JPH02185946A - Alloyed cast iron material for compression crusher screw - Google Patents

Alloyed cast iron material for compression crusher screw

Info

Publication number
JPH02185946A
JPH02185946A JP575789A JP575789A JPH02185946A JP H02185946 A JPH02185946 A JP H02185946A JP 575789 A JP575789 A JP 575789A JP 575789 A JP575789 A JP 575789A JP H02185946 A JPH02185946 A JP H02185946A
Authority
JP
Japan
Prior art keywords
molten metal
alloy
less
cast iron
screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP575789A
Other languages
Japanese (ja)
Inventor
Tatsuo Iwasaki
岩崎 立夫
Takashi Kitano
隆司 北野
Fumio Murakami
文雄 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP575789A priority Critical patent/JPH02185946A/en
Publication of JPH02185946A publication Critical patent/JPH02185946A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To obtain a screw material excellent in wear resistance and toughness as a screw material for a compression crusher for chaff by carrying out casting by the use of alloyed cast iron with a specific composition as a raw material and subjecting the resulting casting to quench-and-temper treatment under respectively specified temp. conditions. CONSTITUTION:As a screw material used at the time of pulverizing a hard material with low specific gravity, such as chaff, by means of a compression crucher having a structure in which a screw is turned in a cylinder, a molten alloyed cast iron which has a composition containing, by weight, 2.5-3.8% C, 0.3-2.0% Si, 0.3-1.0% Mn, 3.5-6.5% Cr, 0.5-9.5% Mo, 0.5-8.0% W, 5-15% V, <0.2% P, and <0.1% S or further containing <0.5% Ti or <=3% Ni, Co, etc., or, together with the above Ni and Co, <5% Nb is tapped from a furnace at >=1580 deg.C and cast, and the resulting casting is quenched at 800-1100 deg.C and tempered at 200-600 deg.C. At this time, at the time of adding Ti, V, Nb, etc., to the molten metal, the surface of the molten metal is regulated to an inert-gas atmosphere and the above Ti, V, Nb, etc., are added in the form of master alloys, such as Fe-Ti, Fe-V, Fe-Nb, etc., to the molten metal of 1550 deg.C, by which the oxidational losses of Ti, V, Nb, etc., can be prevented.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は1例えば籾殻などの圧縮粉砕機に用いるスクリ
ュー材として好適な合金鋳鉄材に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an alloy cast iron material suitable as a screw material used in a compressor for crushing, for example, rice husk.

〔従来の技術〕[Conventional technology]

籾殻は玄米収穫のとき発生するが、比重が極めて小さい
ので集荷が困難であり、かつそれ自体シリカ、セルロー
ス及びリグニンの強固な結合体であるために、完全に粉
末化するには設備費・動力費等のコストがかかりすぎ、
はとんど有効に利用されていないのが現状である。
Rice husks are generated during the harvesting of brown rice, but their specific gravity is extremely low, making them difficult to collect, and because they themselves are a strong combination of silica, cellulose, and lignin, it takes a lot of equipment and power to completely pulverize them. It costs too much,
Currently, it is not being used effectively.

最近、上記籾殻を有効利用するために籾殻を圧縮粉砕す
る方法が実用化され、その−手段として圧縮粉砕機が利
用されている。これはシリンダ内をスクリューが回転す
る構造を有し、シリンダとスクリューとの間に導入され
た籾殻はスクリューの回転により前進しながら圧縮・粉
砕される。このように圧縮粉砕機のスクリューは圧縮・
粉砕作業中、約600℃の温度に昇温し強い応力を受け
るとともに激しい摩擦状態におかれる。従って、スクリ
ューは高い機械的強度(靭性等)とともに高い耐摩耗性
を有することが要求される。このために、従来は1籾殻
用圧縮粉砕機のスクリュー材として5KDIIまたは5
KD61のような金型用鋼が用いられている。また、こ
れらの金型用鋼を母材として、  CV、D (T i
 Cの化学y着)、自溶性合金溶射あるいはWC溶射な
どの表面硬化処理を施したものも使用されている。
Recently, a method of compressing and crushing rice husks has been put into practical use in order to effectively utilize the rice husks, and a compression crusher has been used as a means for this purpose. This has a structure in which a screw rotates within a cylinder, and the rice husks introduced between the cylinder and the screw are compressed and crushed while moving forward due to the rotation of the screw. In this way, the screw of the compression crusher is used for compressing and
During the crushing operation, the temperature rises to approximately 600°C, and the material is subjected to strong stress and severe friction. Therefore, the screw is required to have high mechanical strength (such as toughness) and high wear resistance. For this reason, conventionally, the screw material for a single rice husk compression crusher was 5KDII or 5KDII or 5KDII.
Mold steel such as KD61 is used. In addition, using these mold steels as base materials, CV, D (T i
Surface hardening treatments such as chemical adhesion of C), self-fluxing alloy spraying, or WC spraying are also used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし1表面硬化処理をしない金型用鋼の場合極めて短
時間にスクリューの刃が摩耗してしまい使用不可能とな
る。また、金型用鋼にCVD、自溶性合金溶射あるいは
WC溶射などの表面硬化処理を施したものは1表面硬化
層がlOμ曙から最大でも1mの厚さしかないので、約
5時間程度で表面硬化層が剥離してしまう。また局部摩
耗も著しい、そのためにこれらのスクリュー材は実用上
の観点からは不十分なものであるという問題点がある。
However, in the case of mold steel that is not subjected to surface hardening treatment, the screw blades wear out in an extremely short period of time, making it unusable. In addition, when mold steel is subjected to surface hardening treatment such as CVD, self-fusing alloy spraying, or WC spraying, each surface hardened layer is only 1 m thick at maximum, so it takes about 5 hours to surface. The hardened layer will peel off. Furthermore, there is a problem in that local wear is significant, and for this reason, these screw materials are insufficient from a practical point of view.

