JPS59148341A - Insulating film forming method - Google Patents

Insulating film forming method

Info

Publication number
JPS59148341A
JPS59148341A JP58024180A JP2418083A JPS59148341A JP S59148341 A JPS59148341 A JP S59148341A JP 58024180 A JP58024180 A JP 58024180A JP 2418083 A JP2418083 A JP 2418083A JP S59148341 A JPS59148341 A JP S59148341A
Authority
JP
Japan
Prior art keywords
insulating film
phosphorus
silicon oxide
film
argon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58024180A
Other languages
Japanese (ja)
Inventor
Katsuhiro Tsukamoto
塚本 克博
Hideo Kotani
小谷 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58024180A priority Critical patent/JPS59148341A/en
Publication of JPS59148341A publication Critical patent/JPS59148341A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0057Reactive sputtering using reactive gases other than O2, H2O, N2, NH3 or CH4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To form an insulating film including impurities on a substrate readily, by performing the high frequency sputtering of the target of an insulating film in a gas including impurities. CONSTITUTION:A gas including phosphorus other than argon, e.g., phosphine, is introduced from a gas introducing port. Argon plasma 8 is yielded from argon in a high frequency electric field. Argon ions impinge on silicon oxide target 6, and the silicon oxide is sputtered. The atoms of part of the sputtered silicon and the atoms of oxygen are reacted with the atoms of the phosphorus activated in the plasma, and a mixture of the silicon oxide and phosphorus oxide is formed. The mixed film of the silicon oxide and the phosphorus oxide, i.e., a phosphorus glass film, is formed on a substrate 7. Therefore, the concentration of the phosphorus is accurately controlled by the flow rate of the phosphine.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、不純物を含んだ絶縁膜の形成方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for forming an insulating film containing impurities.

〔従来技術〕[Prior art]

従来の絶縁膜形成方法のうち、酸化シリコン膜のスパッ
タリング法による形成方法を実施する装置を第1図に示
す。図において、(1)は真空容器、(2)は真空排気
口、(3)はガス導入口、(4)は高周波電源、(5)
は基板バイアス用電源、(6)は酸化シリコンターゲッ
ト、(7)はスパッタリングによジ絶縁膜を形成される
基板、(8)は高周波放電により形成されたアルゴンプ
ラズマである。
FIG. 1 shows an apparatus for performing a method of forming a silicon oxide film by sputtering, which is one of the conventional methods of forming an insulating film. In the figure, (1) is a vacuum container, (2) is a vacuum exhaust port, (3) is a gas inlet, (4) is a high frequency power supply, and (5)
(6) is a silicon oxide target, (7) is a substrate on which a dielectric film is formed by sputtering, and (8) is an argon plasma formed by high frequency discharge.

上記構成において、真空容器11)を真空にした後、ア
ルゴンガスを導入し、酸化シリコンターゲット(6)の
電極に高周波電界(RF)を印加し、アルゴンプラズマ
(8)を発生させる。プラズマ中のアルゴンイオンを、
自己バイアス的に発生した電界により、酸化シリコンタ
ーゲット(6)に衝突させて酸化シリコン(SiO2)
をスパッタし、基板(7ン上にデボジツ卜し酸化シリコ
ン膜を形成する。このとき、基板バイアス用電源(5)
によシ基板側に負の/くイアスミ圧を印加することによ
り、基板上にデポジットされる酸化シリコン膜の膜質を
向上させ、かつ、段差部でのステップカバレッジが良好
で、平坦な膜をデポジットすることができる。
In the above configuration, after the vacuum container 11) is evacuated, argon gas is introduced, and a radio frequency electric field (RF) is applied to the electrode of the silicon oxide target (6) to generate argon plasma (8). Argon ions in the plasma,
The electric field generated in a self-biased manner causes the silicon oxide target (6) to collide with the silicon oxide target (6) to form silicon oxide (SiO2).
is sputtered and deposited on the substrate (7) to form a silicon oxide film. At this time, the substrate bias power supply (5)
By applying negative/bias pressure to the substrate side, the quality of the silicon oxide film deposited on the substrate is improved, and a flat film with good step coverage at the stepped portion is deposited. can do.

