JPS61147532A - Reactive ion etching method - Google Patents

Reactive ion etching method

Info

Publication number
JPS61147532A
JPS61147532A JP26998484A JP26998484A JPS61147532A JP S61147532 A JPS61147532 A JP S61147532A JP 26998484 A JP26998484 A JP 26998484A JP 26998484 A JP26998484 A JP 26998484A JP S61147532 A JPS61147532 A JP S61147532A
Authority
JP
Japan
Prior art keywords
etching
reactive ion
gas
ion etching
etched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26998484A
Other languages
Japanese (ja)
Inventor
Yukimasa Yoshida
幸正 吉田
Toru Watanabe
徹 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26998484A priority Critical patent/JPS61147532A/en
Publication of JPS61147532A publication Critical patent/JPS61147532A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To satisfy high etching rate, high etching selection ration and preferable etching shape by supplying He at 800SCCM or higher when etching an alloy film which mainly contains aluminum by plasma of chlorine gas. CONSTITUTION:When a member 10 to be etched and coated with an alloy film which mainly contains aluminum or aluminum alloy is etched on the surface by a plasma of chlorine gas in a vacuum chamber 1, He is supplied at 800SCCM or higher into the chamber by a gas intake tube 4. If the supply amount is less than 800SCCM, cooling effect of He is not sufficient, and the deterioration of the resist cannot be effectively suppressed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、反応性イオンエツチング方法に関し、特にウ
ェハ上のへ2膜またはAgと3i、Cuとの合金膜をエ
ツチングする反応性イオンエツチング方法に係わる。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a reactive ion etching method, and particularly to a reactive ion etching method for etching two films or an alloy film of Ag, 3i, and Cu on a wafer. Involved.

〔発明の技術的背景〕[Technical background of the invention]

集積回路等の配線材料としては、A2又はA2−8 i
 、Ag−Cu合金が汎用されている。こうした集積回
路の高密度化に伴い、線幅が3μm以下の配線が使用さ
れるようになり、Afi又はAg合金の加工、パターニ
ングに際しては、従来のエツチング液を用いる湿式エツ
チング方法から反応性ガスを用いた反応性イオンエツチ
ング方法が採用される傾向にある。反応性ガスとしては
、CCにl+ 、BCl3 、Cl22等のCl系のも
のが使用されている。特に、良好なエツチング特性を得
る観点から、前記ガスを単独で使用せずに、それらガス
の混合ガス(例えば80g3+CQ2)が使用されるこ
とが多い。
For wiring materials such as integrated circuits, A2 or A2-8 i
, Ag-Cu alloys are widely used. With the increasing density of integrated circuits, wiring with a line width of 3 μm or less has come to be used, and when processing and patterning Afi or Ag alloys, the conventional wet etching method using etching liquid has been replaced with a reactive gas etching method. There is a tendency for reactive ion etching methods to be adopted. As the reactive gas, Cl-based gases such as l+, BCl3, Cl22, etc. are used for CC. Particularly, from the viewpoint of obtaining good etching properties, a mixture of these gases (for example, 80g3+CQ2) is often used instead of using the above gases alone.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、C℃系ガスのみを用いた反応性イオンエ
ツチングでは、高エツチングレートがf41られる条件
にして、マスクとしてのレジストに対するエツチング選
択比を高めようとすると、アンダーカットが発生する等
の良好な加工形状にできない。逆に、良好な加工形状を
得ようとすると、レジストの著しい劣化を沼く。また、
良好な加工形状とレジストに対する高エツチング選択比
を同時に満足する条件に設定すると、エツチングレート
が低くなるという問題があった。
However, in reactive ion etching using only C°C gas, if an attempt is made to increase the etching selectivity with respect to the resist as a mask under the condition of a high etching rate f41, undercuts may occur, resulting in poor processing. It cannot be shaped. On the other hand, attempting to obtain a good processed shape results in significant deterioration of the resist. Also,
When conditions are set to simultaneously satisfy a good processed shape and a high etching selectivity to the resist, there is a problem in that the etching rate becomes low.

