きくなる。これにより、スリットテーププリプレグが屈曲したり、スリットテーププリプレグの幅が細くなった際に、AFP装置の清掃を実施した。   In addition, when a slit tape prepreg slit to 1/4 inch width by the AFP method is used, the epoxy resin composition impregnated in the prepreg falls off to the guide. The tension applied to the slit tape prepreg increases. Thereby, when the slit tape prepreg was bent or the width of the slit tape prepreg was narrowed, the AFP device was cleaned.

本実施例において、プリプレグは以下のように作製した。エポキシ樹脂組成物[A]、[B]をそれぞれニーダーで混練後、シリコーンを塗布した離型紙上に混練したエポキシ樹脂組成物[A]、[B]を均一に塗布して、樹脂フィルムとした。エポキシ樹脂組成物[B]が塗布された樹脂フィルムの間に均一に引き揃えた炭素繊維(東レ社製:T800SC−24K−10E)を挟み込み、プレスロールを用いて加熱、加圧して、炭素繊維にエポキシ樹脂組成物[B]が含浸した1次プリプレグを得た(炭素繊維重量190g/cm2、樹脂含有率25%)。1次プリプレグはエポキシ樹脂組成物[B]を含浸した後、両方の離型紙を剥離した。次に、エポキシ樹脂組成物[A]が塗布された樹脂フィルムの間に1次プリプレグを挟み込み、プレスロールを用いて加熱、加圧して、1次プリプレグにエポキシ樹脂組成物[A]が含浸したプリプレグを得た(炭素繊維重量190g/cm2、樹脂含有率35%)。この際、エポキシ樹脂組成物[A]を含浸させる条件は、エポキシ樹脂組成物[B]との混合を出来るだけ避けるため、エポキシ樹脂組成物[B]の含浸条件よりは低圧に設定し、エポキシ樹脂組成物[A]がプリプレグの両表面側に局在化するようにした。当該プリプレグは、一方の離型紙を剥離した後、ロール状に巻き取った。
(実施例1)
エポキシ樹脂組成物[A]として、ELM434(住友化学社製:エポキシ当量120g/eq)を80重量部、jER1055(ジャパンエポキシレジン社製:エポキシ当量800〜900g/eq)を20重量部、4,4’−DDS(住友化学社製)を30重量部、スミカエクセル(登録商標)5003P(住友化学社製)を14重量部、MP1001(日本合成ゴム社製)を50重量部用いた。
エポキシ樹脂組成物[B]として、ELM434を80重量部、jER819(ジャパンエポキシレジン社製:エポキシ当量180〜220g/eq)を20重量部、4,4’−DDSを30重量部、スミカエクセル(登録商標)5003Pを5重量部用いた。
エポキシ樹脂組成物[A]の25℃での粘度は、3×10Pa・s、80℃での粘度は、500Pa・s、ガラス転移温度は10℃であった。また、エポキシ樹脂組成物[B]の25℃での粘度は、2×10Pa・sであった。
In this example, the prepreg was produced as follows. After kneading the epoxy resin compositions [A] and [B] with a kneader, the epoxy resin compositions [A] and [B] kneaded on the release paper coated with silicone were uniformly applied to obtain a resin film. . A carbon fiber (T800SC-24K-10E manufactured by Toray Industries, Inc.) that is uniformly drawn between the resin films coated with the epoxy resin composition [B] is sandwiched, heated and pressurized using a press roll, and then carbon fiber. A primary prepreg impregnated with an epoxy resin composition [B] was obtained (carbon fiber weight 190 g / cm 2, resin content 25%). After the primary prepreg was impregnated with the epoxy resin composition [B], both release papers were peeled off. Next, the primary prepreg is sandwiched between the resin films coated with the epoxy resin composition [A], heated and pressurized using a press roll, and the primary prepreg is impregnated with the epoxy resin composition [A]. A prepreg was obtained (carbon fiber weight 190 g / cm 2, resin content 35%). At this time, the condition for impregnating the epoxy resin composition [A] is set to a lower pressure than the impregnation condition for the epoxy resin composition [B] in order to avoid mixing with the epoxy resin composition [B] as much as possible. The resin composition [A] was localized on both surface sides of the prepreg. The prepreg was wound into a roll after peeling off one release paper.
Example 1
As epoxy resin composition [A], ELM434 (Sumitomo Chemical Co., Ltd .: epoxy equivalent 120 g / eq) 80 parts by weight, jER1055 (Japan Epoxy Resin Co., Ltd .: epoxy equivalent 800-900 g / eq) 20 parts by weight, 4, 30 parts by weight of 4′-DDS (manufactured by Sumitomo Chemical Co., Ltd.), 14 parts by weight of Sumika Excel (registered trademark) 5003P (manufactured by Sumitomo Chemical Co., Ltd.), and 50 parts by weight of MP1001 (manufactured by Nippon Synthetic Rubber Co., Ltd.) were used.
As an epoxy resin composition [B], 80 parts by weight of ELM434, 20 parts by weight of jER819 (manufactured by Japan Epoxy Resin Co., Ltd .: epoxy equivalent 180 to 220 g / eq), 30 parts by weight of 4,4′-DDS, Sumika Excel ( 5 parts by weight of registered trademark 5003P was used.
The viscosity at 25 ° C. of the epoxy resin composition [A] was 3 × 10 7 Pa · s, the viscosity at 80 ° C. was 500 Pa · s, and the glass transition temperature was 10 ° C. The viscosity of the epoxy resin composition [B] at 25 ° C. was 2 × 10 4 Pa · s.

