JPS61147531A - Reactive ion etching method - Google Patents

Reactive ion etching method

Info

Publication number
JPS61147531A
JPS61147531A JP26998384A JP26998384A JPS61147531A JP S61147531 A JPS61147531 A JP S61147531A JP 26998384 A JP26998384 A JP 26998384A JP 26998384 A JP26998384 A JP 26998384A JP S61147531 A JPS61147531 A JP S61147531A
Authority
JP
Japan
Prior art keywords
etching
reactive ion
ion etching
film
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26998384A
Other languages
Japanese (ja)
Inventor
Taiichi Otani
泰一 大谷
Toru Watanabe
徹 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26998384A priority Critical patent/JPS61147531A/en
Publication of JPS61147531A publication Critical patent/JPS61147531A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To prevent a resist from deteriorating by etching an alloy film which mainly contains aluminum in a vacuum chamber with mixture gas of BCl3, Cl2, He, thereby enabling to anisotropically etch it at a high speed. CONSTITUTION:An alloy film which mainly contains aluminum or aluminum alloy film accumulated on a silicon wafer is etched with mixture gas of BCl3, Cl2, He. The operating pressure at etching time is preferably 80Pa-180Pa from the view point of obtaining anisotropic state simultaneously. The gas flow rate ratio of BCl3 and Cl2 for forming the mixture gas is preferable 30-60% of Cl2/(BCl3+Cl2) from the view point of obtaining anisotropic state.

Description

【発明の詳細な説明】 (発明の技術分野〕 本発明は、反応性イオンエツチング方法に関し、特にウ
ェハ上のへλ膜又はAgとSi、Cuとの合金膜をエツ
チングする反応性イオンエツチング方法に係わる。
Detailed Description of the Invention (Technical Field of the Invention) The present invention relates to a reactive ion etching method, and particularly to a reactive ion etching method for etching a λ film or an alloy film of Ag, Si, and Cu on a wafer. Involved.

(発明の技術的背景とその問題点〕 AR又はその合金は集積回路の配線材料として汎用され
ている。かかるAl1等の配線を形成するには、ウェハ
上に蒸着法、スパッタリング法又はCVD法によりAl
膜又はAM合金膜を堆積した後、該A℃模膜上写真蝕剣
法によりレジストパターンを形成し、該レジストパター
ンをマスクとしてへ2膜等を選択的にエツチングする方
法が採用されている。このエツチング方法においては、
従来よりエツチング液を用いる湿式エツチング法が使用
されている。しかしながら、この方法は等方向にエツチ
ングが進行するため、3μm以下の微細な配線パターン
の形成が不可能であった。
(Technical background of the invention and its problems) AR or its alloy is widely used as a wiring material for integrated circuits.In order to form wiring such as Al1, it is necessary to form the wiring on a wafer by vapor deposition, sputtering or CVD. Al
After depositing a film or an AM alloy film, a resist pattern is formed on the A.degree. C. pattern by photoetching, and the resist pattern is used as a mask to selectively etch the 2 film or the like. In this etching method,
Conventionally, a wet etching method using an etching solution has been used. However, in this method, etching progresses in the same direction, making it impossible to form fine wiring patterns of 3 μm or less.

このようなことから、最近、異方性エツチングが可能な
反応性イオンエツチングが使用され始めている。この方
法は、反応性ガスプラス中でへ2膜等を堆積したウェハ
を設置し、直流電界で加速されたイオンをウェハの表面
に対して垂直に入射させるため、異方性エツチングが可
能となる。
For these reasons, reactive ion etching, which allows anisotropic etching, has recently begun to be used. This method enables anisotropic etching by placing a wafer on which a film, etc. has been deposited, in a reactive gas plus, and injecting ions accelerated by a DC electric field perpendicularly to the wafer surface. .