上記問題点を解決するために1本出願人はすでに圧縮粉
砕機スクリューとして好適な合金鋳鉄材について出願し
ている(特開昭63〜28843号公報参照)。上記の
提案により従来技術に存在する問題点を解決することが
でき1表面処理を施さなくても著しく高い耐摩耗性を有
する圧縮粉砕機スクリ工−を製造することができるよう
になった。しかしながら上記提案になる合金鋳鉄材は高
合金鋳鉄であるため5溶解、鋳造、熱処理の夫々の工程
において細心の注意と高度の技術を有し、製品の品質を
高度に維持することが極めて困難であり2往々にして鋳
巣その他の欠陥を発生しやすい。また近年この種の材料
に要求される仕様が益々厳しくなってきており、この点
上記改良従案になる合金鋳鉄材においても若干の改良の
余地があることを否めない。
In order to solve the above-mentioned problems, the present applicant has already applied for an alloy cast iron material suitable for use as a compressor crusher screw (see Japanese Patent Application Laid-open No. 63-28843). The above-mentioned proposal has made it possible to solve the problems existing in the prior art, and to produce a compressor crusher screener having extremely high wear resistance without surface treatment. However, since the alloy cast iron material proposed above is a high-alloy cast iron, it is extremely difficult to maintain a high level of product quality by requiring careful attention and advanced technology in each of the 5 melting, casting, and heat treatment steps. Yes 2 Often causes cavities and other defects. Furthermore, in recent years, the specifications required for this type of material have become increasingly strict, and in this respect it cannot be denied that there is room for some improvement in the alloy cast iron material that is the improvement proposal mentioned above.

本発明は上記従来技術の問題点を解決すると共に、更に
改良を加えた圧縮粉砕機スクリュー用合金鋳鉄を提供す
ることを目的とするものである。
The object of the present invention is to solve the problems of the above-mentioned prior art and to provide a further improved alloy cast iron for use in a compressor crusher screw.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、まず第1の発明においては
、化学成分が重量比で02.5〜3.8%。
In order to achieve the above object, in the first invention, the chemical component is 02.5 to 3.8% by weight.

510.3〜2.0%、Mn0.3〜1.0%、Cr3
.5〜6.5%、Mo0.5〜9.0%、W0.5〜8
.0%。
510.3-2.0%, Mn0.3-1.0%, Cr3
.. 5-6.5%, Mo0.5-9.0%, W0.5-8
.. 0%.

■5.0〜15.0%、P0.294以下、30.1%
以下。
■5.0-15.0%, P0.294 or less, 30.1%
below.

残部が実質的にFeからなり、かつ溶解炉にて溶解中に
1550℃以上に加熱し不活性ガスにより溶融金属表面
を被覆してFe−V合金を添加し、溶融金属を1580
℃以上に昇温して出湯し、鋳造後800〜1100℃に
加熱して焼入れ処理し、200〜600℃にて焼戻し処
理することにより硬さをHS 70以上にする1 とい
う技術的手段を採用した。
The remainder essentially consists of Fe, and the molten metal is heated to 1550°C or higher during melting in a melting furnace, the surface of the molten metal is coated with an inert gas, the Fe-V alloy is added, and the molten metal is heated to 1580°C or higher.
We adopted the technical means of tapping the metal by raising the temperature above ℃, heating it after casting to 800 to 1100 ℃ for quenching, and tempering it at 200 to 600 ℃ to achieve a hardness of HS 70 or higher1. did.

次に第2の発明においては、化学成分が重量比でC2,
5〜3.8%、Si0.3〜2.0%、Mn0.3〜1
.0%、Cr3.5〜6.5%、Mo0.5〜9.0%
Next, in the second invention, the chemical components are C2,
5-3.8%, Si0.3-2.0%, Mn0.3-1
.. 0%, Cr3.5-6.5%, Mo0.5-9.0%
.