当該プリプレグは、タックが2.0Nで、タックライフは10日以上と、共に良好であった。室温でのドレープ性は良好であった。また、当該プリプレグを所定幅にスリットし、16本をあわせてAFP法で2000m連続使用した際の清掃回数は1回と良好であった。
(実施例2)
エポキシ樹脂組成物[A]として、スミカエクセル(登録商標)5003Pを14重量部から11重量部とした他は、実施例1と同様の組成のものを用い、エポキシ樹脂組成物[B]として、実施例1と同様の組成のものを用いた。結果として、エポキシ樹脂組成物[A]の25℃での粘度は、1×10Pa・s、80℃での粘度は、250Pa・s、ガラス転移温度は9℃となった。
The prepreg had a tack of 2.0 N and a tack life of 10 days or longer. The drapeability at room temperature was good. In addition, the number of cleanings when the prepreg was slit to a predetermined width and 16 pieces were combined and used continuously for 2000 m by the AFP method was as good as 1 time.
(Example 2)
As the epoxy resin composition [A], except that Sumika Excel (registered trademark) 5003P was changed from 14 parts by weight to 11 parts by weight, the same composition as in Example 1 was used. As the epoxy resin composition [B], The same composition as in Example 1 was used. As a result, the viscosity at 25 ° C. of the epoxy resin composition [A] was 1 × 10 6 Pa · s, the viscosity at 80 ° C. was 250 Pa · s, and the glass transition temperature was 9 ° C.

当該プリプレグは、タックが2.4Nと良好であったが、プリプレグの表面側により柔らかい樹脂が存在するため、プリプレグの表面側の樹脂がプリプレグの内層に沈み込むため、タックライフは9日間と若干悪化したが、問題ないレベルであった。室温でのドレープ性は良好であった。また、プリプレグ表面側により柔らかい樹脂が存在するため、樹脂の脱落量が多くなったが、当該プリプレグを同様にAFP法で2000m連続使用した際の清掃回数は2回と良好であった。
(実施例3)
エポキシ樹脂組成物[A]として、スミカエクセル(登録商標)5003Pを14重量部から16重量部とした他は、実施例1と同様の組成のものを用い、エポキシ樹脂組成物[B]として、実施例1と同様の組成のものを用いた。結果として、エポキシ樹脂組成物[A]の25℃での粘度は、2×10Pa・s、80℃での粘度は、850Pa・s、ガラス転移温度は11℃となった。
The prepreg had a good tack of 2.4 N. However, since a softer resin exists on the surface side of the prepreg, the resin on the surface side of the prepreg sinks into the inner layer of the prepreg. Although it deteriorated, it was a level without any problem. The drapeability at room temperature was good. Further, since a soft resin was present on the prepreg surface side, the amount of the resin dropped off increased, but the number of cleanings when the prepreg was similarly used continuously for 2000 m by the AFP method was as good as 2 times.
Example 3
As the epoxy resin composition [A], except that Sumika Excel (registered trademark) 5003P was changed from 14 parts by weight to 16 parts by weight, the same composition as in Example 1 was used. As the epoxy resin composition [B], The same composition as in Example 1 was used. As a result, the viscosity at 25 ° C. of the epoxy resin composition [A] was 2 × 10 8 Pa · s, the viscosity at 80 ° C. was 850 Pa · s, and the glass transition temperature was 11 ° C.

当該プリプレグは、タックライフが10日以上と良好であったが、プリプレグ表面側により硬い樹脂が存在するため、タックが1.5Nとやや低く、若干貼り付きにくくなった(作業性が若干低下するが、使用には問題ないレベルであった)。室温でのドレープ性は良好であった。また、当該プリプレグを同様にAFP法で2000m連続使用した際には、プリプレグ表面に発生した樹脂粉が脱落したが、清掃回数は2回と良好であった。
(実施例4)
エポキシ樹脂組成物[A]として、スミカエクセル(登録商標)5003Pを14重量部から9重量部とした他は、実施例1と同様の組成のものを用い、エポキシ樹脂組成物[B]として、実施例1と同様の組成のものを用いた。結果として、エポキシ樹脂組成物[A]の25℃での粘度は、2×10Pa・s、80℃での粘度は、50Pa・s、ガラス転移温度は8℃となった。
The prepreg had a good tack life of 10 days or more, but because of the presence of a harder resin on the prepreg surface side, the tack was somewhat low at 1.5 N and was slightly difficult to stick (workability was slightly reduced). However, it was a level with no problem in use). The drapeability at room temperature was good. Similarly, when the prepreg was continuously used for 2000 m by the AFP method, the resin powder generated on the surface of the prepreg was dropped, but the number of cleanings was 2 times.
Example 4
As the epoxy resin composition [A], except that Sumika Excel (registered trademark) 5003P was changed from 14 parts by weight to 9 parts by weight, the same composition as in Example 1 was used. As the epoxy resin composition [B], The same composition as in Example 1 was used. As a result, the viscosity at 25 ° C. of the epoxy resin composition [A] was 2 × 10 5 Pa · s, the viscosity at 80 ° C. was 50 Pa · s, and the glass transition temperature was 8 ° C.

エポキシ樹脂組成物[A]の80℃での粘度が低いため、エポキシ樹脂組成物[A]が塗布された樹脂フィルムの間に1次プリプレグを挟み込み、プレスロールを用いて加熱、加圧して含浸した際に、樹脂フィルムの端部から樹脂が流れでてプリプレグ化の加工性がやや悪化したものの、問題のないプリプレグが得られた。   Since the viscosity at 80 ° C. of the epoxy resin composition [A] is low, the primary prepreg is sandwiched between the resin films coated with the epoxy resin composition [A], and heated and pressurized using a press roll to impregnate. In this case, the resin flowed from the end of the resin film and the prepreg processability was slightly deteriorated, but a prepreg having no problem was obtained.