〔発明の目的〕[Purpose of the invention]

本発明は、AMII!又はAffi合金膜を反応性イオ
ンエツチングするに際し、高エツチングレート、レジス
トに対する高エツチング選択比及び良好な加工形状の全
てを満足するエツチング特性の優れた反応性イオンエツ
チング方法を提供しようとするものである。
The present invention is based on AMII! Another object of the present invention is to provide a reactive ion etching method with excellent etching characteristics that satisfies all of the requirements of high etching rate, high etching selectivity to resist, and good processed shape when performing reactive ion etching on Affi alloy films. .

(発明の概要) 本発明者らは、Cλ系ガスのプラズマによりへ2膜又は
/’1合金膜を反応性イオンエツチングするに際し、レ
ジスト劣化の原因について鋭意検討を重ねた結果、エツ
チング中の被エツチング部材の温度上昇に起因すること
を究明した。
(Summary of the Invention) The present inventors have conducted intensive studies on the causes of resist deterioration when reactive ion etching is performed on a H2 film or a /'1 alloy film using Cλ-based gas plasma. It was determined that this was caused by an increase in the temperature of the etching member.

そこで、本発明者らは上記究明結果を踏まえて更に研究
を重ねた結果、真空チャンバ内の反応性ガスに所定量の
Heを供給することにより、エツチング性を阻害するこ
となく、被エツチング部材の温度上昇を抑制し、既述の
如くレジスト劣化を招くことなく、高エツチングレート
、良好な加工形状を得ることができ、更にHeの供給に
よりプラズマの安定化、エツチングの均一性を図ること
が可能な反応性イオンエツチング方法を見出した。
Therefore, the present inventors conducted further research based on the above findings and found that by supplying a predetermined amount of He to the reactive gas in the vacuum chamber, the material to be etched can be etched without impeding the etching performance. By suppressing the temperature rise, it is possible to obtain a high etching rate and a good processed shape without causing resist deterioration as mentioned above, and further, by supplying He, it is possible to stabilize the plasma and achieve uniform etching. We have discovered a new reactive ion etching method.

即ち、本発明は真空チャンバ内でCλ系ガスのプラズマ
により表面にAl1膜又はAnを主成分とする合金膜が
被覆された被エツチング部材をエツチングするに際し、
前記チャンバ内にHeを8008CCM以上供給するこ
とを特徴とするものである。
That is, in the present invention, when etching a member to be etched whose surface is coated with an Al1 film or an alloy film containing An as a main component using a Cλ-based gas plasma in a vacuum chamber,
The present invention is characterized in that 8008 CCM or more of He is supplied into the chamber.

上記C2系ガスとしては、例えばCCQ4、BCQa 
、CQ2等を挙げることができる。特に、良好なエツチ
ング特性を得る観点から、前記ガスを単独で使用せずに
、それらガスの混合ガス(例えばBCffi3+CQ、
2)が使用されることが望ましい。
Examples of the above C2-based gas include CCQ4, BCQa
, CQ2, etc. In particular, from the viewpoint of obtaining good etching properties, instead of using the above gases alone, a mixed gas of these gases (for example, BCffi3+CQ,
2) is preferably used.

上記AQ、を主成分とする合金膜としては、例えばAp
−s 1合金膜、Ag−CIJ合金膜、Aff−3i 
−CLJ合金膜等を挙げることができる。
As an alloy film mainly composed of the above AQ, for example, Ap
-s 1 alloy film, Ag-CIJ alloy film, Aff-3i
-CLJ alloy film, etc. can be mentioned.