ところで、ウェハの大口径化、プロセスの自動化に対抗
するために枚葉式の装置が主流になっている。枚葉式に
おいては、当然バッチ方式に比べてスループットで対向
するには、高速エツチングが要求される。しかも、エツ
チング選択比や加工形状等の緒特性は、バッチ方式に比
べて遜色なく、更に高速エツチングが要求される。上述
した反応性イオンエツチングでは、これらの要求を満た
すために多くの方法が検討されている。その−例として
、B(1!3、Cり2、CCり+、5iCffi+等の
エツチングガスを使用する方法、ウェハを載置する電極
に高周波を印加するカッ−・ドカップル法、対向電極に
ウェハを載置するアノードカップル法の高周波印加を改
善した方法等が提案されている。しかしながら、いずれ
の方法によっても加工形状、エツチング選択比を満足し
、更に高速エツチングを達成することはmHであった。
Incidentally, in order to cope with the increase in the diameter of wafers and the automation of processes, single-wafer type devices have become mainstream. Naturally, the single-wafer method requires high-speed etching in order to achieve higher throughput than the batch method. In addition, the etching selectivity, processed shape, and other characteristics are comparable to those of the batch method, and even higher speed etching is required. Regarding the above-mentioned reactive ion etching, many methods have been studied to meet these requirements. Examples include a method using an etching gas such as B(1!3, C2, CC2+, 5iCffi+, etc.), a quadruple couple method in which a high frequency is applied to the electrode on which the wafer is placed, and a method in which a high frequency is applied to the electrode on which the wafer is placed; Methods have been proposed in which the high frequency application of the anode couple method for placing the wafer is improved.However, it is difficult for any of these methods to satisfy the processing shape and etching selectivity, and to achieve high-speed etching at mH. Ta.

この原因は多くあるが、主要なものは以下の3点である
There are many reasons for this, but the following three are the main ones.

■、八2の表面は酸化され易く、堅いAり203膜で覆
われているため、これをエツチングするには長い時間を
要し、全体としてのエツチング速度が低下する。
(2) Since the surface of 82 is easily oxidized and is covered with a hard Al 203 film, it takes a long time to etch this, reducing the overall etching rate.

■、八2は、本来化学的にエツチングされる(プラズマ
の雰囲気でなくともエツチングが進行する)ため、余り
エツチングを速めると、等方向なエツチング形状となり
易い。
(2) and 82 are essentially chemically etched (etching proceeds even in a plasma atmosphere), so if the etching speed is increased too much, the etched shape tends to be isodirectional.

■、Affiのエツチング速度を高速化すると、反応熱
によりレジストの劣化を招く。
(2) When the etching speed of Affi is increased, the resist deteriorates due to reaction heat.

〔発明の目的〕[Purpose of the invention]

本発明は、ウェハ上のA1211!又はA多合金膜の反
応性イオンエツチングに際して、高速で異方性のエツチ
ングが可能で、更にレジストの劣化を防止し得る反応性
イオンエツチング方法を提供しようとするものである。
The present invention provides A1211! on a wafer! Another object of the present invention is to provide a reactive ion etching method that enables high-speed and anisotropic etching of a polyalloy film and prevents resist deterioration.

(発明の概要〕 本発明者らは、Aρ膜等の表面に形成されたAg303
1FJの除去に効果的に作用するBCffi3を用い、
かつエツチング速度の増加のためにCC2を用い、更に
冷却効果のあるHeを使用することによって、既述の如
くウェハ上のAffi膜又はへ2合金膜の反応性イオン
エツチングに際して、高速で異方性のエツチングが可能
で、更にレジストの劣化を防止し得る反応性イオンエツ
チング方法を見出したものである。
(Summary of the Invention) The present inventors have discovered that Ag303 formed on the surface of an Aρ film, etc.
Using BCffi3, which effectively acts on the removal of 1FJ,
In addition, by using CC2 to increase the etching rate and further using He, which has a cooling effect, it is possible to achieve high speed and anisotropic etching during reactive ion etching of the Affi film or He2 alloy film on the wafer as described above. The present inventors have discovered a reactive ion etching method that enables etching of the resist and prevents deterioration of the resist.

即ち、本発明は、真空チャンバ内でシリコンウェハ上に
堆積したAl嘆又はAlを主成分とする合金膜をBCf
fi 、Cf;12、Heの混合ガスでエツチングを行
なうことを特徴とするものである。
That is, in the present invention, an Al layer or an alloy film mainly composed of Al deposited on a silicon wafer in a vacuum chamber is treated with BCf.
This method is characterized in that etching is performed using a mixed gas of fi, Cf; 12, and He.

上記へ2を主成分とする合金膜としては、例えばAp−
s:合金膜、八り−Cu合金膜、A℃−s r −cu
合金膜等を挙げることができる。
For example, the alloy film containing 2 as a main component is Ap-
s: Alloy film, Yari-Cu alloy film, A℃-sr-cu
Examples include alloy films.