当該プリプレグは、プリプレグ表面側により柔らかい樹脂が存在するため、タックが3.0Nとやや高く、貼り直し作業性が若干悪化した(作業性が若干悪化するが、使用には問題ないレベルであった)。また、プリプレグ表面側の樹脂がプリプレグ内層に沈み込むため、タックライフは6日間と実施例2よりもやや悪化した。室温でのドレープ性は良好であった。また、プリプレグ表面側により柔らかい樹脂が存在するため、樹脂の脱落量が多くなり、当該プリプレグを同様にAFP法で2000m連続使用した際の清掃回数は4回と若干悪化したが、AFP操業上問題ないレベルであった。
(実施例5)
エポキシ樹脂組成物[A]として、スミカエクセル(登録商標)5003Pを14重量部から18重量部とした他は、実施例1と同様の組成のものを用い、エポキシ樹脂組成物[B]として、実施例1と同様の組成のものを用いた。結果として、エポキシ樹脂組成物[A]の25℃での粘度は、9×10Pa・s、80℃での粘度は、1100Pa・s、ガラス転移温度は12℃となった。
Since the prepreg has a softer resin on the prepreg surface side, the tack is slightly high at 3.0N, and the reworkability is slightly deteriorated (the workability is slightly deteriorated, but it is a level with no problem in use) ). Further, since the resin on the prepreg surface side sinks into the inner layer of the prepreg, the tack life was slightly worse than that of Example 2 for 6 days. The drapeability at room temperature was good. In addition, since there is a soft resin on the prepreg surface side, the amount of resin dropout increases, and the number of cleanings when the prepreg is used continuously for 2000 m by the AFP method is slightly deteriorated to 4 times. There was no level.
(Example 5)
As the epoxy resin composition [A], except that Sumika Excel (registered trademark) 5003P was changed from 14 parts by weight to 18 parts by weight, the same composition as in Example 1 was used. As the epoxy resin composition [B], The same composition as in Example 1 was used. As a result, the viscosity at 25 ° C. of the epoxy resin composition [A] was 9 × 10 8 Pa · s, the viscosity at 80 ° C. was 1100 Pa · s, and the glass transition temperature was 12 ° C.

エポキシ樹脂組成物[A]の80℃での粘度が高いため、エポキシ樹脂組成物[A]が塗布された樹脂フィルムの間に1次プリプレグを挟み込み、プレスロールを用いて加熱、加圧して含浸した際に、樹脂フィルム上に樹脂が残る、裏取られが発生し、プリプレグ化の加工性や品位がやや悪化したものの、問題のないプリプレグが得られた。   Since the epoxy resin composition [A] has a high viscosity at 80 ° C., the primary prepreg is sandwiched between the resin films coated with the epoxy resin composition [A], and heated and pressurized using a press roll to impregnate. In this case, the resin remained on the resin film, and the film was breached, and the prepreg processability and quality were slightly deteriorated, but a prepreg having no problem was obtained.

当該プリプレグは、タックライフが10日以上と良好であったが、プリプレグ表面側により硬い樹脂が存在するため、タックが1.2Nと低く、貼り付きにくくなった(作業性が低下するが、使用には問題ないレベルであった)。室温でのドレープ性は良好であった。また、当該プリプレグを同様にAFP法で2000m連続使用した際には、プリプレグ表面に発生した樹脂粉が脱落し、清掃回数は3回と若干悪化したが、AFP操業上問題ないレベルであった。
(実施例6)
エポキシ樹脂組成物[A]として、ELM434を80重量部から60重量部へ、jER1055を20重量部から40重量部とした他は、実施例1と同様の組成のものを用い、エポキシ樹脂組成物[B]として、実施例1と同様の組成のものを用いた。結果として、エポキシ樹脂組成物[A]の25℃での粘度は、1×10Pa・s、80℃での粘度は、600Pa・s、ガラス転移温度は14℃となった。
The prepreg had a good tack life of 10 days or more, but because of the presence of a harder resin on the prepreg surface side, the tack was as low as 1.2 N, making it difficult to stick (workability decreased, but use There was no problem with this). The drapeability at room temperature was good. Similarly, when the prepreg was used continuously for 2000 m by the AFP method, the resin powder generated on the surface of the prepreg was dropped and the number of cleanings was slightly deteriorated to 3 times, but the level was not problematic for AFP operation.
(Example 6)
As the epoxy resin composition [A], an epoxy resin composition having the same composition as in Example 1 was used except that ELM434 was changed from 80 parts by weight to 60 parts by weight and jER1055 was changed from 20 parts by weight to 40 parts by weight. As [B], the same composition as in Example 1 was used. As a result, the viscosity at 25 ° C. of the epoxy resin composition [A] was 1 × 10 8 Pa · s, the viscosity at 80 ° C. was 600 Pa · s, and the glass transition temperature was 14 ° C.

当該プリプレグは、タックライフが10日以上と良好であったが、プリプレグ表面側により硬い樹脂が存在するため、タックが1.6Nとやや低く、若干貼り付きにくくなった(作業性が若干低下するが、使用には問題ないレベルであった)。室温でのドレープ性は良好であった。また、当該プリプレグを同様にAFP法で2000m連続使用した際には、プリプレグ表面に発生した樹脂粉が脱落したが、清掃回数は2回と良好であった。
(実施例7)
エポキシ樹脂組成物[A]として、ELM434を80重量部から97重量部へ、jER1055を20重量部から3重量部とした他は、実施例1と同様の組成のものを用い、エポキシ樹脂組成物[B]として、実施例1と同様の組成のものを用いた。結果として、エポキシ樹脂組成物[A]の25℃での粘度は、5×10Pa・s、80℃での粘度は、120Pa・s、ガラス転移温度は7℃となった。
The prepreg had a good tack life of 10 days or more, but because of the presence of a harder resin on the prepreg surface side, the tack was slightly low at 1.6 N, and it was slightly difficult to stick (workability was slightly reduced). However, it was a level with no problem in use). The drapeability at room temperature was good. Similarly, when the prepreg was continuously used for 2000 m by the AFP method, the resin powder generated on the surface of the prepreg was dropped, but the number of cleanings was 2 times.
(Example 7)
As the epoxy resin composition [A], an epoxy resin composition having the same composition as in Example 1 was used except that ELM434 was changed from 80 parts by weight to 97 parts by weight and jER1055 was changed from 20 parts by weight to 3 parts by weight. As [B], the same composition as in Example 1 was used. As a result, the viscosity at 25 ° C. of the epoxy resin composition [A] was 5 × 10 5 Pa · s, the viscosity at 80 ° C. was 120 Pa · s, and the glass transition temperature was 7 ° C.