上記Heの真空チャンバ内への供給量を限定した理由は
、その供給量を8008CCM未満にすると、該Heに
よる冷却効果を充分に達成できず、レジスト劣化を効果
的に抑制できなくなる。なお、Heの供給上限は排気能
力等の点から160080CMにすることが望ましい。
The reason why the amount of He supplied into the vacuum chamber is limited is that if the amount of He supplied is less than 8008 CCM, a sufficient cooling effect cannot be achieved by the He, and resist deterioration cannot be effectively suppressed. Note that the upper limit of He supply is desirably 160,080 CM from the viewpoint of exhaust capacity and the like.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第1図を参照して詳細に説明す
る。
Hereinafter, embodiments of the present invention will be described in detail with reference to FIG.

第1図は、本発明の実施例に用いる反応性イオンエツチ
ング装置の概略断面である。図中の1は真空チャンバで
ある。このチャンバ1内には、平行して対向する一対の
電極2.3が配設されている。この上部電極2は、箱形
にな゛つており、前記下部電極3と対向する面にガスの
噴出口(図示せず)が開孔され、かつ該電極2はガス導
入管4と連結されている。このガス導入管4には、主要
なエツチングガスとしての80ggとC(12の混合ガ
ス及びHeガスが供給される。これらガスはマスフロー
により自由に流量を設定できるようにないる。また、前
記上部電極2はグランドに接続されている。前記下部電
極3には、同電極3を冷却するための冷却水循環配管5
が連結されている。
FIG. 1 is a schematic cross-section of a reactive ion etching apparatus used in an embodiment of the present invention. 1 in the figure is a vacuum chamber. A pair of parallel and opposing electrodes 2.3 are disposed within the chamber 1. The upper electrode 2 is box-shaped, and has a gas outlet (not shown) formed on the surface facing the lower electrode 3, and is connected to a gas introduction pipe 4. There is. A mixed gas of 80 gg and C (12) as the main etching gas and He gas are supplied to this gas introduction pipe 4.The flow rate of these gases can be freely set by mass flow. The electrode 2 is connected to the ground.The lower electrode 3 has a cooling water circulation pipe 5 for cooling the electrode 3.
are connected.

また、この下部電極3はマツチングネットワーク6及び
高周波電源7を介してグランドに接続されている。こう
した高周波電源7から一対の電極2.3の間に高周波を
入力すると、イオンと電子の易動度の差から下部電極3
近傍に自己バイアス電圧(VdC)が発生し、これによ
り加速されたイオンが下部電極上の被エツチング部材に
衝突する。前記真空チャンバ1の下部には、排気管8が
連結されており、かつ同チャンバ1の外周には加熱ヒー
タ9が設けられている。
Further, this lower electrode 3 is connected to ground via a matching network 6 and a high frequency power source 7. When a high frequency is input between the pair of electrodes 2.3 from such a high frequency power source 7, the lower electrode 3 due to the difference in mobility between ions and electrons.
A self-bias voltage (VdC) is generated nearby, and accelerated ions collide with the member to be etched on the lower electrode. An exhaust pipe 8 is connected to the lower part of the vacuum chamber 1, and a heater 9 is provided around the outer periphery of the chamber 1.

次に、前述した反応性イオンエツチング装置を用いて本
発明のエツチング方法を説明する。
Next, the etching method of the present invention will be explained using the above-mentioned reactive ion etching apparatus.