しかしながら、従来のこのような絶縁膜の形成方法では
、酸化シリコン膜中に不純物を導入するには、酸化シリ
コンターゲット(6)中にあらかじめ不純物を混入させ
ておく必要があるため、形成される酸化シリコン膜中の
不純物の量を最適に制御したり、深さ方向に不純物の量
を自由に変化させたシすることは不可能であった。
However, in the conventional method for forming such an insulating film, in order to introduce impurities into the silicon oxide film, it is necessary to mix the impurity into the silicon oxide target (6) in advance, so the formed oxide It has been impossible to optimally control the amount of impurities in the silicon film or to freely vary the amount of impurities in the depth direction.

また、不純物を含んだ酸化シリコン膜をデポジットする
方法として、シラン(SiH4)と不純物を含んだガス
との混合ガスを熱炉中で反応させるCVD法があるが、
CVD法は450°C程度以上の高温熱処理を必要とす
るので、アルミ配線膜上にデポジットするような場合、
アルミ配線膜上にヒロックと称する突起物が発生したり
、ウィスカと呼ばれる針状結晶が形成される等の不都合
があった。
Furthermore, as a method for depositing a silicon oxide film containing impurities, there is a CVD method in which a mixed gas of silane (SiH4) and a gas containing impurities is reacted in a thermal furnace.
The CVD method requires high-temperature heat treatment of about 450°C or higher, so when depositing on an aluminum wiring film,
There are disadvantages such as the formation of protrusions called hillocks on the aluminum wiring film and the formation of needle-like crystals called whiskers.

又、膜質自体も密度が低く緻密でなく、段差部でのステ
ップカバレッジも良好ではない等の欠点を有していた。
In addition, the film quality itself was low in density and not dense, and the step coverage at stepped portions was also poor.

〔発明の概要〕[Summary of the invention]

この発明はこのような点に鑑みてなされたもので、酸化
シリコン等の絶縁物ターゲットの高周波スパッタリング
時にリン等の不純物を含んだガスを導入して、前記絶縁
物ターゲットと化合させ、リンガラス膜などの絶縁膜を
形成するようにしたもので、不純物を含んだガス導入量
を連続的に変化させて絶縁膜中の不純物濃度を制御する
ようにしたものである。
This invention was made in view of the above points, and a gas containing impurities such as phosphorus is introduced during high-frequency sputtering of an insulating target such as silicon oxide, and is combined with the insulating target to form a phosphorous glass film. In this method, an insulating film such as the following is formed, and the impurity concentration in the insulating film is controlled by continuously changing the amount of gas containing impurities introduced.

〔発明の実施例〕[Embodiments of the invention]