W 0.5〜8.0%、V5.0〜15.0%、P0.
2%以下、50.1%以下、TI0.5%以下、残部が
実質的にFeからなり、かつ溶解炉にて溶解中に155
0℃以上に加熱し不活性ガスにより溶融金属表面を被覆
してFe−V合金およびF e −T i合金を添加し
、溶融金属を1580℃以上に昇温して出湯し鋳造後8
00〜1100℃に加熱して焼入れ処理し。
W 0.5-8.0%, V5.0-15.0%, P0.
2% or less, 50.1% or less, TI 0.5% or less, the remainder substantially consists of Fe, and 155
The surface of the molten metal is heated to 0°C or above and coated with an inert gas, Fe-V alloy and Fe-Ti alloy are added, and the molten metal is heated to 1580°C or above, tapped and cast.
It is heated to 00~1100℃ and hardened.

200〜600℃にて焼戻し処理することにより硬さを
8370以上にする。という技術的手段を採用した。
Hardness is increased to 8370 or higher by tempering at 200 to 600°C. A technical method was adopted.

更に第3の発明においては、化学成分が重量比でC2,
5〜3.8%、Si0.3〜2.0%、Mn0.3〜1
.0%、  Cr3.5〜6.5%、Mo0.5〜9.
0%WO15〜8.0%、V5.0〜15,0%、P0
.2%以下、S0.1%以下、Niおよび/またはCo
 3.0%以下、残部が実質的にFeからなり、かつ溶
解炉にて溶解中に1550℃以上に加熱し不活性ガスに
より熔融金属表面を被覆してFe−V合金を添加し、熔
融金属を1580℃以上に昇温して111?易し、鋳造
1k s00〜1100℃に加熱して焼入れ処理し、2
00〜600℃にて焼戻し処理することにより硬さを8
370以上にする。という技術的手段を採用した。
Furthermore, in the third invention, the chemical components have a weight ratio of C2,
5-3.8%, Si0.3-2.0%, Mn0.3-1
.. 0%, Cr3.5-6.5%, Mo0.5-9.
0% WO15-8.0%, V5.0-15.0%, P0
.. 2% or less, S0.1% or less, Ni and/or Co
3.0% or less, the remainder substantially consisting of Fe, and the molten metal is heated to 1550°C or higher during melting in a melting furnace, the surface of the molten metal is coated with an inert gas, and an Fe-V alloy is added to the molten metal. Raise the temperature to 1580℃ or higher to 111? Easy to cast, heated to 1k s00~1100℃ and quenched, 2
The hardness is increased to 8 by tempering at 00~600℃.
Make it 370 or more. A technical method was adopted.

また更に第4の発明においては、化学成分が重量比でC
2,5〜3.8%、SI0.3〜2.0%、Mn0、3
〜1.0%、  Cr3.5〜6.5%、Mo0.5〜
9゜0%、W0.S〜8.θ%、V5.0〜15.0%
、  PO12%以下、30.1%以下、Nb5.0%
以下、Niおよび/またはCo 3.0%以下、残部が
実質的にFeからなり、かつ溶解炉にて溶解中に155
0℃以上に加熱し不活性ガスにより溶融金属表面を被覆
してFe−V合金およびFe−Nb合金を添加し熔融金
属を1580℃以上に昇温して出湯し、鋳造後800−
1100℃に加熱して焼入れ処理し、200〜600℃
にて焼戻し処理することにより硬さをHS 70以上に
する。という技術的手段を採用したのである。
Furthermore, in the fourth invention, the chemical component is C by weight ratio.
2.5-3.8%, SI0.3-2.0%, Mn0.3
~1.0%, Cr3.5~6.5%, Mo0.5~
9°0%, W0. S~8. θ%, V5.0-15.0%
, PO 12% or less, 30.1% or less, Nb 5.0%
Below, Ni and/or Co is 3.0% or less, the balance is substantially Fe, and 155% is used during melting in the melting furnace.
The surface of the molten metal is heated to 0°C or higher, coated with an inert gas, Fe-V alloy and Fe-Nb alloy are added, the molten metal is heated to 1580°C or higher and tapped, and after casting it is heated to 800°C.
Quenched by heating to 1100℃, 200-600℃
The hardness is made to be HS 70 or higher by tempering. This technical method was adopted.

次に本発明における合金成分の限定理由について記述す
る。
Next, the reasons for limiting the alloy components in the present invention will be described.

C;2.5〜3.8%(重量比、以下間し)Cは炭化物
を晶出し、材料の硬さを増大させる元素であるが、2.
5%未満の場合、晶出する炭化物の量が少なく、耐摩耗
性の点で十分でない、また3、8%を超えて高くなると
使用時の靭性を劣化させるため好ましくない。好ましい
範囲は2.8〜3.6%である。
C: 2.5 to 3.8% (weight ratio, hereinafter referred to as the following) C is an element that crystallizes carbides and increases the hardness of the material.
When it is less than 5%, the amount of carbides crystallized is small and the wear resistance is not sufficient, and when it exceeds 3.8%, it is not preferable because it deteriorates the toughness during use. The preferred range is 2.8-3.6%.