上記チャンバ内でのエツチング時の作動圧力は、枚葉式
で実用上差支えないエツチング速度を示し、同時に異方
性形状を確保する観点がら、80Pa〜180Paの範
囲にすることが望ましい。
The operating pressure during etching in the chamber is desirably in the range of 80 Pa to 180 Pa from the viewpoint of achieving a practically acceptable etching rate in a single wafer process and at the same time ensuring an anisotropic shape.

上記混合ガスを構成するBCβ3とCβ2とのガス流量
比は、枚葉式で実用上差支えないエツチング速度を示し
、同時に異方性形状を確保する観点から、0℃2 / 
(80g3+Cj22)で、30〜60%の範囲にする
ことが望ましい。
The gas flow rate ratio of BCβ3 and Cβ2 constituting the above-mentioned mixed gas is 0°C2 /
(80g3+Cj22), which is preferably in the range of 30 to 60%.

上記混合ガスを構成するHeの供給量は、エツチング時
の冷却効果を充分に図る観点から、5008CCM以上
にすることが望ましい。なお、Heの供給上限は排気能
力等の点から20008CCMにすることが望ましい。
The supply amount of He constituting the above-mentioned mixed gas is desirably 5008 CCM or more from the viewpoint of achieving a sufficient cooling effect during etching. Note that the upper limit of He supply is desirably 20008 CCM from the viewpoint of exhaust capacity and the like.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第1図を参照して詳細に説明す
る。
Hereinafter, embodiments of the present invention will be described in detail with reference to FIG.

第1図は、本発明の実施例に用いるカソードカップルタ
イプの反応性イオンエツチング装置の概略断面である。
FIG. 1 is a schematic cross-section of a cathode couple type reactive ion etching apparatus used in an embodiment of the present invention.

図中の1は真空チャンバである。1 in the figure is a vacuum chamber.

このチャンバ1内には、平行して対向する一対の電極2
.3が配設されている。この上部電極2は、箱形になっ
ており、前記下部電極3と対向する面にガスの噴出口(
図示せず)が開孔され、かつ該電極2はガス導入管4と
連結されている。このガス導入管4には、反応ガスとし
てのBCnaとCり2とHeとの混合ガスが供給される
。これらガスはマスフローにより自由に流Mを設定でき
るようになっている。また、前記上部゛電極2はグラン
ドに接続されている。前記下部型wA3には、同電極3
を冷却するための冷却水循環配管5が連結されている。
Inside this chamber 1, there are a pair of electrodes 2 facing in parallel.
.. 3 are arranged. This upper electrode 2 has a box shape, and has a gas ejection port (
(not shown) is opened, and the electrode 2 is connected to a gas introduction pipe 4. This gas introduction pipe 4 is supplied with a mixed gas of BCna, C2, and He as a reactive gas. The flow M of these gases can be freely set by mass flow. Further, the upper electrode 2 is connected to ground. The lower mold wA3 has the same electrode 3.
A cooling water circulation pipe 5 for cooling is connected.

また、この下部電極3はマツチングネットワーク6及び
高周波電源7を介してグランドに接続されている。こう
した高周波電源7から一対の電極2.3の間に高周波を
入力すると、イオンと電子の易動度の差から下部N極3
近隣に自己バイアス電圧(Vdc)が発生し、これによ
り加速されたイオンが下部電極上のウェハに衝突する。
Further, this lower electrode 3 is connected to ground via a matching network 6 and a high frequency power source 7. When a high frequency is input between the pair of electrodes 2.3 from such a high frequency power source 7, the lower N pole 3 due to the difference in mobility between ions and electrons.
A self-bias voltage (Vdc) is generated nearby, causing accelerated ions to collide with the wafer on the bottom electrode.

前記真空チャンバ1の下部には、排気管8が連結されて
いる。この排気管8には、図示しないロータリーポンプ
及びメカニカルブースターポンプが連結されている。ま
た、同チャンバ1の外周には加熱ヒータ9が設けられて
いる。
An exhaust pipe 8 is connected to the lower part of the vacuum chamber 1 . A rotary pump and a mechanical booster pump (not shown) are connected to the exhaust pipe 8. Further, a heater 9 is provided on the outer periphery of the chamber 1 .

