JPH02185028A - Method of forming thin film - Google Patents

Method of forming thin film

Info

Publication number
JPH02185028A
JPH02185028A JP382289A JP382289A JPH02185028A JP H02185028 A JPH02185028 A JP H02185028A JP 382289 A JP382289 A JP 382289A JP 382289 A JP382289 A JP 382289A JP H02185028 A JPH02185028 A JP H02185028A
Authority
JP
Japan
Prior art keywords
gas
thin film
semiconductor substrate
film
supply port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP382289A
Other languages
Japanese (ja)
Inventor
Mitsunori Fukura
満徳 福羅
Ginjiro Kanbara
神原 銀次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP382289A priority Critical patent/JPH02185028A/en
Publication of JPH02185028A publication Critical patent/JPH02185028A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a thin film having an excellent step covering ratio by heating a semiconductor substrate at a temperature of 250 deg.C or more in an atmosphere in which an inert gas and a source gas are mixed. CONSTITUTION:A source-gas supply port 1c is shaped in parallel with the inert- gas supply port 1a of a film formation chamber 1. Argon gas is fed from the inert-gas supply port 1a and Al(CH3)3 gas as a radical source gas from the source-gas supply port 1c respectively, and the inside of the film formation chamber 1 is brought to a mixed gas atmosphere at fixed pressure while a semiconductor substrate 5 is heated at a temperature of 250 deg.C or more. High voltage is applied between a cathode 2 and an anode 4, and discharge is generated. Consequently, evaporation by sputtering and chemical vapor growth having no directional properties are generated simultaneously on the surface of the semiconductor substrate 5, and a thin film on the side face of a stepped section is shaped thickly. Accordingly, the this film having an excellent step covering ratio is formed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体装置の製造に用いられる薄膜の形成方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for forming a thin film used in manufacturing a semiconductor device.

(従来の技術) 近年、半導体装置の製造に用いられる薄膜の形成方法と
して、再現性、信頼性、自動化および処理能力に優れて
いるスパッタリングが、多く採用されている。
(Prior Art) In recent years, sputtering, which is excellent in reproducibility, reliability, automation, and throughput, has been widely adopted as a method for forming thin films used in the manufacture of semiconductor devices.

この種の従来の薄膜の形成方法について第2図により説
明する。
A conventional method for forming this type of thin film will be explained with reference to FIG.

同図は、スパッタリングの原理を示す構成図で、スパッ
タ成膜装置は、不活性ガス供給口1aと排出口1bが設
けられた成膜室1の中に、上方に配置した陰極2にはタ
ーゲット3を、また下方に配置した陽極4には半導体基
板5をそれぞれ装着し。
This figure is a configuration diagram showing the principle of sputtering. The sputtering film forming apparatus has a film forming chamber 1 provided with an inert gas supply port 1a and an exhaust port 1b, and a cathode 2 disposed above a target. A semiconductor substrate 5 is attached to the anode 3 and the anode 4 arranged below.

これらが相対向するように配設したものである。These are arranged so as to face each other.

このように構成されたスパッタ成膜装置を用い半導体基
板5の表面に薄膜を形成するには、まず、成膜室lを真
空にした後、不活性ガス供給口1aからアルゴンガスを
供給し、一定圧のアルゴンガス雰囲気とした後、陰極2
と陽極4の間に高電圧を印加し放電を起こさせる。アル
ゴンガスは、陽イオン6と電子7に分解され、それぞれ
陰極2に接続されたターゲット3および陽極4に接続さ
れた半導体基板5に引き寄せられる。質量を持つ陽イオ
ン6は加速されて高速となりターゲット3に衝突し、原
子8を叩き出す、叩き出された原子8は、対向して配置
された半導体基板5の表面に付着し薄膜を形成する。
In order to form a thin film on the surface of the semiconductor substrate 5 using the sputtering film forming apparatus configured in this way, first, after evacuating the film forming chamber l, argon gas is supplied from the inert gas supply port 1a. After creating an argon gas atmosphere at a constant pressure, the cathode 2
A high voltage is applied between the anode 4 and the anode 4 to cause discharge. The argon gas is decomposed into positive ions 6 and electrons 7, which are attracted to the target 3 connected to the cathode 2 and the semiconductor substrate 5 connected to the anode 4, respectively. The positive ions 6 having mass are accelerated and hit the target 3 at a high speed, and eject atoms 8. The ejected atoms 8 adhere to the surface of the semiconductor substrate 5 placed opposite to each other and form a thin film. .