Si:0.3〜2.0% Stは主に溶湯の脱酸を目的として添加するが0.3%
未満ではその効果が少なく、また2、0%を超えるとそ
の効果が飽和するとともに、材質の靭性が低下する。従
って、0.3〜2.0%とするが好ましい範囲は0.5
〜1.5%である。
Si: 0.3-2.0% St is added mainly for the purpose of deoxidizing the molten metal, but 0.3%
If it is less than 2.0%, the effect will be small, and if it exceeds 2.0%, the effect will be saturated and the toughness of the material will decrease. Therefore, it should be 0.3 to 2.0%, but the preferable range is 0.5%.
~1.5%.

Mn:0.3〜1.0% Mnは材質を硬化して耐摩耗性向上に効果があると同時
に脱酸効果もある。0.3%未満ではその効果が少なく
、1.0%以上では残留オーステナイトが増加して、硬
化しなくなる。従って、その含有量は0.3〜1.0%
とする。好ましい範囲は0.4〜0.9%である。
Mn: 0.3 to 1.0% Mn is effective in hardening the material and improving wear resistance, and at the same time has a deoxidizing effect. If it is less than 0.3%, the effect will be small, and if it is more than 1.0%, retained austenite will increase and hardening will not occur. Therefore, its content is 0.3-1.0%
shall be. The preferred range is 0.4-0.9%.

Cr:3.5〜6.5% Crは所定の焼入れ硬度を保ち、耐摩耗性を維持するた
めには3.5〜6.5 %の含有量が必要である。しか
し6.5%を超えるとCr炭化物が晶出してきて靭性の
点で適当でない。好ましい範囲は4.0〜5.5%であ
る。
Cr: 3.5 to 6.5% Cr content of 3.5 to 6.5% is required to maintain a predetermined hardness and wear resistance. However, if it exceeds 6.5%, Cr carbides will crystallize, making it unsuitable in terms of toughness. The preferred range is 4.0-5.5%.

Mo:0.5〜9.0% MOは材質を硬化させるとともにMoを含んだ硬質炭化
物を形成するのに必要である。しかし0.5%未満では
その効果が少なく、また9、0%を超えるとMbC炭化
物が析出することになる。このMaC炭化物はバナジウ
J、炭化物に比較して硬度が低く、バナジウム炭化物と
混合した組織形態になると、塊状のバナジウム炭化物の
形態がくずれ、靭性が低下するとともに摩耗を促進する
。このためにMoの含有量は0.5〜9.0%とする。
Mo: 0.5 to 9.0% MO is necessary to harden the material and form a hard carbide containing Mo. However, if it is less than 0.5%, the effect is small, and if it exceeds 9.0%, MbC carbide will precipitate. This MaC carbide has lower hardness than Vanadium J carbide, and when it becomes a mixed structure with vanadium carbide, the bulk vanadium carbide loses its shape, reducing toughness and promoting wear. For this reason, the content of Mo is set to 0.5 to 9.0%.

好ましい範囲は1.0〜8.0%である。The preferred range is 1.0-8.0%.

W F 0.5〜8.0% Wは高温硬度を維持するための必須成分であるが10.
5%未満では、その効果が小さく、8.0%を超えると
M、CあるいはM&Cが析出しやすく耐摩耗性が十分で
なくなるので、それ以下に抑える必要がある。また8、
0%を超えると、塊状の均一なバナジウム炭化物の形態
がくずれ、摩耗が大きくなる。このためWの含有量は0
.5〜8.0%とする。好ましい範囲は1.0〜7.0
%である。
W F 0.5-8.0% W is an essential component for maintaining high temperature hardness, but 10.
If it is less than 5%, the effect will be small, and if it exceeds 8.0%, M, C or M&C will tend to precipitate and the wear resistance will not be sufficient, so it is necessary to keep it below that. Also 8,
If it exceeds 0%, the shape of the lumpy, uniform vanadium carbide will collapse, resulting in increased wear. Therefore, the W content is 0
.. 5 to 8.0%. The preferred range is 1.0 to 7.0
%.

V : 5.0〜15.0% ■は5.0〜l 5.0%の範囲のとき2.5〜3.8
%の範囲のCとバランスがとれ1粒状のバナジウム炭化
物のみが均一微細に分散晶出した組織形態となる。この
ためにVは5.0〜15.0%の範囲にする必要がある
。好ましい範囲は8,0〜12.0%である。
V: 5.0~15.0% ■ is 5.0~l 2.5~3.8 when in the range of 5.0%
% of C and a balanced structure in which only one grain of vanadium carbide is uniformly and finely dispersed and crystallized. For this reason, V needs to be in the range of 5.0 to 15.0%. The preferred range is 8.0-12.0%.

Ti:0.5%以下 Tiは炭化物を微細化するのに効果があるが。Ti: 0.5% or less Ti is effective in refining carbides.

過剰の場合は効果が飽和するので0.5%以下とする。If it is in excess, the effect will be saturated, so the amount should be 0.5% or less.

Niおよび/またはCo:3.0%以下Niは焼入れ性
を向上して硬さを高め、またCoは高温での硬さを確保
して、耐摩耗性向上に効果があるが1過剰の場合は効果
が飽和するので3.0%以下とする。
Ni and/or Co: 3.0% or less Ni improves hardenability and increases hardness, and Co ensures hardness at high temperatures and is effective in improving wear resistance, but if 1 is in excess Since the effect is saturated, it is set to 3.0% or less.