当該プリプレグは、プリプレグ表面側により柔らかい樹脂が存在するため、タックが2.9Nとやや高く、貼り直し作業性が若干悪化した(作業性が若干悪化するが、使用には問題ないレベルであった)。また、プリプレグ表面側の樹脂がプリプレグ内層に沈み込むため、タックライフは7日間と実施例1よりもやや悪化した。室温でのドレープ性は良好であった。また、プリプレグ表面側により柔らかい樹脂が存在するため、樹脂の脱落量が多くなり、当該プリプレグを同様にAFP法で2000m連続使用した際の清掃回数は3回と若干悪化したが、AFP操業上問題ないレベルであった。
(実施例8)
エポキシ樹脂組成物[A]として、jER1055を20重量部からHM−101(大日本インキ化学工業社製:エポキシ当量3200−3900)を20重量部とした他は、実施例1と同様の組成のものを用い、エポキシ樹脂組成物[B]として、実施例1と同様の組成のものを用いた。結果として、エポキシ樹脂組成物[A]の25℃での粘度は、9×10Pa・s、80℃での粘度は、500Pa・s、ガラス転移温度は12℃となった。
Since the prepreg has a soft resin on the surface side of the prepreg, the tack is slightly high at 2.9 N, and the reworkability is slightly deteriorated (the workability is slightly deteriorated, but it is a level that is not problematic for use) ). Further, since the resin on the prepreg surface side sinks into the inner layer of the prepreg, the tack life was slightly worse than that of Example 1 for 7 days. The drapeability at room temperature was good. In addition, since there is a soft resin on the prepreg surface side, the amount of resin dropout increases, and the number of cleanings when the prepreg is used continuously for 2000 m by the AFP method is slightly deteriorated to 3 times. There was no level.
(Example 8)
The epoxy resin composition [A] had the same composition as in Example 1 except that jER1055 was changed from 20 parts by weight to HM-101 (Dainippon Ink Chemical Co., Ltd .: epoxy equivalent 3200-3900). The same composition as in Example 1 was used as the epoxy resin composition [B]. As a result, the viscosity at 25 ° C. of the epoxy resin composition [A] was 9 × 10 7 Pa · s, the viscosity at 80 ° C. was 500 Pa · s, and the glass transition temperature was 12 ° C.

当該プリプレグは、タックが1.8Nで、タックライフは10日以上と、共に良好であった。室温でのドレープ性は良好であった。また、当該プリプレグを同様にAFP法で2000m連続使用した際の清掃回数は1回と良好であったが、エポキシ当量が大きくなったため、複合材料の耐熱性が低下した。
(実施例9)
エポキシ樹脂組成物[A]として、jER1055を20重量部からjER819を20重量部とした他は、実施例1と同様の組成のものを用い、エポキシ樹脂組成物[B]として、実施例1と同様の組成のものを用いた。結果として、エポキシ樹脂組成物[A]の25℃での粘度は、8×10Pa・s、80℃での粘度は、120Pa・s、ガラス転移温度は8℃となった。
The prepreg had a tack of 1.8 N and a tack life of 10 days or longer. The drapeability at room temperature was good. Similarly, the number of cleanings when the prepreg was continuously used for 2000 m by the AFP method was as good as 1 time, but the epoxy equivalent increased, so the heat resistance of the composite material decreased.
Example 9
As the epoxy resin composition [A], the same composition as in Example 1 was used except that 20 parts by weight of jER1055 to 20 parts by weight of jER819 was used, and Example 1 was used as the epoxy resin composition [B]. The thing of the same composition was used. As a result, the viscosity at 25 ° C. of the epoxy resin composition [A] was 8 × 10 5 Pa · s, the viscosity at 80 ° C. was 120 Pa · s, and the glass transition temperature was 8 ° C.

当該プリプレグは、プリプレグ表面側により柔らかい樹脂が存在するため、タックが2.7Nとやや高く、貼り直し作業性が若干悪化した(作業性が若干悪化するが、使用には問題ないレベルであった)。また、プリプレグ表面側の樹脂がプリプレグ内層に沈み込むため、タックライフは7日間と実施例1よりもやや悪化した。室温でのドレープ性は良好であった。また、プリプレグ表面側により柔らかい樹脂が存在するため、樹脂の脱落量が多くなり、当該プリプレグを同様にAFP法で2000m連続使用した際の清掃回数は4回と若干悪化したが、AFP操業上問題ないレベルであった。
(実施例10)
エポキシ樹脂組成物[A]として、実施例1と同様の組成のものを用い、エポキシ樹脂組成物[B]として、スミカエクセル(登録商標)5003Pを5重量部から2重量部とした他は、実施例1と同様の組成のものを用いた。結果として、エポキシ樹脂組成物[B]の25℃での粘度は、6×10Pa・sとなった。
Since the prepreg has a softer resin on the prepreg surface side, the tack is slightly high at 2.7 N, and the reworking workability is slightly deteriorated (the workability is slightly deteriorated, but the use is not a problem level). ). Further, since the resin on the prepreg surface side sinks into the inner layer of the prepreg, the tack life was slightly worse than that of Example 1 for 7 days. The drapeability at room temperature was good. In addition, since there is a soft resin on the prepreg surface side, the amount of resin dropout increases, and the number of cleanings when the prepreg is used continuously for 2000 m by the AFP method is slightly deteriorated to 4 times. There was no level.
(Example 10)
As the epoxy resin composition [A], the same composition as in Example 1 was used, and as the epoxy resin composition [B], Sumika Excel (registered trademark) 5003P was changed from 5 parts by weight to 2 parts by weight. The same composition as in Example 1 was used. As a result, the viscosity at 25 ° C. of the epoxy resin composition [B] was 6 × 10 2 Pa · s.