(発明が解決しようとする課題) しかしながら、上記の構成では、原子8の動きに方向性
があるため1段差を有するパターン上に形成される薄膜
は、段差の側面で膜厚が薄くなり。
(Problems to be Solved by the Invention) However, in the above configuration, since the atoms 8 have directionality in movement, a thin film formed on a pattern having a one-step difference becomes thinner on the side surfaces of the step.

段差被覆率が悪く歩留りが低下し信頼性が低いという問
題があった。
There were problems in that the step coverage was poor, the yield was low, and the reliability was low.

本発明は上記の問題を解決するもので、段差被覆率のよ
い信頼性の高い薄膜の形成方法を提供するものである。
The present invention solves the above problems and provides a method for forming a highly reliable thin film with good step coverage.

(課題を解決するための手段) 上記の問題を解決するため、本発明は、不活性ガスとソ
ースガスとを混合した雰囲気中で半導体基板を温度25
0℃以上に加熱して成膜するものである。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides a method for heating a semiconductor substrate at a temperature of 25% in an atmosphere containing a mixture of an inert gas and a source gas.
The film is formed by heating to 0° C. or higher.

(作 用) 上記の構成により、半導体基板表面で、スパッタリング
による蒸着と方向性のない化学的気相成長が同時に起こ
り、段差側面の薄膜が厚く形成されるので1段差被覆率
のよい薄膜が形成される。
(Function) With the above configuration, vapor deposition by sputtering and non-directional chemical vapor phase growth occur simultaneously on the surface of the semiconductor substrate, forming a thick thin film on the side surface of the step, resulting in a thin film with good one-step coverage. be done.

(実施例) 本発明の一実施例をアルミ合金薄膜の形成方法を例とし
て、第1図(a)および(b)により説明する。
(Example) An example of the present invention will be described with reference to FIGS. 1(a) and 1(b), taking a method of forming an aluminum alloy thin film as an example.

第1v4(a)および(b)は本発明による薄膜の形成
方法の原理を示す構成図およびその要部拡大断面図であ
る。
1v4(a) and (b) are a block diagram showing the principle of the thin film forming method according to the present invention and an enlarged cross-sectional view of the main parts thereof.

第1図(a)に示す本発明による成膜装置が、第2図に
示した従来例と異なる点は、成膜室1の不活性ガス供給
口1aに並んでソースガス供給口ICが設けられた点と
1図に描いていないが、半導体基板5の加熱器を設けた
点である。その他は従来例と変らないので、同一構成部
品には同一符号を付してその説明を省略する。
The film forming apparatus according to the present invention shown in FIG. 1(a) is different from the conventional example shown in FIG. Although not shown in Figure 1, there is a point where a heater for the semiconductor substrate 5 is provided. Since the rest is the same as the conventional example, the same components are given the same reference numerals and their explanations will be omitted.