次にこの発明の一実施例について説明する。スパッタリ
ング装置は第1図と同様であるが、ガス導入口(3)か
らアルゴン(Ar)の他にリンを含んだガス、例えばフ
ォスフイン(1’H3)を導入する。第2図に模式的に
示したように、真空中に導入されたアルゴン(Ar)は
高周波電界中でアルゴンプラズマ(8)を発生し、この
アルゴンプラズマ(8)中で発生したアルゴンイオン(
Ar+)は酸化シリコンターゲット(6)を衝撃し、酸
化シリコンをスノくツタリングする。スパッタリングさ
れた一部のシリコン(Si )と酸素(0)の原子は、
プラズマ中で活性化されたリン原子と反応し、酸化シリ
コン(SiOz)と酸化リン(P2O3)の混合物を形
成する。そして基板(7)上には酸化シリコン(SiO
z)と酸化リン3図に示すように、プラズマ中に導入さ
れるフォスフイン(PH3)の流量(アルゴンに対する
流量比)で精度よく制御できる。また、リンガラス形成
中にフォスフイン(PH3)の流量を変化させることよ
り、リンガラス膜中のリン濃度を深さ方向に自由に変化
させることが可能である。又、この実施例で形成された
リンガラス膜は、基板バイアスによる高周波スパッタを
行なうため、段差部のステップカバレッジが格段に良好
になる。すなわち第4図に示すように、従来のCVD法
で形成したりンガラス膜(10)に比べ(第4図(a)
 ) 、本実施例のス、ノくツタリング法により形成し
たリンガラス膜(11はステップカバレッジが良好にな
る(第4図(b))。なお第4図において(9)はアル
ミ線である。又、膜自体の緻密性を示す6:1バツフア
・フッ酸によるエツチングレートも非常に小さくなり、
第5図で示すように、CVD法によるリンガラス膜部の
エツチング特性(A)とスパッタリング法によるリンガ
ラス膜惺υのエツチング特性(B)とでは大きくエツチ
ング特性が違う。
Next, one embodiment of the present invention will be described. The sputtering apparatus is the same as that shown in FIG. 1, but a gas containing phosphorus, such as phosphine (1'H3), in addition to argon (Ar) is introduced through the gas inlet (3). As schematically shown in Figure 2, argon (Ar) introduced into a vacuum generates argon plasma (8) in a high-frequency electric field, and argon ions (
Ar+) bombards the silicon oxide target (6), causing the silicon oxide to splatter. Some of the sputtered silicon (Si) and oxygen (0) atoms are
It reacts with activated phosphorus atoms in the plasma to form a mixture of silicon oxide (SiOz) and phosphorus oxide (P2O3). And on the substrate (7) is silicon oxide (SiO
As shown in Figure 3, the flow rate of phosphine (PH3) introduced into the plasma (flow rate ratio to argon) can be controlled with high accuracy. Furthermore, by changing the flow rate of phosphine (PH3) during the formation of phosphorus glass, it is possible to freely change the phosphorus concentration in the phosphorus glass film in the depth direction. Further, since the phosphor glass film formed in this embodiment is subjected to high frequency sputtering using a substrate bias, the step coverage of the stepped portion is significantly improved. That is, as shown in Fig. 4, compared to the glass film (10) formed by the conventional CVD method (Fig. 4 (a)
), the phosphor glass film (11 has good step coverage (FIG. 4(b))) formed by the step-cutting method of this embodiment. In FIG. 4, (9) is an aluminum wire. In addition, the etching rate with 6:1 buffer hydrofluoric acid, which indicates the density of the film itself, becomes extremely small.
As shown in FIG. 5, the etching characteristics of the phosphor glass film portion by the CVD method (A) and the etching characteristics of the phosphor glass film portion by the sputtering method (B) are significantly different.

又、CVD法と異なり高温の熱処理を必要としないた1
め、アルミ線にヒロックと呼ばれる突起物やウィスカと
呼ばれる針状結晶が形成される等の不都合を生じない。
Also, unlike the CVD method, it does not require high-temperature heat treatment1.
Therefore, inconveniences such as the formation of protrusions called hillocks or needle-shaped crystals called whiskers on the aluminum wire do not occur.

又、上述のような方法によると、ナトリウム等の有害な
不純物に対するゲッタリング作用をもつリンガラス膜が
低温で形成でき、従来の7オスフイン(PH3)を導入
しない通常のスノ(ツタリング法ことが可能であるので
、アルミ線と接する絶縁膜の下層部分は腐蝕性の少ない
酸化シリコン(SiOz)とし、上層部分はゲッタリン
グ作用を強く持つ濃度の高いリンガラスとすることがで
き、理想的な表面保護膜を形成することが可能である。
Furthermore, according to the method described above, a phosphorus glass film that has a gettering effect on harmful impurities such as sodium can be formed at low temperatures, and it is possible to use the usual sno-glass film that does not introduce conventional 7-osphine (PH3). Therefore, the lower layer of the insulating film in contact with the aluminum wire can be made of less corrosive silicon oxide (SiOz), and the upper layer can be made of highly concentrated phosphorus glass that has a strong gettering effect, providing ideal surface protection. It is possible to form a film.