当該プリプレグは、タックが2.0Nと良好であったが、プリプレグ内面に軟らかい樹脂が存在し、樹脂の沈み込みが促進されるため、タックライフは7日と実施例1よりもやや悪化した。室温でのドレープ性は良好であった。また、当該プリプレグを同様にAFP法で2000m連続使用した際には、樹脂の沈み込みにより、プリプレグ内面にある軟らかい樹脂が表面に存在し易くなるため、樹脂の脱落量が多くなったが、清掃回数は2回と良好であった。
(実施例11)
エポキシ樹脂組成物[A]として、実施例1と同様の組成のものを用い、エポキシ樹脂組成物[B]として、スミカエクセル(登録商標)5003Pを5重量部から2重量部とした他は、実施例1と同様の組成のものを用いた。結果として、エポキシ樹脂組成物[B]の25℃での粘度は、8×10Pa・sとなった。
The prepreg had a good tack of 2.0 N. However, since a soft resin was present on the inner surface of the prepreg and the sinking of the resin was promoted, the tack life was slightly worse than that of Example 1 for 7 days. The drapeability at room temperature was good. Similarly, when the prepreg is used continuously for 2000 m by the AFP method, the resin sinks and the soft resin on the inner surface of the prepreg is likely to be present on the surface. The frequency was as good as 2 times.
(Example 11)
As the epoxy resin composition [A], the same composition as in Example 1 was used, and as the epoxy resin composition [B], Sumika Excel (registered trademark) 5003P was changed from 5 parts by weight to 2 parts by weight. The same composition as in Example 1 was used. As a result, the viscosity at 25 ° C. of the epoxy resin composition [B] was 8 × 10 4 Pa · s.

当該プリプレグは、タックが2.0Nで、タックライフは10日以上と、共に良好であった。室温でのドレープ性は、プリプレグ内面に硬い樹脂が存在するため、硬く若干巻きつきにくくなったが、問題ないレベルであった。また、当該プリプレグを同様にAFP法で2000m連続使用した際の清掃回数は1回と良好であった。
(比較例1)
エポキシ樹脂組成物[A]として、スミカエクセル(登録商標)5003Pを14重量部から5重量部とした他は、実施例1と同様の組成のものを用い、エポキシ樹脂組成物[B]として、実施例1と同様の組成のものを用いた。結果として、エポキシ樹脂組成物[A]の25℃での粘度は、2×10Pa・s、80℃での粘度は、20Pa・s、ガラス転移温度は7℃となった。
The prepreg had a tack of 2.0 N and a tack life of 10 days or longer. The draping property at room temperature was hard and slightly difficult to wind because of the presence of a hard resin on the inner surface of the prepreg, but was at a level with no problem. Similarly, the number of cleanings when the prepreg was continuously used for 2000 m by the AFP method was as good as 1 time.
(Comparative Example 1)
As the epoxy resin composition [A], except that Sumika Excel (registered trademark) 5003P was changed from 14 parts by weight to 5 parts by weight, the same composition as in Example 1 was used. As the epoxy resin composition [B], The same composition as in Example 1 was used. As a result, the viscosity at 25 ° C. of the epoxy resin composition [A] is the viscosity at 2 × 10 4 Pa · s, 80 ℃, 20Pa · s, a glass transition temperature became 7 ° C..

エポキシ樹脂組成物[A]の80℃での粘度が低いため、エポキシ樹脂組成物[A]が塗布された樹脂フィルムの間に1次プリプレグを挟み込み、プレスロールを用いて加熱、加圧して含浸した際に、樹脂フィルムの端部から樹脂が流れでてプリプレグ化の加工性がやや悪化したものの、プリプレグを作製することができた。   Since the viscosity at 80 ° C. of the epoxy resin composition [A] is low, the primary prepreg is sandwiched between the resin films coated with the epoxy resin composition [A], and heated and pressurized using a press roll to impregnate. In this case, although the resin flowed from the end of the resin film and the prepreg processability was slightly deteriorated, a prepreg could be produced.

当該プリプレグは、プリプレグ表面側により柔らかい樹脂が存在するため、タックが3.6Nと高く、貼り直し作業が出来ない問題が生じることがあった。また、プリプレグ表面側の樹脂がプリプレグ内層に沈み込むため、タックライフは室温で3日間と実施例1よりもかなり悪化し、4日程度経過すると、プリプレグ同士を貼り付ける事が困難となる問題が生じた。室温でのドレープ性は良好であった。また、プリプレグ表面側により柔らかい樹脂が存在するため、樹脂の脱落量が多くなり、当該プリプレグを同様にAFP法で2000m連続使用した際の清掃回数は10回と悪化したため、操業性が大きく低下し、AFP法での適用は困難であった。
(比較例2)
エポキシ樹脂組成物[A]として、ELM434を80重量部から60重量部へ、jER1055を20重量部からjER819を40重量部へ、スミカエクセル(登録商標)5003Pを14重量部から5重量部とした他は、実施例1と同様の組成のものを用い、エポキシ樹脂組成物[B]として、実施例1と同様の組成のものを用いた。結果として、エポキシ樹脂組成物[A]の25℃での粘度は、6×10Pa・s、80℃での粘度は、90Pa・s、ガラス転移温度は6℃となった。
Since the prepreg has a soft resin on the surface side of the prepreg, the tack is as high as 3.6 N, and there is a problem that the reworking operation cannot be performed. In addition, since the resin on the prepreg surface side sinks into the inner layer of the prepreg, the tack life is considerably worse than that of Example 1 for 3 days at room temperature, and after about 4 days, it becomes difficult to attach the prepregs to each other. occured. The drapeability at room temperature was good. In addition, since there is a soft resin on the prepreg surface side, the amount of falling resin increases, and the number of cleanings when the prepreg is similarly used continuously for 2000 m by the AFP method has deteriorated to 10 times, so the operability is greatly reduced. Application by the AFP method was difficult.
(Comparative Example 2)
As the epoxy resin composition [A], ELM434 was changed from 80 parts by weight to 60 parts by weight, jER1055 was changed from 20 parts by weight to jER819 from 40 parts by weight, and SUMIKAEXCEL (registered trademark) 5003P was changed from 14 parts by weight to 5 parts by weight. Other than that, the same composition as in Example 1 was used, and the same composition as in Example 1 was used as the epoxy resin composition [B]. As a result, the viscosity at 25 ° C. of the epoxy resin composition [A] was 6 × 10 6 Pa · s, the viscosity at 80 ° C. was 90 Pa · s, and the glass transition temperature was 6 ° C.