Nb:5.0%以下 Nbは炭化物を形成して耐摩耗性を向上さ・けると同時
に、■と同様に塊状の炭化物を微細均一に晶出させる効
果があるが、5.0%を超えると溶解が困難になるため
不都合である。
Nb: 5.0% or less Nb forms carbides and improves wear resistance, and at the same time has the effect of crystallizing lumpy carbides finely and uniformly as in ①, but if it exceeds 5.0% This is disadvantageous because it makes dissolution difficult.

本願の発明において含有させるべきV、T1Nb等の元
素は夫々Fe−V、Fe−TiおよびFe−Nbとして
溶融金属中に添加するのであるが、これらの合金鉄の溶
解および分散を確実にするため、熔解炉中の熔融金属の
溶解温度を1550°C以上に保持することが好ましい
In the invention of the present application, elements such as V and T1Nb are added to the molten metal as Fe-V, Fe-Ti, and Fe-Nb, respectively, but in order to ensure the dissolution and dispersion of these ferroalloys, It is preferable to maintain the melting temperature of the molten metal in the melting furnace at 1550°C or higher.

なお上記温度に加熱する場合には、溶融金属の表面を例
えばアルゴンガスその他の不活性ガスで被覆して熔融金
属の酸化を防止することが好ましい。このような被覆を
欠如すると、溶融金属が酸化することにより、所謂ノロ
(溶滓)が発生し。
In addition, when heating to the above temperature, it is preferable to cover the surface of the molten metal with, for example, argon gas or other inert gas to prevent oxidation of the molten metal. If such a coating is missing, the molten metal will oxidize, resulting in so-called slag.

鋳造時において製品内に混入し、鋳造欠陥となるため不
都合である。
This is inconvenient because it gets mixed into the product during casting and causes casting defects.

更に熔融金属の成分調整が完了した後に、溶解金属を1
580’C以上に昇温させて鋳造するが、このように昇
温させることにより、溶融金属の表面に発生した酸化膜
を除去することができる。この温度より低いと上記酸化
膜の除去が不完全となり。
Furthermore, after the composition adjustment of the molten metal is completed, the molten metal is
Casting is performed by raising the temperature to 580'C or higher, and by raising the temperature in this way, it is possible to remove the oxide film generated on the surface of the molten metal. If the temperature is lower than this, the removal of the oxide film will be incomplete.

鋳造時に溶融金属に混入し、鋳造欠陥となるため不都合
である。
This is inconvenient because it gets mixed into the molten metal during casting and causes casting defects.

次に本願の発明の合金鋳鉄材は、鋳放し状態においては
残留オーステナイトが存在し、そのまま圧縮粉砕機のス
クリューとして使用した場合には耐摩耗性が劣る。この
ため800〜1100℃から空冷により焼入処理し、さ
らに200〜600℃で1回以上の焼戻し処理を行う。
Next, the alloy cast iron material of the invention of the present application has residual austenite in the as-cast state, and has poor wear resistance when used as a screw in a compression crusher as it is. For this purpose, a hardening treatment is performed by air cooling from 800 to 1100°C, and further a tempering treatment is performed at least once at 200 to 600°C.

焼入れ温度を800℃未満にすると基地中への合金の溶
は込みが不十分であり、焼入れ効果がない。焼入れ上限
温度は高い程好ましいが、 1150℃より高くすると
熔融が起り始めるので安全をみて1100℃とする。ま
た焼戻し温度が200℃未満の場合、オーステナイトの
マルテンサイトあるいはベイナイトへの変態が十分でな
い。また600℃より高くなると基地組織の軟化が住し
る0本発明の合金は合金量が多く、残留オーステナイト
の分解がむずかしい。このため焼戻し温度は200〜6
00℃で1回以上実施するのが望ましい。
If the quenching temperature is less than 800° C., the melting of the alloy into the matrix will be insufficient and the quenching will not be effective. The higher the upper limit temperature for quenching, the better, but if it is higher than 1150°C, melting will begin to occur, so for safety reasons, it is set at 1100°C. Further, when the tempering temperature is less than 200°C, transformation of austenite to martensite or bainite is not sufficient. Moreover, when the temperature rises above 600° C., the matrix structure softens.The alloy of the present invention has a large amount of alloy, making it difficult to decompose retained austenite. Therefore, the tempering temperature is 200~6
It is desirable to carry out the test at least once at 00°C.

なお上記のような処理により合金鋳鉄材の硬さを大にす
ることができるが、硬さがHS 70未満では圧縮粉砕
機のスクリュー用としては耐摩耗性が不足するため不都
合である。
Although the hardness of the alloy cast iron material can be increased by the above-described treatment, if the hardness is less than HS 70, it is disadvantageous because the wear resistance is insufficient for use in the screw of a compression crusher.