次に、前述した反応性イオンエツチング装置を用いて本
発明のエツチング方法を説明する。
Next, the etching method of the present invention will be explained using the above-mentioned reactive ion etching apparatus.

まず、直径5インチの単結晶シリコンからなる半導体基
板(シリコンウェハ)11上に熱酸化処理により厚さ約
1000人の酸化膜12を形成し、更にスパッタリング
法により該酸化膜12上に厚さ約8000人のAffi
−3i膜13を堆積した侵、写真蝕刻法により該Aλ−
8i Ml 13上にレジストパターン14を形成した
く第2図図示)。つづいて、このウェハ11を前述した
第1図図示の真空チャンバ1内の下部電極3上にセット
した。ひきつづき、図示しないロータリーポンプ及びメ
カニカルブースターポンプを佐渡してチャンバ1内を1
×10°3 torrまで真空引きを行ない、残留ガス
を充分に排気管8から排気した。次いで、反応性ガスと
しのBCna 、CQ2及びHeガスをマスフローコン
トロールを通して流量制御してガス導入管4からチャン
バ1内に供給し、更にチャンバ1とメカニカルブースタ
の間にあるコンダクションバルブにより圧力を制卸し、
同時だ後、高周波電源(13,56Ml−1z)7から
下部電極3に300Wの高周波電力を印加して、電極2
.3間にプラズマを発生させ、加速されたイオンをウェ
ハ11のレジストパターン″14から露出したAg−3
i膜13に衝突させ、Ag−5r膜13のエツチングを
行なった。
First, on a semiconductor substrate (silicon wafer) 11 made of single-crystal silicon with a diameter of 5 inches, an oxide film 12 with a thickness of about 1,000 wafers is formed by thermal oxidation treatment, and then by a sputtering method, an oxide film 12 with a thickness of about 1000 nm is formed on the oxide film 12 with a thickness of about 8000 Affi
The Aλ-3i film 13 was deposited by etching and photolithography.
A resist pattern 14 is to be formed on the 8i Ml 13 (as shown in FIG. 2). Subsequently, this wafer 11 was set on the lower electrode 3 in the vacuum chamber 1 shown in FIG. 1 described above. Continuing, the rotary pump and mechanical booster pump (not shown) are transferred and the inside of chamber 1 is pumped.
A vacuum was drawn to ×10°3 torr, and residual gas was sufficiently exhausted from the exhaust pipe 8. Next, BCna, CQ2, and He gases as reactive gases are supplied into the chamber 1 from the gas introduction pipe 4 under flow control through a mass flow control, and the pressure is further controlled by a conduction valve located between the chamber 1 and the mechanical booster. wholesale,
At the same time, a high frequency power of 300 W is applied from the high frequency power source (13,56Ml-1z) 7 to the lower electrode 3, and the electrode 2
.. 3, plasma is generated and accelerated ions are applied to Ag-3 exposed from the resist pattern "14" of the wafer 11.
The Ag-5r film 13 was etched by colliding with the i film 13.