このように構成された成膜装置を用い、半導体基板5の
表面にアルミ合金薄膜を形成するには、アルゴンガスを
不活性ガス供給口1aから、ラジカルなソースガスとし
てA Q (CH,)3ガスをソースガス供給口ICか
らそれぞれ供給し、成膜室1の内部を一定圧の混合ガス
雰囲気とする一方、半導体基板5を温度250℃以上に
加熱する。次に陰極2と陽極4の間に高電圧をかけて放
電を起こさせると、アルゴンガスは分解して陽イオン6
と電子7に分解する一方、AQ(CH,)、ガスはラジ
カルなソースガス分子9となる。陰極2に引かれて加速
された陽イオン6によりターゲット3から叩き出された
原子8は、これに対向して配置された半導体基板5の表
面に付着する。一方、ソースガス分子9は、250℃以
上の温度に保たれた半導体基板5の表面で、化学的気相
成長を起こし薄膜を形成する。
In order to form an aluminum alloy thin film on the surface of the semiconductor substrate 5 using the film forming apparatus configured as described above, argon gas is supplied from the inert gas supply port 1a as a radical source gas A Q (CH,)3 Gases are supplied from the source gas supply ports IC to create a mixed gas atmosphere at a constant pressure inside the film forming chamber 1, while the semiconductor substrate 5 is heated to a temperature of 250° C. or higher. Next, when a high voltage is applied between the cathode 2 and the anode 4 to cause a discharge, the argon gas is decomposed and the cations 6
and electrons 7, while the AQ(CH,) gas becomes radical source gas molecules 9. Atoms 8 ejected from the target 3 by the positive ions 6 attracted by the cathode 2 and accelerated adhere to the surface of the semiconductor substrate 5 disposed opposite thereto. On the other hand, the source gas molecules 9 cause chemical vapor phase growth to form a thin film on the surface of the semiconductor substrate 5 maintained at a temperature of 250° C. or higher.

第1図(b)は、半導体基板5の表面に形成されたPS
G膜10の段差部を拡大して示した要部拡大断面図で、
スパッタリングによる原子8は方・向性を有するため、
PSG膜IOの段差面には付着し難いが、化学的気相成
長を起こすソースガス分子9は方向性を有しないため、
PSGIIIOの段差面にも表面と同じ成長率で成膜す
るので1段差面の膜厚を厚くすることができる。
FIG. 1(b) shows PS formed on the surface of the semiconductor substrate 5.
This is an enlarged cross-sectional view of the main part showing the step part of the G film 10,
Since the atoms 8 produced by sputtering have directionality,
Although it is difficult to adhere to the stepped surface of the PSG film IO, since the source gas molecules 9 that cause chemical vapor deposition do not have directionality,
Since the film is formed on the step surface of PSGIIIO at the same growth rate as on the surface, the film thickness on one step surface can be increased.

以上のように本実施例によれば、スパッタ蒸着と化学的
気相成長による成膜を同時に行うので、段差被覆率のよ
い薄膜を形成することができる。
As described above, according to this embodiment, since sputter deposition and chemical vapor deposition are performed simultaneously, a thin film with good step coverage can be formed.

なお、本実施例では、ソースガスとしてA a (CH
z Lを用いたが、A Q (Ci2.)等、アルミ合
金膜を化学的気相成長により生成するガスであればよい
In addition, in this example, A a (CH
Although z L was used, any gas such as A Q (Ci2.) that can produce an aluminum alloy film by chemical vapor deposition may be used.