〔作用] 上記の構成により、基地中に硬質の炭化物が塊状、かつ
均一に分散することとなり、使用中に発生する強い応力
に耐える強靭性を有するとともに耐摩耗性を有するもの
である。そして、特殊な表面処理等は必要とせず、簡便
な鋳造技術及び熱処理技術を用いて圧縮粉砕機用のスク
リュー材となし得るのである。
[Function] With the above configuration, the hard carbide is uniformly dispersed in the matrix, and has the toughness to withstand the strong stress generated during use and has wear resistance. In addition, there is no need for any special surface treatment, and it can be made into a screw material for a compression crusher using simple casting and heat treatment techniques.

から出湯し、スクリュー鋳型内に鋳造する。なお溶解炉
中においては熔融金属の酸化を防止するために1前記ア
ルゴンガスの吹込みを継続する。鋳造後は鋳型を解体し
て砂落し、湯口その他を除去した後1050℃に加熱し
て空冷による焼入れ処理し。
The metal is tapped and cast into a screw mold. In addition, in order to prevent oxidation of the molten metal in the melting furnace, the above-mentioned argon gas is continuously blown into the melting furnace. After casting, the mold is dismantled, sand is removed, sprues and other parts are removed, and the mold is heated to 1050°C and quenched by air cooling.

更に550℃にて焼戻し処理を行なう、なお上記焼入れ
焼戻し処理における加熱炉の雰囲気は1例えばアルゴン
ガスによる無酸化雰囲気に保持する。
Further, tempering treatment is performed at 550° C. The atmosphere in the heating furnace in the above-mentioned quenching and tempering treatment is maintained at a non-oxidizing atmosphere using, for example, argon gas.

第1表中に併記した硬さはスクリューの銅表面において
測定した値であり、何れも8370以上である。
The hardnesses listed in Table 1 are values measured on the copper surface of the screw, and all are 8370 or higher.

〔実施例〕〔Example〕

第1表に示す化学成分となるように原材料を配合して高
周波溶解炉において溶解し、 1550°C以上に加熱
し、アルゴンガスを吹き込んで熔融金属の表面を被覆し
て酸化を防止する。次に第1表に示す含有量となるよう
にFe−V合金およびFeTi合金またはFe−Nb合
金を添加して溶解し溶融金属を1580〜1650’C
に昇温させた後に溶解炉次に上記のようにして鋳造した
スクリューの先端部に特設した余端部から15mX 1
0mx 10鰭の摩耗試験片を採取して摩耗試験を行な
った。
Raw materials are blended to have the chemical components shown in Table 1, melted in a high-frequency melting furnace, heated to 1550°C or higher, and argon gas is blown to coat the surface of the molten metal to prevent oxidation. Next, Fe-V alloy and FeTi alloy or Fe-Nb alloy are added and melted to have the contents shown in Table 1, and the molten metal is heated to 1580 to 1650'C.
After increasing the temperature to
Wear test specimens of 0 m x 10 fins were collected and subjected to wear tests.

第2表はこの摩耗試験における摩耗量を示すものである
。なお摩耗試験は5粒度番号400のSiCディスクを
35Orpmで回転させ、前記摩耗試験片を13.3g
/−1の押付圧で3分間押付けて行なった。また第2表
における陽は、前記第1表における丸と対応する。5K
D−11は比較材である。
Table 2 shows the amount of wear in this wear test. In the wear test, a SiC disk with a grain size number of 400 was rotated at 35 rpm, and the wear test piece was weighed with 13.3 g.
Pressing was performed for 3 minutes at a pressing pressure of /-1. Further, the positives in Table 2 correspond to the circles in Table 1 above. 5K
D-11 is a comparative material.

第  2  表 第2表から明らかなように1本発明の合金鋳鉄材は何れ
も摩耗量が比較材である5KII−41の115〜1/
6であり1従って耐摩耗性が5〜6倍であることを示し
ている。
Table 2 As is clear from Table 2, the wear amount of the alloy cast iron materials of the present invention is 115 to 1/1 of that of the comparative material 5KII-41.
6 and 1, which indicates that the wear resistance is 5 to 6 times higher.

次に図は本発明の実施例における合金鋳鉄材の金属組織
を示す写真であり、前記第1表における石7についての
ものである。図において白色の粒状に観察される部分は
バナジウム炭化物であり組織全体に亘って均一に分布し
ていることが認められる。このように均一に分布した硬
質のバナジウム炭化物の存在により、前記第2表に示す
耐摩耗性に優れる要因であると推定される。また別途実
施したSEM観察により、基地内部にも微細な二次炭化
物の析出が認められている。更に焼入れ焼戻し熱処理に
より、基地も針状のマルテンサイトおよびベイナイト&
[l織に変態しており、全体の硬さはHS84に達して
いる。これらの組織要素および硬さが第2表に示す性能
の差となって現われている。
Next, the figure is a photograph showing the metal structure of the alloy cast iron material in the example of the present invention, and is for stone 7 in Table 1 above. In the figure, the white granular portions are vanadium carbide, and it is recognized that they are uniformly distributed throughout the structure. The presence of such uniformly distributed hard vanadium carbides is presumed to be the reason for the excellent wear resistance shown in Table 2 above. Furthermore, SEM observation conducted separately revealed that fine secondary carbide precipitates were also present inside the base. Furthermore, by quenching and tempering heat treatment, the base also becomes acicular martensite and bainite.
[It has transformed into a weave, and the overall hardness has reached HS84. These structural elements and hardness appear as the differences in performance shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