エポキシ樹脂組成物[A]の80℃での粘度が低いため、エポキシ樹脂組成物[A]が塗布された樹脂フィルムの間に1次プリプレグを挟み込み、プレスロールを用いて加熱、加圧して含浸した際に、樹脂フィルムの端部から樹脂が流れでてプリプレグ化の加工性がやや悪化したものの、プリプレグを作製することができた。   Since the viscosity at 80 ° C. of the epoxy resin composition [A] is low, the primary prepreg is sandwiched between the resin films coated with the epoxy resin composition [A], and heated and pressurized using a press roll to impregnate. In this case, although the resin flowed from the end of the resin film and the prepreg processability was slightly deteriorated, a prepreg could be produced.

当該プリプレグは、タックが2.2Nで、タックライフは10日以上と、共に良好であった。室温でのドレープ性は良好であった。また、プリプレグ表面側に存在する樹脂のガラス転移温度が低いため、当該プリプレグを同様にAFP法で2000m連続使用した際の樹脂が柔らかいため、樹脂の脱落量が多くなり、清掃回数は8回と悪化したため、操業性が大きく低下し、AFP法での適用は困難であった。
(比較例3)
エポキシ樹脂組成物[A]として、ELM434を80重量部から60重量部へ、jER1055を20重量部からjER819を20重量部とHM−101を20重量部へ、スミカエクセル(登録商標)5003Pを14重量部から13重量部とした他は、実施例1と同様の組成のものを用い、エポキシ樹脂組成物[B]として、実施例1と同様の組成のものを用いた。結果として、エポキシ樹脂組成物[A]の25℃での粘度は、2×10Pa・s、80℃での粘度は、580Pa・s、ガラス転移温度は17℃となった。
The prepreg had a tack of 2.2 N and a tack life of 10 days or longer, both being good. The drapeability at room temperature was good. In addition, since the glass transition temperature of the resin present on the prepreg surface side is low, the resin when the prepreg is used continuously for 2000 m by the AFP method is soft, so the amount of the resin falling off increases and the number of cleanings is 8 times. Since it deteriorated, operativity fell greatly and application by the AFP method was difficult.
(Comparative Example 3)
As an epoxy resin composition [A], ELM434 is changed from 80 parts by weight to 60 parts by weight, jER1055 from 20 parts by weight to jER819 by 20 parts by weight, HM-101 by 20 parts by weight, and SUMIKAEXCEL (registered trademark) 5003P by 14 parts. Except for changing from 13 parts by weight to 13 parts by weight, the same composition as in Example 1 was used. As the epoxy resin composition [B], the same composition as in Example 1 was used. As a result, the viscosity of the epoxy resin composition [A] at 25 ° C. was 2 × 10 8 Pa · s, the viscosity at 80 ° C. was 580 Pa · s, and the glass transition temperature was 17 ° C.

当該プリプレグは、タックライフが10日以上であったが、プリプレグ表面側により硬い樹脂が存在するため、タックが1.4Nと低く、貼り付きにくくなった(作業性が低下するが、使用には問題ないレベルであった)。室温でのドレープ性は良好であった。また、当該プリプレグを同様にAFP法で2000m連続使用した際には、プリプレグ表面に発生した樹脂粉が脱落し、清掃回数は6回と悪化したため、操業性が大きく低下し、AFP法での適用は困難であった。
(比較例4)
エポキシ樹脂組成物[A]として、スミカエクセル(登録商標)5003Pを14重量部から20重量部とした他は、実施例1と同様の組成のものを用い、エポキシ樹脂組成物[B]として、実施例1と同様の組成のものを用いた。結果として、エポキシ樹脂組成物[A]の25℃での粘度は、3×10Pa・s、80℃での粘度は、1350Pa・s、ガラス転移温度は13℃となった。
The prepreg had a tack life of 10 days or more, but because of the presence of a harder resin on the prepreg surface side, the tack was as low as 1.4 N, making it difficult to stick (workability was reduced, but use There was no problem level). The drapeability at room temperature was good. Similarly, when the prepreg is used continuously for 2000 m by the AFP method, the resin powder generated on the surface of the prepreg is dropped and the number of cleanings is deteriorated to 6 times. Was difficult.
(Comparative Example 4)
As the epoxy resin composition [A], except that Sumika Excel (registered trademark) 5003P was changed from 14 parts by weight to 20 parts by weight, the same composition as in Example 1 was used. As the epoxy resin composition [B], The same composition as in Example 1 was used. As a result, the viscosity at 25 ° C. of the epoxy resin composition [A] is the viscosity at 3 × 10 9 Pa · s, 80 ℃ is, 1350Pa · s, a glass transition temperature became 13 ° C..

エポキシ樹脂組成物[A]が硬すぎるため、当該樹脂を均一に塗布して、樹脂フィルムとする、樹脂フィルム製造工程での使用が出来なかった。
(比較例5)
エポキシ樹脂組成物[A]として、実施例1と同様の組成のものを用い、エポキシ樹脂組成物[B]として、スミカエクセル(登録商標)5003Pを5重量部から7重量部とした他は、実施例1と同様の組成のものを用いた。結果として、エポキシ樹脂組成物[B]の25℃での粘度は、5×10Pa・sとなった。
Since the epoxy resin composition [A] was too hard, it could not be used in the resin film manufacturing process in which the resin was uniformly applied to form a resin film.
(Comparative Example 5)
As the epoxy resin composition [A], the same composition as in Example 1 was used, and as the epoxy resin composition [B], Sumika Excel (registered trademark) 5003P was changed from 5 parts by weight to 7 parts by weight. The same composition as in Example 1 was used. As a result, the viscosity at 25 ° C. of the epoxy resin composition [B] was 5 × 10 5 Pa · s.

当該プリプレグは、タックが2.0Nで、タックライフは10日以上と、共に良好であった。室温でのドレープ性は、プリプレグ内面に硬い樹脂が存在するため、硬く巻きつきにくくなり、曲率の高い面に積層したプリプレグが剥がれて、はね上がる問題が生じることがあった。また、当該プリプレグを同様にAFP法で2000m連続使用した際の清掃回数は1回と良好であった。   The prepreg had a tack of 2.0 N and a tack life of 10 days or longer. The drapeability at room temperature has a problem that a hard resin is present on the inner surface of the prepreg, which makes it hard and difficult to wind, and the prepreg laminated on the surface having a high curvature is peeled off and may be raised. Similarly, the number of cleanings when the prepreg was continuously used for 2000 m by the AFP method was as good as 1 time.