また、本実施例では、アルミ合金膜の形成を例としたが
、タングステン、モリブデン、二酸化シリコン等、スパ
ッタリング可能な材料の薄膜の形成でもよい、ただし、
ソースガスはこれらの薄膜の主成分を化学的気相成長に
より生成するソースガスを使用することは言うまでもな
い。
Further, in this example, the formation of an aluminum alloy film was taken as an example, but it is also possible to form a thin film of a material that can be sputtered, such as tungsten, molybdenum, silicon dioxide, etc. However,
It goes without saying that the source gas used is one in which the main components of these thin films are produced by chemical vapor deposition.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)および(b)は本発明による薄膜の形成方
法の原理を示す構成図およびその要部拡大断面図、第2
図は従来の薄膜の形成方法の原理を示す構成図である。 1・・・成膜室、 1a・・・不活性ガス供給口、  
lb・・・排出口、 1c・・・ソースガス供給口、 
2・・・陰極、 3 ・・・ターゲット、 4 ・・・
陽極、 5・・・半導体基板、6・・・陽イオン、 7
・・・電子、 8・・・原子、 9 ・・・ソースガス
分子、10・・・psaHg、11・・・アルミ合金薄
膜。
FIGS. 1(a) and 1(b) are a block diagram showing the principle of the thin film forming method according to the present invention and an enlarged cross-sectional view of the main parts thereof, and FIG.
The figure is a block diagram showing the principle of a conventional thin film forming method. 1... Film forming chamber, 1a... Inert gas supply port,
lb...Exhaust port, 1c...Source gas supply port,
2...Cathode, 3...Target, 4...
Anode, 5... Semiconductor substrate, 6... Cation, 7
...electron, 8...atom, 9...source gas molecule, 10...psaHg, 11...aluminum alloy thin film.

Claims (1)

【特許請求の範囲】[Claims] スパッタ成膜装置を用い、成膜室内をスパッタリング用
の不活性ガスと化学的気相成長用のソースガスとの混合
ガス雰囲気とし、さらに陽極の半導体基板を温度250
℃以上に加熱し、スパッタ成膜と同時に化学的気相成長
による成膜を行うことを特徴とする薄膜の形成方法。
Using a sputter film forming apparatus, the film forming chamber is made into a mixed gas atmosphere of an inert gas for sputtering and a source gas for chemical vapor deposition, and the semiconductor substrate of the anode is heated to a temperature of 250°C.
A method for forming a thin film, which is characterized by heating the film to a temperature above ℃ and performing film formation by chemical vapor deposition simultaneously with sputtering film formation.
JP382289A 1989-01-12 1989-01-12 Method of forming thin film Pending JPH02185028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP382289A JPH02185028A (en) 1989-01-12 1989-01-12 Method of forming thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP382289A JPH02185028A (en) 1989-01-12 1989-01-12 Method of forming thin film

Publications (1)

Publication Number Publication Date
JPH02185028A true JPH02185028A (en) 1990-07-19

Family

ID=11567888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP382289A Pending JPH02185028A (en) 1989-01-12 1989-01-12 Method of forming thin film

Country Status (1)

Country Link
JP (1) JPH02185028A (en)

Similar Documents

Publication Publication Date Title
US4673475A (en) Dual ion beam deposition of dense films
US5660694A (en) Film forming method
US4591417A (en) Tandem deposition of cermets
JP3603112B2 (en) Low temperature production of alumina crystalline thin film
JPH02185028A (en) Method of forming thin film
JPS60228675A (en) Method for depositing tungsten
JPS63238270A (en) Production of thin compound film
JPH08269710A (en) Reactive sputtering device and reactive sputtering method as well as reactive vapor deposition device and reactive vapor deposition method
JPH02115359A (en) Formation of compound thin film and device therefor
JPS58191432A (en) Forming method for thin-film
JPS63156325A (en) Manufacture of thin film and apparatus therefor
JPS63114966A (en) Apparatus for producing thin film
JPS61287121A (en) Manufacture of semiconductor integrated circuit
GB2399350A (en) Forming tungsten or tungsten containing films using krypton or xenon as sputter gas; Tungsten/tungsten nitride stacks
JP2844779B2 (en) Film formation method
JPH01104763A (en) Production of thin metal compound film
JPS58118119A (en) Reactive ion plating apparatus
JPS63203760A (en) Method and device for forming inorganic film to glass substrate surface
JPS59148341A (en) Insulating film forming method
JPH03215664A (en) Thin film forming device
JPH02186630A (en) Formation of thin film
KR100701365B1 (en) Apparatus for improving sputtering effect according to plasma source in pvd
JPS6197838A (en) Formation of thin film
JPH048506B2 (en)
JPS60190560A (en) Deposition method of molybdenum