しかして、上記実施例においてHeを1400SCCM
供給し、BCRヨとCJ22の両者を708CCM供給
すると共に、80g3/Cff12の比をパラメータと
した時のへρ−3i膜のエツチング速度と、同Aλ−8
1膜の加工形状との関係を調べたところ、第3図に示す
特性図を得た。なお、Ay−s+膜のエツチング速度は
反応性イオンエツチング後、バレル型アッシャ−装置に
てレジストパターン14を剥離し、Affi−8i膜面
にエツチングにより形成、された段差をタリーステップ
装置によって測定した。また、AQ−3i膜の加工形状
の観察は、Aff−8i膜の反応性イオンエツチング後
、ウェハ11を男開し、走査型電子顕微鏡で断面を観察
することによって異方性を判定した。第3図中の斜線よ
り右側の領域は、アンダーカットが発生する領域である
。第3図より明らかなようにBC℃3/Cg2/Heの
混合ガスによる反応性イオンエツチングにおいて、Cl
2の供給量を増大、即ちBG/!、a/CR2比を減少
させると、へλ−8i膜のエツチング速度は増加するが
、加工形状はアンダーカットが発生した状態となる。一
方、Cl2の供給量を減少させ、BCλ〕の量を増加す
ると、加工形状が異方性となる。こうしたことより、枚
葉式で実用上支障のないエツチング速度を示し、同時に
異方性形状を確保できるBCnaとGQ2の流量比条件
は、CfJ12/ (BCクヨ+Cλ2)が30〜60
%の範囲であることがわかる。
Therefore, in the above example, He was 1400SCCM
The etching rate of the ρ-3i film and the same Aλ-8 when both BCR Yo and CJ22 are supplied at 708 CCM and the ratio of 80g3/Cff12 is taken as a parameter.
When the relationship with the processed shape of one film was investigated, the characteristic diagram shown in FIG. 3 was obtained. The etching rate of the Ay-s+ film was determined by removing the resist pattern 14 using a barrel-type asher device after reactive ion etching, and measuring the step formed by etching on the surface of the Affi-8i film using a tally step device. . Further, to observe the processed shape of the AQ-3i film, after reactive ion etching of the Aff-8i film, the wafer 11 was opened open and the cross section was observed with a scanning electron microscope to determine the anisotropy. The area to the right of the diagonal line in FIG. 3 is an area where undercuts occur. As is clear from Fig. 3, in reactive ion etching using a mixed gas of BC°C3/Cg2/He, Cl
Increase the supply of 2, i.e. BG/! When the a/CR2 ratio is decreased, the etching rate of the λ-8i film increases, but the processed shape becomes undercut. On the other hand, when the supply amount of Cl2 is decreased and the amount of BCλ] is increased, the processed shape becomes anisotropic. For these reasons, the conditions for the flow rate ratio of BCna and GQ2 that allow a single wafer type to exhibit a practically acceptable etching speed and at the same time ensure an anisotropic shape are as follows: CfJ12/(BC+Cλ2) is 30 to 60.
% range.

また、0g2/(BCり3 +CJ22 >が45%に
設定した時のエツチング速度の圧力依存性(チャンバ内
圧力)を調べたところ、第4図に示す特性図を得た。こ
の第4図より明らかなように枚葉式で実用上支障のない
エツチング速度を示し、同時に異方性形状を確保できる
圧力条件は80Pa〜180Paの範囲であることがわ
かる。
Furthermore, when we investigated the pressure dependence (chamber internal pressure) of the etching rate when 0g2/(BC Ri3 + CJ22 > was set to 45%, we obtained the characteristic diagram shown in Fig. 4. As is clear, the pressure conditions under which a single-wafer etching method can exhibit a practically acceptable etching rate and at the same time ensure an anisotropic shape are in the range of 80 Pa to 180 Pa.

なお、上記実施例ではカソードカップルタイプの反応性
イオンエツチング装置を用いて説明したが、BCffi
aとCl22との比を前記範囲内で制鉗すること等によ
って、アノードカップルタイプの反応性イオンエツチン
グ装置を使用しても同様な効果を達成できる。
In addition, although the above embodiment was explained using a cathode couple type reactive ion etching apparatus, the BCffi
A similar effect can be achieved by using an anode couple type reactive ion etching apparatus by controlling the ratio of a to Cl22 within the above range.

〔発明の効果] 以上詳述した如く、本発明によればウェハ上のARII
!又はAl合金膜の反応性イオンエツチングに際して、
高速で異方性のエツチングが可能で、更にレジストの劣
化を防止でき、ひいては高精度の八2又はへ2合金配線
を効率よく形成し得る等顕著な効果を有する反応性イオ
ンエツチング方法を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, ARII on a wafer
! Or during reactive ion etching of Al alloy film,
It is possible to provide a reactive ion etching method that has remarkable effects such as being able to perform anisotropic etching at high speed, preventing resist deterioration, and efficiently forming high-precision 82 or 2 alloy wiring. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例で使用したカソードカップルタ
イプの反応性イオンエツチング装置の一形態を示す概略
断面図、第2図は本実施例における反応性イオンエツチ
ングを行なうウェハの形状を示す断面図、第3図はCl
2/ (BCり3+022)の比率とAQ−8iI19
!のエツチング速度との関係を示す特性図、第4図は真
空チャンバ内の作動圧力とエツチング速度との関係を示
す特性図である。 1・・・真空チャンバ、2・・・上部電極、3・・・下
部電極、4・・・ガス導入管、7・・・高周波電源、8
・・・排気管、11・・・ウェハ、13・・・Δg−8
i膜、14・・・レジストパターン。 出願人代理人 弁理士  鈴江武彦 ′;21図 第2図 第3図
FIG. 1 is a schematic cross-sectional view showing one form of a cathode couple type reactive ion etching apparatus used in an example of the present invention, and FIG. 2 is a cross-sectional view showing the shape of a wafer to be subjected to reactive ion etching in this example. Figure 3 is Cl
2/ Ratio of (BCri3+022) and AQ-8iI19
! FIG. 4 is a characteristic diagram showing the relationship between the working pressure in the vacuum chamber and the etching rate. DESCRIPTION OF SYMBOLS 1... Vacuum chamber, 2... Upper electrode, 3... Lower electrode, 4... Gas introduction tube, 7... High frequency power supply, 8
...Exhaust pipe, 11...Wafer, 13...Δg-8
i film, 14...resist pattern. Applicant's agent Patent attorney Takehiko Suzue; Figure 21 Figure 2 Figure 3