Claims (7)

強化繊維とエポキシ樹脂組成物からなるプリプレグであって、プリプレグの厚み方向の両表面側に、25℃における粘度が1.0×10〜1.0×10Pa・sかつ、ガラス転移温度が7〜15℃であるエポキシ樹脂組成物[A]が存在し、厚み方向の中心部に、25℃における粘度が5.0×10〜1.0×10Pa・sであるエポキシ樹脂組成物[B]が存在していることを特徴とするプリプレグ。 A prepreg comprising a reinforcing fiber and an epoxy resin composition, having a viscosity at 25 ° C. of 1.0 × 10 5 to 1.0 × 10 9 Pa · s and a glass transition temperature on both surface sides in the thickness direction of the prepreg Is an epoxy resin composition [A] having a temperature of 7 to 15 ° C. and having a viscosity at 25 ° C. of 5.0 × 10 2 to 1.0 × 10 5 Pa · s at the center in the thickness direction. A prepreg comprising the composition [B]. エポキシ樹脂組成物[A]の80℃における粘度が100〜1000Pa・sである請求項1に記載のプリプレグ。 The prepreg according to claim 1, wherein the epoxy resin composition [A] has a viscosity at 80 ° C of 100 to 1000 Pa · s. エポキシ樹脂組成物[A]が、エポキシ当量が800〜3000g/eqである2官能エポキシ樹脂を、エポキシ樹脂組成物[A]に含まれる全てのエポキシ樹脂100重量部に対して5〜25重量部含む請求項1または2に記載のプリプレグ。 The epoxy resin composition [A] is a bifunctional epoxy resin having an epoxy equivalent of 800 to 3000 g / eq, 5 to 25 parts by weight with respect to 100 parts by weight of all epoxy resins contained in the epoxy resin composition [A]. The prepreg according to claim 1 or 2 comprising. 強化繊維が長手方向に一方向に配列した請求項1〜3のいずれかに記載のプリプレグ。 The prepreg according to any one of claims 1 to 3, wherein the reinforcing fibers are arranged in one direction in the longitudinal direction. 請求項4に記載のプリプレグを強化繊維の配列方向に平行に帯状に切断したスリットテーププリプレグ。 A slit tape prepreg obtained by cutting the prepreg according to claim 4 into a strip shape parallel to the arrangement direction of the reinforcing fibers. 請求項5に記載のスリットテーププリプレグをマンドレル上に積層し、硬化してなる複合材料。 A composite material obtained by laminating and curing the slit tape prepreg according to claim 5 on a mandrel. 強化繊維に25℃における粘度が5.0×10〜1.0×10Pa・sであるエポキシ樹脂組成物[B]を含浸して1次プリプレグを作成し、その後連続して、または一旦巻き取った1次プリプレグを巻出して、25℃における粘度が1.0×10〜1.0×10Pa・sかつ、ガラス転移温度が7〜15℃であるエポキシ樹脂組成物[A]を両面から含浸させることを特徴とするプリプレグの製造方法。 A primary prepreg is prepared by impregnating the reinforcing fiber with an epoxy resin composition [B] having a viscosity at 25 ° C. of 5.0 × 10 2 to 1.0 × 10 5 Pa · s, or continuously, or The primary prepreg once wound is unwound, and an epoxy resin composition having a viscosity at 25 ° C. of 1.0 × 10 5 to 1.0 × 10 9 Pa · s and a glass transition temperature of 7 to 15 ° C. [ A] is impregnated from both sides, and a method for producing a prepreg.
JP2009075885A 2009-03-26 2009-03-26 Prepreg for fiber reinforced composite material and molded product thereof Pending JP2010229211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009075885A JP2010229211A (en) 2009-03-26 2009-03-26 Prepreg for fiber reinforced composite material and molded product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009075885A JP2010229211A (en) 2009-03-26 2009-03-26 Prepreg for fiber reinforced composite material and molded product thereof

Publications (1)

Publication Number Publication Date
JP2010229211A true JP2010229211A (en) 2010-10-14

Family

ID=43045327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009075885A Pending JP2010229211A (en) 2009-03-26 2009-03-26 Prepreg for fiber reinforced composite material and molded product thereof

Country Status (1)

Country Link
JP (1) JP2010229211A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013159723A (en) * 2012-02-07 2013-08-19 Toray Ind Inc Prepreg and method for producing the same
KR20180013983A (en) * 2015-05-29 2018-02-07 사이텍 인더스트리스 인코포레이티드 Automated processes for the transport of prepregs using prepregs comprising a gun-fiber veil surface layer and prepregs
KR20180016395A (en) * 2015-05-29 2018-02-14 사이텍 인더스트리스 인코포레이티드 METHOD FOR PRODUCING A MOLDED PRODUCT FROM A FIBER-REINFORCED COMPOSITE AND PREPREG
WO2018135594A1 (en) 2017-01-19 2018-07-26 東レ株式会社 Prepreg, method for producing same, and slit tape prepreg
JP6493633B1 (en) * 2017-09-28 2019-04-03 東レ株式会社 Thermosetting resin composition for fiber reinforced composite material, preform, fiber reinforced composite material and method for producing fiber reinforced composite material
WO2019193940A1 (en) 2018-04-02 2019-10-10 東レ株式会社 Prepreg and manufacturing method for same
WO2020004421A1 (en) 2018-06-26 2020-01-02 東レ株式会社 Prepreg and production method therefor, slit tape prepreg, carbon fiber-reinforced composite material
WO2020003662A1 (en) 2018-06-26 2020-01-02 東レ株式会社 Prepreg and production method therefor, slit tape prepreg, carbon fiber-reinforced composite material
WO2021006114A1 (en) 2019-07-05 2021-01-14 東レ株式会社 Prepreg and fiber-reinforced composite material