まず、表面にAl膜が蒸着され、かつ該△ρ股上にレジ
ストパターンが形成されたシリンウェハ10を用意し、
このウェハ10を真空チャンバ1内の下部電極3上にセ
ットした。つづいて、ガス導入管4からチャンバ1内に
BCj2qとC9,2の混合ガス(4:3)を70SC
CMSHeガスを14008CCM夫々供給すると共に
、排気管8からチャンバ内のガスを排気し、同時に高周
波電源(13,56kHz)7から下部電極3に高周波
電力を自己バイアス電圧が一400Vとなるように印加
して、加速されたイオンをウェハ10のレジストパター
ンから露出したAl膜に衝突させ、Allのエツチング
を行なった。その結果、へρ膜を高エツチングレートで
エツチングを行なうことができると共に、アンダーカッ
トがなく、レジストパターンに忠実な高精度のへ2配線
を形成することができた。
First, prepare a silin wafer 10 with an Al film deposited on its surface and a resist pattern formed on the Δρ rise,
This wafer 10 was set on the lower electrode 3 in the vacuum chamber 1. Next, 70SC of mixed gas (4:3) of BCj2q and C9,2 was introduced into the chamber 1 from the gas introduction pipe 4.
While supplying 14008 CCM of CMSHe gas, the gas inside the chamber was exhausted from the exhaust pipe 8, and at the same time, high frequency power was applied from the high frequency power supply (13,56 kHz) 7 to the lower electrode 3 so that the self-bias voltage was 1400 V. Then, the accelerated ions were made to collide with the Al film exposed from the resist pattern of the wafer 10, thereby etching the Al. As a result, it was possible to etch the ρ film at a high etching rate, and to form a highly accurate ρ film without undercuts and faithful to the resist pattern.

事実、ガス導入管からBCffi3とC20の混合ガス
(4:3)のみを供給した以外、実施例と同様な条件下
で、チャンバ内の圧力及び高周波電力を変えてエツチン
グを行なった場合(従来例)の自己バイアス電圧(V+
jc)とエツチングレートとの関係を調べたところ、第
2図に示す特性図を得た。また、本実施例において、チ
ャンバ内の圧力及び高周波電力を変えてエツチングを行
なった場合の自己バイアス電圧(Vdc)とエツチング
レートとの関係を調べたところ、第3図に示す特性図を
得た。なお、第2図、第3図中において斜線へより上方
側は、アンダーカットが発生する領域を、斜線B、B′
より上方側はレジストの劣化が発生する領域を夫々示す
In fact, when etching was carried out under the same conditions as in the example except that only a mixed gas (4:3) of BCffi3 and C20 was supplied from the gas inlet pipe, the pressure inside the chamber and the high frequency power were changed (conventional example). ) self-bias voltage (V+
When the relationship between etching rate and etching rate was investigated, the characteristic diagram shown in FIG. 2 was obtained. In addition, in this example, the relationship between the self-bias voltage (Vdc) and the etching rate when etching was performed by changing the pressure inside the chamber and the high-frequency power was investigated, and the characteristic diagram shown in Fig. 3 was obtained. . In addition, in FIGS. 2 and 3, areas where undercuts occur are indicated by diagonal lines B and B' above the diagonal lines.
The upper side indicates areas where resist deterioration occurs.

第2図より明らかなように従来例では、エツチングレー
トは自己バイアス電圧(Vdc)の上昇と共に増加し、
アンダーカットも発生し難くなる(図中の○印)。しか
しながら、自己バイアス電位(Vdc)が−200Vよ
り低電圧側になると、レジストの劣化(図中の×印)が
発生する。即ち、アンダーカット及びレジスト劣化が共
に発生しない条件は、VdCが−150V 〜−200
Vの範囲と非常に狭く、A2のエツチングレートも最大
で3500人7m1nLかとれない。これに対し、He
ガスを前記混合ガスと共にチャンバ内に供給する本実施
例では、第3図に示すようにレジストの劣化領域がVd
Cの高い測(図中の斜線B−)にシフトするため、Vd
cが一300Vと低電圧側にしてもレジスト劣化も発生
せず、エツチングレートも5000人/min以上の条
件でAffのエツチングを行なうことができる。
As is clear from FIG. 2, in the conventional example, the etching rate increases as the self-bias voltage (Vdc) increases;
Undercuts are also less likely to occur (marked with a circle in the figure). However, when the self-bias potential (Vdc) becomes lower than -200V, the resist deteriorates (marked with an x in the figure). In other words, the conditions under which both undercut and resist deterioration do not occur are when VdC is -150V to -200V.
The range of V is very narrow, and the maximum etching rate of A2 cannot be achieved, which is 3500 people and 7ml 1nL. On the other hand, He
In this embodiment, the gas is supplied into the chamber together with the mixed gas, and as shown in FIG.
In order to shift to a higher value of C (diagonal line B- in the figure), Vd
Even if c is set to a low voltage of 1,300 V, resist deterioration does not occur, and Aff etching can be performed at an etching rate of 5,000 people/min or more.