なお、上記実施例では、リンガラス膜の形成方法を例に
とって説明したが、リン以外の不純物を含んだ酸化シリ
コン膜、あるいはさらに、任意の不純物を含んだ絶縁膜
の形成法に応用できる。
In the above embodiments, the method of forming a phosphorus glass film was explained as an example, but the present invention can be applied to a method of forming a silicon oxide film containing impurities other than phosphorus, or an insulating film containing any impurity.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたようにこの発明によれば、不純物を含ん
だガス中で絶縁物ターゲットを高周波スパッタリングす
ることにより、不純物を含んだ絶縁膜を基板上に容易に
形成することができ、しかも不純物濃度を精度よく制御
できるため、目的に応じた絶縁膜が形成できる。
As described above, according to the present invention, an insulating film containing impurities can be easily formed on a substrate by high-frequency sputtering of an insulating target in a gas containing impurities, and the impurity concentration can be controlled with high precision, so an insulating film can be formed depending on the purpose.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の絶縁膜スパッタに使用される高周波スパ
ッタリング装置の構成図、第2図はこの発明の原理を示
す模式図、第3図はプラズマ中に導入するフォスフイン
とアルゴンの流儀比とリンガラス膜中のリン濃度の関係
を示す図、第4図はCVD法で形成したリンガラス膜と
この発明で形成したリンガラス膜の段差部でのステップ
カバレッジを比較した断面図、第5図はCVD法による
リンガラス膜とスパッタリング法によるリンガラス膜の
エツチングレートを比較した図である。 (3)・・・・ガス導入口、(4)・・・・高周波電源
、(5)・・・・基板バイアス用電源、(6)・・・・
酸化シリコンターゲット、(7)・・・・基板、(8)
・・・・アルゴンプラズマ、(9)・・・・アルミ!、
(10)・・の−CVDリンガラス、(1,11・・・
・スパッタリンガラス。 なお、図中、同一符号は同−又は相当部分を示す。 代理人    葛  野  信  − 第1図 第2図 ?  第3図 PH1/Ar>L+g+e/e) 第4図 (a)      (b) ( 第51′η エン今ンク°蒔藺 (min) 手続補正書(自発) 28発明の名称 絶縁膜形成方法 3、補正をする者 事件との関係 特許出願人 住 所    東京都千代田区丸の内二丁目2番3号名
 称  (601)三菱電機株式会社代表者片山仁八部 4、代理人 住 所    東京都千代田区丸の内二丁目2番3吋「
変化させることに」と補正する。
Figure 1 is a block diagram of a high-frequency sputtering apparatus used for conventional insulating film sputtering, Figure 2 is a schematic diagram showing the principle of the present invention, and Figure 3 is a diagram showing the ratio of phosphine and argon introduced into the plasma. Figure 4 is a diagram showing the relationship between the phosphorus concentration in the glass film. Figure 4 is a cross-sectional view comparing the step coverage of the phosphor glass film formed by the CVD method and the phosphor glass film formed by the present invention. Figure 5 is a diagram showing the relationship between the phosphorus concentration in the glass film. FIG. 3 is a diagram comparing the etching rates of a phosphorus glass film formed by a CVD method and a phosphorus glass film formed by a sputtering method. (3)... Gas inlet, (4)... High frequency power supply, (5)... Power supply for substrate bias, (6)...
Silicon oxide target, (7)...substrate, (8)
...Argon plasma, (9) ...aluminum! ,
(10)... -CVD phosphorus glass, (1,11...
・Sputtering glass. In addition, in the figures, the same reference numerals indicate the same or corresponding parts. Agent Shin Kuzuno - Figure 1 Figure 2? Fig. 3 PH1/Ar>L+g+e/e) Fig. 4 (a) (b) Relationship with the case of the person making the amendment Patent Applicant Address 2-2-3 Marunouchi, Chiyoda-ku, Tokyo Name (601) Mitsubishi Electric Corporation Representative Hitoshi Katayama 4, Agent Address Marunouchi, Chiyoda-ku, Tokyo 2-chome 2-3''
"I'm going to change it," he corrected.