以上詳述した通り7本発明の合金鋳鉄材は粒状の微細炭
化バナジウムが均一に分散した&[I織となっており、
著しく高い耐摩耗性を有する。このため従来のようにC
VDやWC溶射等の表面処理をする必要がない。このよ
うに高い耐摩耗性を有する合金鋳鉄材は籾殻等の圧縮粉
砕に用いるスクリュー材として極めて有用である。
As detailed above, the alloy cast iron material of the present invention has a &[I weave in which granular fine vanadium carbide is uniformly dispersed,
It has extremely high wear resistance. Therefore, C
There is no need for surface treatment such as VD or WC spraying. Alloy cast iron materials having such high wear resistance are extremely useful as screw materials used for compressing and crushing rice husks and the like.

Claims (4)

【特許請求の範囲】[Claims] (1)化学成分が重量比でC2.5〜3.8%、Si0
.3〜2.0%、Mn0.3〜1.0%、Cr3.5〜
6.5%、Mo0.5〜9.0%、W0.5〜8.0%
、V5.0〜15.0%、P0.2%以下、S0.1%
以下、残部が実質的にFeからなり、かつ溶解炉にて溶
解中に1550℃以上に加熱し不活性ガスにより溶融金
属表面を被覆してFe−V合金を添加し、溶融金属を1
580℃以上に昇温して出湯し、鋳造後800〜110
0℃に加熱して焼入れ処理し、200〜600℃にて焼
戻し処理することにより硬さをHS70以上にしたこと
を特徴とする圧縮粉砕機スクリュー用合金鋳鉄材。
(1) Chemical components are C2.5-3.8% by weight, Si0
.. 3-2.0%, Mn0.3-1.0%, Cr3.5-
6.5%, Mo0.5-9.0%, W0.5-8.0%
, V5.0-15.0%, P0.2% or less, S0.1%
Hereinafter, the remainder essentially consists of Fe, and the molten metal is heated to 1,550°C or higher during melting in a melting furnace, the surface of the molten metal is coated with an inert gas, and an Fe-V alloy is added.
The temperature is raised to 580℃ or higher, and the temperature is 800 to 110℃ after casting.
An alloy cast iron material for a compression crusher screw, characterized in that the hardness is made HS70 or higher by heating to 0°C, quenching, and tempering at 200 to 600°C.
(2)化学成分が重量比でC2.5〜3.8%、Si0
.3〜2.0%、Mn0.3〜1.0%、Cr3.5〜
6.5%、Mo0.5〜9.0%、W0.5〜8.0%
、V5.0〜15.0%、P0.2%以下、S0.1%
以下、Ti0.5%以下、残部が実質的にFeからなり
、かつ溶解炉にて溶解中に1550℃以上に加熱し不活
性ガスにより溶融金属表面を被覆してFe−V合金およ
びFe−Ti合金を添加し、溶融金属を1580℃以上
に昇温して出湯し、鋳造後800〜1100℃に加熱し
て焼入れ処理し、200〜600℃にて焼戻し処理する
ことにより硬さをHS70以上にしたことを特徴とする
圧縮粉砕機スクリュー用合金鋳鉄材。
(2) Chemical components are C2.5-3.8% by weight, Si0
.. 3-2.0%, Mn0.3-1.0%, Cr3.5-
6.5%, Mo0.5-9.0%, W0.5-8.0%
, V5.0-15.0%, P0.2% or less, S0.1%
Hereinafter, the Fe-V alloy and Fe-Ti are made by using 0.5% or less of Ti and the remainder being substantially Fe, and heating the molten metal to 1550°C or higher during melting in a melting furnace and coating the molten metal surface with an inert gas. Add the alloy, raise the temperature of the molten metal to 1580℃ or higher, tap it, heat it to 800-1100℃ after casting, quench it, and temper it at 200-600℃ to increase the hardness to HS70 or higher. Alloy cast iron material for compressor crusher screws.
(3)化学成分が重量比でC2.5〜3.8%、Si0
.3〜2.0%、Mn0.3〜1.0%、Cr3.5〜
6.5%、Mo0.5〜9.0%、W0.5〜8.0%
、V5.0〜15.0%、P0.2%以下、S0.1%
以下、Niおよび/またはCo3.0%以下、残部が実
質的にFeからなり、かつ溶解炉にて溶解中に1550
℃以上に加熱し不活性ガスにより溶融金属表面を被覆し
てFe−V合金を添加し、溶融金属を1580℃以上に
昇温して出湯し、鋳造後800〜1100℃に加熱して
焼入れ処理し、200〜600℃にて焼戻し処理するこ
とにより硬さをHS70以上にしたことを特徴とする圧
縮粉砕機スクリュー用合金鋳鉄材。
(3) Chemical components are C2.5-3.8% by weight, Si0
.. 3-2.0%, Mn0.3-1.0%, Cr3.5-
6.5%, Mo0.5-9.0%, W0.5-8.0%
, V5.0-15.0%, P0.2% or less, S0.1%
Hereinafter, Ni and/or Co is 3.0% or less, the balance is substantially Fe, and 1550% is used during melting in a melting furnace.
The molten metal is heated above ℃, the surface of the molten metal is coated with inert gas, Fe-V alloy is added, the molten metal is heated to 1580℃ or above and tapped, and after casting it is heated to 800-1100℃ for quenching. An alloy cast iron material for a compression crusher screw, characterized in that the hardness is made HS70 or higher by tempering at 200 to 600°C.
(4)化学成分が重量比でC2.5〜3.8%、Si0
.3〜2.0%、Mn0.3〜1.0%、Cr3.5〜
6.5%、Mo0.5〜9.0%、W0.5〜8.0%
、V5.0〜15.0%、P0.2%以下、S0.1%
以下、Nb5.0%以下、Niおよび/またはCo3.
0%以下、残部が実質的にFeからなり、かつ溶解炉に
て溶解中に1550℃以上に加熱し不活性ガスにより溶
融金属表面を被覆してFe−V合金およびFe−Nb合
金を添加し、溶融金属を1580℃以上に昇温して出湯
し、鋳造後800〜1100℃に加熱して焼入れ処理し
、200〜600℃にて焼戻し処理することにより硬さ
をHS70以上にしたことを特徴とする圧縮粉砕機スク
リュー用合金鋳鉄材。
(4) Chemical components are C2.5-3.8% by weight, Si0
.. 3-2.0%, Mn0.3-1.0%, Cr3.5-
6.5%, Mo0.5-9.0%, W0.5-8.0%
, V5.0-15.0%, P0.2% or less, S0.1%
Below, Nb5.0% or less, Ni and/or Co3.
Fe-V alloy and Fe-Nb alloy are added by heating the metal to 1550°C or higher during melting in a melting furnace and coating the molten metal surface with an inert gas. The molten metal is heated to 1,580°C or higher, tapped, and after casting is heated to 800-1,100°C for quenching, and then tempered at 200-600°C to achieve a hardness of HS70 or higher. Alloy cast iron material for compression crusher screws.
JP575789A 1989-01-12 1989-01-12 Alloyed cast iron material for compression crusher screw Pending JPH02185946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP575789A JPH02185946A (en) 1989-01-12 1989-01-12 Alloyed cast iron material for compression crusher screw