なお、上記実施例で説明した第3図の特性図は、−例に
過ぎず、反応性ガスの種類やエツチングされるAl金合
金種類等により自己バイアス電圧(Vdc)に対するエ
ツチングレートやアンダーカット発生領域、レジスト劣
化領域は変わるが、いずれにしても従来方法に比べてレ
ジスト劣化領域が自己バイアス電圧(VdC)の低電圧
側にシフトするため、実施例と同様な効果を達成できる
Note that the characteristic diagram shown in FIG. 3 explained in the above embodiment is only an example, and the etching rate and undercut occurrence relative to the self-bias voltage (Vdc) may vary depending on the type of reactive gas, the type of Al-gold alloy to be etched, etc. Although the region and resist deterioration region are changed, in any case, the resist deterioration region is shifted to the lower voltage side of the self-bias voltage (VdC) compared to the conventional method, so the same effect as in the embodiment can be achieved.

〔発明の効果) 以上詳述した如く、本発明によればAI2膜又はAQ合
金膜を反応性イオンエツチングするに際し、高エツチン
グレート、レジスタに対する高エツチング選択比及び良
好な加工形状の全てを満足し、ひいては高精度のA2又
はへ2合金配線を効率よく形成しえる等顕著な効果を有
する反応性イオンエツチング方法を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, when performing reactive ion etching on an AI2 film or an AQ alloy film, it is possible to satisfy all of a high etching rate, a high etching selectivity to the resistor, and a good processed shape. Furthermore, it is possible to provide a reactive ion etching method that has remarkable effects such as being able to efficiently form highly accurate A2 or H2 alloy wiring.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例で使用した反応性イオンエツチ
ング装置の一形態を示す概略断面図、第2図は従来法に
おける自己バイアス電圧(Vdc)と八λのエツチング
レートとの関係を示す特性図、第3図は本実施例におけ
る自己バイアス電圧(Vda)とAQ、のエツチングレ
ートとの関係を示す特性図である。 1・・・真空チャンバ、2・・・上部電極、3・・・下
部電極、4・・・ガス導入管、7・・・高周波’Im、
8・・・排気管、10・・・ウェハ。 出願人代理人 弁理士  鈴江武彦 第2図 第3図
FIG. 1 is a schematic cross-sectional view showing one form of the reactive ion etching apparatus used in the embodiment of the present invention, and FIG. 2 shows the relationship between the self-bias voltage (Vdc) and the etching rate of 8λ in the conventional method. FIG. 3 is a characteristic diagram showing the relationship between the self-bias voltage (Vda) and the etching rate of AQ in this embodiment. DESCRIPTION OF SYMBOLS 1... Vacuum chamber, 2... Upper electrode, 3... Lower electrode, 4... Gas introduction tube, 7... High frequency 'Im,
8...Exhaust pipe, 10...Wafer. Applicant's agent Patent attorney Takehiko Suzue Figure 2 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)真空チャンバ内でCl系ガスのプラズマにより表
面にAl膜又はAlを主成分とする合金膜が被覆された
被エッチング部材をエッチングするに際し、前記チャン
バ内にHeを800SCCM以上供給することを特徴と
する反応性イオンエッチング方法。
(1) When etching a member to be etched whose surface is coated with an Al film or an alloy film mainly composed of Al by plasma of Cl-based gas in a vacuum chamber, it is recommended to supply 800 SCCM or more of He into the chamber. Characteristic reactive ion etching method.
(2)Cl系ガスがBCl_3とCl_2の混合ガスで
あることを特徴とする特許請求の範囲第1項記載の反応
性イオンエッチング方法。
(2) The reactive ion etching method according to claim 1, wherein the Cl-based gas is a mixed gas of BCl_3 and Cl_2.
(3)被エッチング部材がウェハであり、かつ該ウェハ
を1枚毎枚葉式にエッチングすることを特徴とする特許
請求の範囲第1項記載の反応性イオンエッチング方法。
(3) The reactive ion etching method according to claim 1, wherein the member to be etched is a wafer, and the wafer is etched one by one.
JP26998484A 1984-12-21 1984-12-21 Reactive ion etching method Pending JPS61147532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26998484A JPS61147532A (en) 1984-12-21 1984-12-21 Reactive ion etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26998484A JPS61147532A (en) 1984-12-21 1984-12-21 Reactive ion etching method