Claims (4)

【特許請求の範囲】[Claims] (1)真空チャンバ内でシリコンウェハ上に堆積したA
l膜又はAlを主成分とする合金膜をBCl_3、Cl
_2、Heの混合ガスでエッチングを行なうことを特徴
とする反応性イオンエッチング方法。
(1) A deposited on a silicon wafer in a vacuum chamber
BCl_3, Cl film or alloy film mainly composed of Al
_2. A reactive ion etching method characterized by etching with a mixed gas of He.
(2)エッチング時の動作圧力が80Pa〜180Pa
であることを特徴とする特許請求の範囲第1項記載の反
応性イオンエッチング方法。
(2) Operating pressure during etching is 80Pa to 180Pa
A reactive ion etching method according to claim 1, characterized in that:
(3)BCl_3とCl_2のガス流量比がCl_2/
(BCl_3+Cl_2)で30〜60%であることを
特徴とする特許請求の範囲第1項又は第2項記載の反応
性イオンエッチング方法。
(3) The gas flow rate ratio of BCl_3 and Cl_2 is Cl_2/
3. The reactive ion etching method according to claim 1 or 2, wherein (BCl_3+Cl_2) is 30 to 60%.
(4)ウェハを1枚毎枚葉式にエッチングすることを特
徴とする特許請求の範囲第1項乃至第3項記載の反応性
イオンエッチング方法。
(4) The reactive ion etching method according to any one of claims 1 to 3, characterized in that each wafer is etched one by one.
JP26998384A 1984-12-21 1984-12-21 Reactive ion etching method Pending JPS61147531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26998384A JPS61147531A (en) 1984-12-21 1984-12-21 Reactive ion etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26998384A JPS61147531A (en) 1984-12-21 1984-12-21 Reactive ion etching method

Publications (1)

Publication Number Publication Date
JPS61147531A true JPS61147531A (en) 1986-07-05

Family

ID=17479935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26998384A Pending JPS61147531A (en) 1984-12-21 1984-12-21 Reactive ion etching method

Country Status (1)