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013159723A (en) * 2012-02-07 2013-08-19 Toray Ind Inc Prepreg and method for producing the same
KR20180013983A (en) * 2015-05-29 2018-02-07 사이텍 인더스트리스 인코포레이티드 Automated processes for the transport of prepregs using prepregs comprising a gun-fiber veil surface layer and prepregs
KR20180016395A (en) * 2015-05-29 2018-02-14 사이텍 인더스트리스 인코포레이티드 METHOD FOR PRODUCING A MOLDED PRODUCT FROM A FIBER-REINFORCED COMPOSITE AND PREPREG
JP2018516186A (en) * 2015-05-29 2018-06-21 サイテック インダストリーズ インコーポレイテッド FIBER-REINFORCED COMPOSITE MATERIAL AND METHOD FOR PRODUCING MOLDED ARTICLE FROM FIBER-REINFORCED CURABLE COMPOSITE
KR102424010B1 (en) * 2015-05-29 2022-07-22 사이텍 인더스트리스 인코포레이티드 Automated Processes and Prepregs for Prepreg Transport Using Prepregs Containing a Dry Fiber Bale Surface Layer
US10507596B2 (en) 2015-05-29 2019-12-17 Cytec Industries Inc. Process for preparing moulded articles from fibre-reinforced composite materials—I
KR102410102B1 (en) * 2015-05-29 2022-06-17 사이텍 인더스트리스 인코포레이티드 Method for making molded articles from fiber-reinforced composites and prepregs of fiber-reinforced curable composites
JP7006582B2 (en) 2017-01-19 2022-02-10 東レ株式会社 Prepreg and its manufacturing method, slit tape prepreg
WO2018135594A1 (en) 2017-01-19 2018-07-26 東レ株式会社 Prepreg, method for producing same, and slit tape prepreg
US11708487B2 (en) 2017-01-19 2023-07-25 Toray Industries, Inc. Prepreg, method for producing same, and slit tape prepreg
KR20190104347A (en) 2017-01-19 2019-09-09 도레이 카부시키가이샤 Prepreg and manufacturing method thereof, slit tape prepreg
JPWO2018135594A1 (en) * 2017-01-19 2019-11-07 東レ株式会社 Prepreg and manufacturing method thereof, slit tape prepreg
JP6493633B1 (en) * 2017-09-28 2019-04-03 東レ株式会社 Thermosetting resin composition for fiber reinforced composite material, preform, fiber reinforced composite material and method for producing fiber reinforced composite material
WO2019065432A1 (en) * 2017-09-28 2019-04-04 東レ株式会社 Thermosetting resin composition for fiber-reinforced composite material, preform, fiber-reinforced composite material, and method for producing fiber-reinforced composite material
KR20200139128A (en) 2018-04-02 2020-12-11 도레이 카부시키가이샤 Prepreg and its manufacturing method
WO2019193940A1 (en) 2018-04-02 2019-10-10 東レ株式会社 Prepreg and manufacturing method for same
KR20210022664A (en) 2018-06-26 2021-03-03 도레이 카부시키가이샤 Prepreg and its manufacturing method, slit tape prepreg, carbon fiber reinforced composite material
KR20210022661A (en) 2018-06-26 2021-03-03 도레이 카부시키가이샤 Prepreg and its manufacturing method, slit tape prepreg, carbon fiber reinforced composite material
WO2020003662A1 (en) 2018-06-26 2020-01-02 東レ株式会社 Prepreg and production method therefor, slit tape prepreg, carbon fiber-reinforced composite material
WO2020004421A1 (en) 2018-06-26 2020-01-02 東レ株式会社 Prepreg and production method therefor, slit tape prepreg, carbon fiber-reinforced composite material
US11939465B2 (en) 2018-06-26 2024-03-26 Toray Industries, Inc. Prepreg and production method therefor, slit tape prepreg, carbon fiber-reinforced composite material
WO2021006114A1 (en) 2019-07-05 2021-01-14 東レ株式会社 Prepreg and fiber-reinforced composite material

Similar Documents

Publication Publication Date Title
JP2010229211A (en) Prepreg for fiber reinforced composite material and molded product thereof
JP5159990B2 (en) Prepreg and manufacturing method thereof
TWI447028B (en) Prepreg,fiber-reinforced composite material and method for manufacturing prepreg
JPWO2007060833A1 (en) Carbon fiber bundles, prepregs and carbon fiber reinforced composite materials
JP2013166854A (en) Fiber-reinforced composite material
WO2014030638A1 (en) Epoxy resin composition and film, prepreg, and fiber-reinforced plastic using same
JP6854880B2 (en) Self-adhesive prepreg and its manufacturing method
JP2016169381A (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP7188384B2 (en) Prepreg and manufacturing method thereof, slit tape prepreg, carbon fiber reinforced composite material
US10577470B2 (en) Prepreg, fiber-reinforced composite material, and resin composition containing particles
JPWO2019225442A1 (en) Toupreg and its manufacturing method, and pressure vessel manufacturing method
WO1996002592A1 (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP2013166853A (en) Fiber-reinforced composite material
WO2016104314A1 (en) Epoxy resin composition, and film, prepreg, and fiber-reinforced plastic using same
JP7209470B2 (en) Prepregs and carbon fiber reinforced composites
JP2006198920A (en) Prepreg for honeycomb cocure, honeycomb laminated composite material, and method for producing them
JP2003002990A (en) Prepreg
JP2004043653A (en) Slit tape prepreg and its molded product
JP2010144118A (en) Prepreg and method for manufacturing the same
JP2004027043A (en) Epoxy resin composition for fiber-reinforced composite material and the resulting fiber-reinforced composite material
JP2019065111A (en) Epoxy resin composition, prepreg, and carbon fiber reinforced composite material
WO2021024576A1 (en) Method for producing prepreg, and prepreg
JP3539603B2 (en) Prepreg and composite
JP6699803B1 (en) Prepreg and its manufacturing method, slit tape prepreg, carbon fiber reinforced composite material
JP2011057851A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material