Publications (1)

Publication Number Publication Date
JPS61147532A true JPS61147532A (en) 1986-07-05

Family

ID=17479948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26998484A Pending JPS61147532A (en) 1984-12-21 1984-12-21 Reactive ion etching method

Country Status (1)

Country Link
JP (1) JPS61147532A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62145733A (en) * 1985-12-20 1987-06-29 Hitachi Ltd Etching
JPH05136274A (en) * 1991-10-16 1993-06-01 Samsung Electron Co Ltd Inter-layer connecting method of semiconductor device
US6413439B1 (en) 1999-03-18 2002-07-02 Fujitsu Limited Method of manufacturing surface acoustic wave device
DE19962117B4 (en) * 1999-03-18 2004-05-06 Fujitsu Ltd., Kawasaki Method for manufacturing a surface acoustic wave device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62145733A (en) * 1985-12-20 1987-06-29 Hitachi Ltd Etching
JPH05136274A (en) * 1991-10-16 1993-06-01 Samsung Electron Co Ltd Inter-layer connecting method of semiconductor device
US6413439B1 (en) 1999-03-18 2002-07-02 Fujitsu Limited Method of manufacturing surface acoustic wave device
DE19962117B4 (en) * 1999-03-18 2004-05-06 Fujitsu Ltd., Kawasaki Method for manufacturing a surface acoustic wave device

Similar Documents

Publication Publication Date Title
JP2915807B2 (en) Etching of molybdenum silicide using sulfur hexafluoride, hydrogen bromide and oxygen
JPH07169751A (en) Simultaneous removal of photoresist and polysilicon/polycide
JPH0653193A (en) Removal of carbon-based polymer residue by using ozone useful for cleaning of plasma reaction container
JPS61147531A (en) Reactive ion etching method
JP2004247755A (en) Plasma etching using xenon
JPH0622218B2 (en) Etching method
JP3213803B2 (en) Method for forming slope contact hole in semiconductor using high-density plasma etching equipment
JPS60117631A (en) Dry etching method of compound semiconductor
JPH0359573B2 (en)
JP2004304029A (en) Plasma treatment method
JPS61147532A (en) Reactive ion etching method
JP2003229418A (en) Method of etching
JP2001023957A (en) Substrate-etching method and manufacture of semiconductor device
US4554047A (en) Downstream apparatus and technique
JPH04298035A (en) Plasma etching method
JP2894304B2 (en) Method for manufacturing semiconductor device
JPH03109728A (en) Manufacture of semiconductor device
JPH0770514B2 (en) Dry etching method
JPH0382120A (en) Film patterning method
JPS5855568A (en) Reactive ion etching method
JPH0241167B2 (en)
JPH05195259A (en) Method for etching aluminum-containing layer
JPH061770B2 (en) Dry etching method
JP3337502B2 (en) Plasma etching apparatus and plasma etching method
JPS61174634A (en) Method of dry etching