Country Link
JP (1) JPS61147531A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369988A (en) * 1986-09-09 1988-03-30 Nec Corp Dry etching method
AT389350B (en) * 1987-09-11 1989-11-27 Avl Verbrennungskraft Messtech INTAKE SYSTEM FOR INTERNAL COMBUSTION ENGINES
US5888414A (en) * 1991-06-27 1999-03-30 Applied Materials, Inc. Plasma reactor and processes using RF inductive coupling and scavenger temperature control
US5990017A (en) * 1991-06-27 1999-11-23 Applied Materials, Inc. Plasma reactor with heated source of a polymer-hardening precursor material
US6036877A (en) * 1991-06-27 2000-03-14 Applied Materials, Inc. Plasma reactor with heated source of a polymer-hardening precursor material
US6036878A (en) * 1996-02-02 2000-03-14 Applied Materials, Inc. Low density high frequency process for a parallel-plate electrode plasma reactor having an inductive antenna
US6054013A (en) * 1996-02-02 2000-04-25 Applied Materials, Inc. Parallel plate electrode plasma reactor having an inductive antenna and adjustable radial distribution of plasma ion density
US6063233A (en) * 1991-06-27 2000-05-16 Applied Materials, Inc. Thermal control apparatus for inductively coupled RF plasma reactor having an overhead solenoidal antenna
US6074512A (en) * 1991-06-27 2000-06-13 Applied Materials, Inc. Inductively coupled RF plasma reactor having an overhead solenoidal antenna and modular confinement magnet liners
US6077384A (en) * 1994-08-11 2000-06-20 Applied Materials, Inc. Plasma reactor having an inductive antenna coupling power through a parallel plate electrode
US6083412A (en) * 1993-10-15 2000-07-04 Applied Materials, Inc. Plasma etch apparatus with heated scavenging surfaces
US6090303A (en) * 1991-06-27 2000-07-18 Applied Materials, Inc. Process for etching oxides in an electromagnetically coupled planar plasma apparatus
US6132551A (en) * 1997-09-20 2000-10-17 Applied Materials, Inc. Inductive RF plasma reactor with overhead coil and conductive laminated RF window beneath the overhead coil
US6165311A (en) * 1991-06-27 2000-12-26 Applied Materials, Inc. Inductively coupled RF plasma reactor having an overhead solenoidal antenna
US6238588B1 (en) 1991-06-27 2001-05-29 Applied Materials, Inc. High pressure high non-reactive diluent gas content high plasma ion density plasma oxide etch process
US6251792B1 (en) 1990-07-31 2001-06-26 Applied Materials, Inc. Plasma etch processes
US6361644B1 (en) 1995-08-30 2002-03-26 Applied Materials, Inc. Parallel-plate electrode reactor having an inductive antenna coupling power through a parallel plate electrode
US6401652B1 (en) 2000-05-04 2002-06-11 Applied Materials, Inc. Plasma reactor inductive coil antenna with flat surface facing the plasma
US6488807B1 (en) 1991-06-27 2002-12-03 Applied Materials, Inc. Magnetic confinement in a plasma reactor having an RF bias electrode
US6514376B1 (en) 1991-06-27 2003-02-04 Applied Materials Inc. Thermal control apparatus for inductively coupled RF plasma reactor having an overhead solenoidal antenna
US6518195B1 (en) 1991-06-27 2003-02-11 Applied Materials, Inc. Plasma reactor using inductive RF coupling, and processes
US6589437B1 (en) 1999-03-05 2003-07-08 Applied Materials, Inc. Active species control with time-modulated plasma