Claims (3)

【特許請求の範囲】[Claims] (1)絶縁物のターゲットを高周波プラズマ中でスパッ
タリングして基板上に絶縁膜をデポジットする絶縁膜形
成方法において、高周波プラズマ中に不純物を含んだガ
スを導入することにより、絶縁物中の元素と不純物を化
合させ、不純物を含んだ絶縁膜を基板上にデポジットす
ることを4?徴とする絶縁膜形成方法。
(1) In an insulating film formation method in which an insulating target is sputtered in high-frequency plasma to deposit an insulating film on a substrate, by introducing a gas containing impurities into the high-frequency plasma, elements in the insulating material are 4? Combining impurities and depositing an insulating film containing impurities on a substrate. Characteristic insulating film formation method.
(2)絶縁物として酸化シリコ7(r−用い、不純物を
含んだガスとして7オスフインを用いることによりす/
ガラス膜をデポジットすることを特徴とする特許請求の
範囲第1項記載の絶縁膜形成方法。
(2) By using silicon oxide 7 (r-) as an insulator and using 7-Osfin as a gas containing impurities.
The method of forming an insulating film according to claim 1, characterized in that a glass film is deposited.
(3)絶縁膜形成中のフォスフインの導入量を連続的に
変化させることによりリンガラネ膜中のリン濃度を深さ
方向に連続的に変化させることを特徴とする特許請求の
範囲第2項記載の絶縁膜形成方法。
(3) The phosphorus concentration in the phosphorus film is continuously changed in the depth direction by continuously changing the amount of phosphine introduced during the formation of the insulating film. Insulating film formation method.
JP58024180A 1983-02-14 1983-02-14 Insulating film forming method Pending JPS59148341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58024180A JPS59148341A (en) 1983-02-14 1983-02-14 Insulating film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58024180A JPS59148341A (en) 1983-02-14 1983-02-14 Insulating film forming method

Publications (1)

Publication Number Publication Date
JPS59148341A true JPS59148341A (en) 1984-08-25

Family

ID=12131136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58024180A Pending JPS59148341A (en) 1983-02-14 1983-02-14 Insulating film forming method

Country Status (1)

Country Link
JP (1) JPS59148341A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144029A (en) * 1984-12-17 1986-07-01 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for manufacturing silicon oxide film containing phosphorus
JPS6242410A (en) * 1985-08-19 1987-02-24 Anelva Corp Substrate treating device
JPH0356133U (en) * 1990-10-11 1991-05-30

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144029A (en) * 1984-12-17 1986-07-01 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for manufacturing silicon oxide film containing phosphorus
JPS6242410A (en) * 1985-08-19 1987-02-24 Anelva Corp Substrate treating device
JPH0356133U (en) * 1990-10-11 1991-05-30
JPH0510356Y2 (en) * 1990-10-11 1993-03-15

Similar Documents

Publication Publication Date Title
JP3042127B2 (en) Method and apparatus for manufacturing silicon oxide film
US3424661A (en) Method of conducting chemical reactions in a glow discharge
JPH03155625A (en) Manufacture of plasma cvd film
JPH07161703A (en) Manufacture of semiconductor device
US5660694A (en) Film forming method
JPS61147531A (en) Reactive ion etching method
JPS5948952B2 (en) Method of forming metal thin film
JPS59148341A (en) Insulating film forming method
JPS61193441A (en) Method of forming metal thin film and therefor device
JP4557315B2 (en) Method of forming compound barrier film in silicon semiconductor
JPH0290568A (en) Manufacture of thin film transistor
JPH0243334B2 (en)
JP3400909B2 (en) Plasma processing method and apparatus
JPH0574763A (en) Formation of gate insulating film
JPS5941773B2 (en) Vapor phase growth method and apparatus
JPS58191432A (en) Forming method for thin-film
JPH0533138A (en) Production of oxide film
JPS635528A (en) Reactive sputter etching device
JPS59177919A (en) Selective growth of thin film
JP2977150B2 (en) Method for manufacturing silicon dioxide insulating film
JPS5973413A (en) Insulating material of thin film and its preparation
JPS5970763A (en) Thin film forming device
JP2682734B2 (en) Dielectric film deposition method and apparatus
JPS634066A (en) Bias sputtering device
JPH0323633A (en) Dry etching