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP575789A JPH02185946A (en) 1989-01-12 1989-01-12 Alloyed cast iron material for compression crusher screw

Publications (1)

Publication Number Publication Date
JPH02185946A true JPH02185946A (en) 1990-07-20

Family

ID=11619992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP575789A Pending JPH02185946A (en) 1989-01-12 1989-01-12 Alloyed cast iron material for compression crusher screw

Country Status (1)

Country Link
JP (1) JPH02185946A (en)

Similar Documents

Publication Publication Date Title
CN110578103B (en) High-toughness, high-polishing and high-corrosion-resistance plastic die steel and manufacturing method thereof
CN111363905B (en) Heat treatment method for casting alloyed high manganese steel frog
JP2004503677A (en) Steel alloys, plastic forming tools and tough hardened blanks for plastic forming tools
US3291655A (en) Alloys
CN110408844A (en) A kind of wood cutter mould steel and its manufacturing method
JP2002180176A (en) High alloy grain cast iron material for hot rolling roll made by centrifugal casting
CN114717467A (en) Hypereutectic high-chromium cast iron material, preparation method and application thereof
JP2002161332A (en) Composite roll for hot rolling made with continuous hardfacing by casting
JP2000256776A (en) Brake disk material for vehicle
JPS6036757A (en) Composite cylinder liner
JPS6096750A (en) Process-hardenable austenite manganese steel and manufacture
CN1068149A (en) Vanadium titanium unlimited chilled ductile iron roll and castmethod
CN106086696A (en) A kind of energetic ion slitting wheel alloy material and preparation method thereof
JPH02185946A (en) Alloyed cast iron material for compression crusher screw
CN111139394B (en) Preparation method of high-performance rough rolling working roll
JP3498289B2 (en) Manufacturing method of high chromium cast iron castings
JPS5815529B2 (en) Setsusaku Kougu Oyobi Sonoseizouhou
CN109536825B (en) Cast iron material temper mill working roll and manufacturing method thereof
JPS59232231A (en) Manufacture of rotor for turbine
CN111893277A (en) Manufacturing method for obtaining dispersed carbide in medium-entropy high-speed steel structure
JPH021901B2 (en)
CN115491578B (en) Material for cutting tool of high-performance aluminum alloy and preparation method thereof
JPH05222476A (en) Deposition-cured nickel chromium alloy containing dispersed and cured oxide
JPS6328843A (en) Alloyed cast iron material for screw for compacting machine
JPS59129719A (en) Production of high chromium roll