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369988A (en) * 1986-09-09 1988-03-30 Nec Corp Dry etching method
AT389350B (en) * 1987-09-11 1989-11-27 Avl Verbrennungskraft Messtech INTAKE SYSTEM FOR INTERNAL COMBUSTION ENGINES
US6251792B1 (en) 1990-07-31 2001-06-26 Applied Materials, Inc. Plasma etch processes
US6440866B1 (en) 1991-06-27 2002-08-27 Applied Materials, Inc. Plasma reactor with heated source of a polymer-hardening precursor material
US6514376B1 (en) 1991-06-27 2003-02-04 Applied Materials Inc. Thermal control apparatus for inductively coupled RF plasma reactor having an overhead solenoidal antenna
US6036877A (en) * 1991-06-27 2000-03-14 Applied Materials, Inc. Plasma reactor with heated source of a polymer-hardening precursor material
US6444085B1 (en) 1991-06-27 2002-09-03 Applied Materials Inc. Inductively coupled RF plasma reactor having an antenna adjacent a window electrode
US6518195B1 (en) 1991-06-27 2003-02-11 Applied Materials, Inc. Plasma reactor using inductive RF coupling, and processes
US6063233A (en) * 1991-06-27 2000-05-16 Applied Materials, Inc. Thermal control apparatus for inductively coupled RF plasma reactor having an overhead solenoidal antenna
US6074512A (en) * 1991-06-27 2000-06-13 Applied Materials, Inc. Inductively coupled RF plasma reactor having an overhead solenoidal antenna and modular confinement magnet liners
US5888414A (en) * 1991-06-27 1999-03-30 Applied Materials, Inc. Plasma reactor and processes using RF inductive coupling and scavenger temperature control
US5990017A (en) * 1991-06-27 1999-11-23 Applied Materials, Inc. Plasma reactor with heated source of a polymer-hardening precursor material
US6090303A (en) * 1991-06-27 2000-07-18 Applied Materials, Inc. Process for etching oxides in an electromagnetically coupled planar plasma apparatus
US6488807B1 (en) 1991-06-27 2002-12-03 Applied Materials, Inc. Magnetic confinement in a plasma reactor having an RF bias electrode
US6165311A (en) * 1991-06-27 2000-12-26 Applied Materials, Inc. Inductively coupled RF plasma reactor having an overhead solenoidal antenna
US6454898B1 (en) 1991-06-27 2002-09-24 Applied Materials, Inc. Inductively coupled RF Plasma reactor having an overhead solenoidal antenna and modular confinement magnet liners
US6238588B1 (en) 1991-06-27 2001-05-29 Applied Materials, Inc. High pressure high non-reactive diluent gas content high plasma ion density plasma oxide etch process
US6623596B1 (en) 1992-12-01 2003-09-23 Applied Materials, Inc Plasma reactor having an inductive antenna coupling power through a parallel plate electrode
US6083412A (en) * 1993-10-15 2000-07-04 Applied Materials, Inc. Plasma etch apparatus with heated scavenging surfaces
US6077384A (en) * 1994-08-11 2000-06-20 Applied Materials, Inc. Plasma reactor having an inductive antenna coupling power through a parallel plate electrode
US6361644B1 (en) 1995-08-30 2002-03-26 Applied Materials, Inc. Parallel-plate electrode reactor having an inductive antenna coupling power through a parallel plate electrode
US6444084B1 (en) 1996-02-02 2002-09-03 Applied Materials, Inc. Low density high frequency process for a parallel-plate electrode plasma reactor having an inductive antenna
US6054013A (en) * 1996-02-02 2000-04-25 Applied Materials, Inc. Parallel plate electrode plasma reactor having an inductive antenna and adjustable radial distribution of plasma ion density
US6524432B1 (en) 1996-02-02 2003-02-25 Applied Materials Inc. Parallel-plate electrode plasma reactor having an inductive antenna and adjustable radial distribution of plasma ion density
US6036878A (en) * 1996-02-02 2000-03-14 Applied Materials, Inc. Low density high frequency process for a parallel-plate electrode plasma reactor having an inductive antenna
US6365063B2 (en) 1996-05-13 2002-04-02 Applied Materials, Inc. Plasma reactor having a dual mode RF power application
US6218312B1 (en) 1996-05-13 2001-04-17 Applied Materials Inc. Plasma reactor with heated source of a polymer-hardening precursor material
US6024826A (en) * 1996-05-13 2000-02-15 Applied Materials, Inc. Plasma reactor with heated source of a polymer-hardening precursor material
US6132551A (en) * 1997-09-20 2000-10-17 Applied Materials, Inc. Inductive RF plasma reactor with overhead coil and conductive laminated RF window beneath the overhead coil
US6589437B1 (en) 1999-03-05 2003-07-08 Applied Materials, Inc. Active species control with time-modulated plasma
US6401652B1 (en) 2000-05-04 2002-06-11 Applied Materials, Inc. Plasma reactor inductive coil antenna with flat surface facing the plasma

Similar Documents

Publication Publication Date Title
JPS61147531A (en) Reactive ion etching method
US6136211A (en) Self-cleaning etch process
JPH0383335A (en) Etching process
JPH08236513A (en) Method of etching substrate in plasma
JP3400918B2 (en) Method for manufacturing semiconductor device
JP3808902B2 (en) Plasma etching method
JP4184851B2 (en) Plasma processing method
WO2003056617A1 (en) Etching method and plasma etching device
JPH06338479A (en) Etching method
JPH10178014A (en) Method for manufacturing semiconductor device
JP3259000B2 (en) Method for etching refractory metal-containing film and method for manufacturing thin film capacitor
JPH0722393A (en) Dry etching equipment and method
JP4360065B2 (en) Plasma processing method
JPS58191432A (en) Forming method for thin-film
JP2603989B2 (en) Method for manufacturing semiconductor device
JPS62154628A (en) Dry etching method
JPH06108272A (en) Plasma etching method
JP2002319569A (en) Dry etching method
JPS61147532A (en) Reactive ion etching method
JPH0666294B2 (en) Dry etching method
JP3597721B2 (en) Etching method and method of manufacturing semiconductor device
JP3337502B2 (en) Plasma etching apparatus and plasma etching method
JPS584930A (en) Removing method of photoresist
JPS61174634A (en) Method of dry etching
JPH0290521A (en) Manufacture of semiconductor device